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Neural interface (NI) systems hold the potential to return lost functions to persons with paralysis. Impressive
progress has been made, including evaluation of neural control signals, sensor testing in humans, signal de-
coding advances, and proof-of-concept validation. Most importantly, the field has demonstrated that per-
sons with paralysis can use prototype systems for spelling, ‘‘point and click,’’ and robot control. Human
and animal NI research is advancing knowledge about neural information processing and plasticity in healthy,
diseased, and injured nervous systems. This emerging field promises a range of neurotechnologies able to
return communication, independence, and control to people with movement limitations.
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Rapid growth and development at the intersection of neurosci-

ence, computer science, engineering, and medicine has allowed

the creation of revolutionary neurotechnologies to evaluate and

treat nervous system disorders and to restore lost neural func-

tions. Available neurotechnologies can relieve symptoms of

Parkinson’s disease through electrical stimulation of deep brain

structures and restore hearing by stimulating auditory nerve

fibers. Neural interface (NI) systems that sense neural signals,

also called brain computer interfaces (BCIs), are early-stage

neurotechnologies designed to restore control, communication,

and independence to persons with paralysis when the motor

control structures are disconnected from muscle output. When

motor pathways fail NIs offer a physical bridge for movement

intention to reach the external world by detecting neural signals

that reflect desired actions and transforming them into com-

mands for action, bypassing muscles and damaged neural

structures. The emerging neurotechnology field has moved

quickly in recent years to demonstrate that people with paralysis

can use an NI to perform potentially useful functions. Practical NI

systems are not yet widely or commercially available, but many

of the critical barriers to success are being tackled.

Although the roots of NIs can be traced back well into the last

century, scientific as well as public interest in the potential for NI

technology was ignited by demonstrations of monkeys substitut-

ing neural signals from their motor cortex for hand motions (Ser-

ruya et al., 2002; Taylor et al., 2002). Using neural signals in place

of arm motion, able-bodied monkeys moved computer cursors

to accomplish goal-directed actions. This proof of concept

was soon followed by the launch of a pilot clinical trial in which

humans with longstanding tetraplegia demonstrated the ability

to use motor cortex activity immediately to operate computer

software and control a robotic arm (Hochberg et al., 2006).

Each of these studies, and many complementary studies, was

based on a novel approach in which arm movement intentions

were captured from the spiking patterns of a population of corti-

cal neurons in motor cortex. During this same period, both the

level of interest and accomplishments in a then nearly parallel ef-

fort using field potential (FP)-based NI technologies also acceler-

ated. Humans with severe paralysis demonstrated the ability to
use FP-NI systems, based on scalp-based electroencephalo-

gram (EEG) sensors, for applications ranging from letter-by-

letter spelling (Kubler et al., 2005; Wolpaw et al., 2002) to 2D

cursor control (McFarland et al., 2008).

By reaching these major milestones, NI systems have come to

a threshold of being able to substantially alter the functional ca-

pabilities of persons who have any of a wide range of movement

limitations. However, NIs in any form must be sufficiently reliable,

beneficial, and easy to use for them to become widely adopted

and commercially attractive. Both engineering and fundamental

scientific issues remain, but considerable progress made so far

has helped codify the major obstacles remaining to create

a practical human NI system. These initial advances have fo-

cused debate and motivated considerable research necessary

to realize this entirely new way to help those with movement lim-

itations. The field has also stimulated inquiry into the nature of

neural signals and neural coding, investigation of neural implant

safety, innovative engineering of ‘‘smart’’ microscale implantable

systems, and cross-field discussion of issues and needs of those

with movement limitations. The fervor of activity has attracted

a number of basic laboratories to engage in multidisciplinary re-

search; shaped scientific meetings and journals (see, e.g., IEEE

Trans. Neural Syst. Rehabil. Eng. volume 14:2); evoked vigorous

dialog, especially over the use of invasive and noninvasive tech-

nologies; and garnered much public and media attention. The

move from preclinical to pilot clinical trials has provided a solid

example of translational success in neuroscience. Finally, the

emergence of NI systems has promoted useful dialog regarding

the ethics of communicating directly with the brain, working with

a potentially vulnerable user population, and managing conflict

of interest when attempting to move scientific and engineering

discovery into commercial distribution. All of these can be

seen as healthy signs of an emerging area that presents formida-

ble challenges. Many review articles on the various designs and

types of NI systems are now available (e.g., J. Physiology volume

579:3). Instead of re-reviewing these reports, the goal of this per-

spective is to provide a current point of view from one immersed

in the field—first, to attempt to identify and clarify some major

current key issues, and second, to provide personal impressions
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of the future of NI systems. Topics are presented as contempo-

rary questions frequently raised in the current NI community.

What Is an NI System and Whom Is It Intended to Benefit?
Nearly all in the field will agree that one major goal of NI research

is to create a bridge from the brain to the outside world—a kind of

replacement part, or prosthesis, for the motor system. A system

that senses brain signals may have other roles in evaluating dis-

ease states, for example to predict seizure onset in epilepsy, or

to guide therapy; these important potential uses of an NI are out-

side the scope of this perspective. Opinions vary on the target

population for NI devices. Concepts for NIs range from an exter-

nally driven, reliable, brain-activated switch for a person who is

totally unable to move or speak, to an implanted system that pro-

vides direct brain-actuated dexterous limb movement for some-

one with limb paralysis. The design and implementation of these

visions share common features but also present independent

problems that lead down divergent paths.

However simple or elaborate, a functional NI system is poten-

tially of enormous value for individuals with movement limita-

tions. Many disorders leave the cerebral mechanisms for voli-

tional movement intact, but disconnect motor signals from the

muscles, preventing normal movement and, in the worst cases

of complete ‘‘locked in’’ paralysis, blocking all forms of commu-

nication as well. Paralysis originates in diverse ways that include:

injury to descending motor pathways in the spinal cord, brain-

stem, or cerebrum through stroke or trauma (spinal cord injury

[SCI], cerebral palsy); degenerative disorders that lead to the

loss of motor neurons (such as amyotrophic lateral sclerosis

[ALS]) or motor pathways (e.g., multiple sclerosis); degenerative

disorders of the muscle (muscular dystrophy); or limb loss. This

range of conditions limiting useful movement affects hundreds of

thousands in the US alone. An NI offers a physical means to re-

connect action intentions to the world, as illustrated in Figure 1.

A note on nomenclature is valuable because multiple sets of

terminology to name NIs exist. BCI can mean either brain com-

puter interface or brain-controlled interface. The former reflects

the idea that neural output, normally meant to control muscles,

is now directed at controlling a computer; the latter reflects the

fact that the interface is being run directly from the brain without

the usual somatic intermediaries. Additionally, neural signals

may not go to a computer, but to a machine like a robot; hence

the term brain machine interface (BMI) is used. By contrast, NIs

may control a range of assistive technologies that are not com-

puters or ‘‘machines,’’ such as a push-buttons, so terms that

reflect function as a replacement part, such as neural prosthesis

or neuromotor prosthesis (NMP), have also been used. Here, I

have adopted the term NI system as a general name to encom-

pass the range of these neurotechnologies.

There is widespread agreement that any NI requires three ma-

jor components (Figure 1): (1) a sensor to detect neural signals,

(2) a signal processor that converts neural activity into a com-

mand related to a desired action, and (3) a device to effect action,

often called an assistive technology (AT) in the clinical realm. On-

going concerns relate mainly to the first two areas, including the

optimal types of signals and sensors and the ability to obtain

them, decoding approaches, and the necessary capabilities of

the control signal. At this point, there has been less attention

paid by the NI research community toward explicit AT needs,

but this likely reflects the relatively early stage of the field and

the substantial challenges of going from neural signals to a com-

mand signal. A stable and reliable control signal can be readily

applied to many useful ATs. Thus, despite still having various

designations, the overall concept of providing a link from neural

signals as a means to compensate for loss of control is seen as

the central principle that unifies this field.

NI Classification: Direct and Indirect Systems
There is not general agreement on how to categorize various

emerging types of NI systems, and this reflects the diversity of

technologies being developed. Systems may be grouped by

the nature of the control signal, sensor location, or output

form. One constructive classification method stems from the ce-

rebral processes that the particular NI system engages to pro-

vide control: (1) indirect NIs—those systems that co-opt neural

events not intrinsically or originally related to intended movement

in order to achieve action and (2) direct NIs—those that attempt

to control action by using those neural events that underlie the

intended movements. Thus, an indirect NI provides a surrogate

(replacement) output, because the source of control comes

from a signal that substitutes for the missing motor command.

Learning to raise or lower the amplitude of an EEG signal over

the auditory cortex to activate a switch (Wilson et al., 2006)

would be one clear example of an indirect NI system, because

this signal is not ordinarily directly coupled to movement. One

subtype of indirect NI involves learning to associate the power

or amplitude of a brain rhythm with a desired action. For exam-

ple, learned suppression of a cortical rhythm reflecting attention

could substitute for action of the hand on a computer mouse.

Through a decoder and simple hardware one could couple the

amount of attentional suppression to upward movement of com-

puter cursor on a monitor so that cursor motion is achieved

Figure 1. Design of a Neural Interface System
Disconnection of signals carrying movement intention to muscles is
‘‘bridged’’ by detecting signals that are either direct representations of
movement or indirect substitutes for that signal. Each signal type requires
the selection of a sensor and the area from which that signal is obtained.
Neural signals are decoded into a command that is used to operate a range
of devices to effect actions. In addition to physical systems, the signal
could be routed to the muscles and, via muscle stimulators, reconnect
the brain to the muscles to restore voluntary action.
512 Neuron 60, November 6, 2008 ª2008 Elsevier Inc.
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Figure 2. Signals and Sensors for Neural Interface Systems
Two broad classes of electrical potentials are being evaluated as signal
sources for neural interface (NI) systems: field potentials (FP, darker blues)
and action potentials (spikes, red). FPs include slow potentials, such as
the Bereitschaft potential (BP); medium rhythms that include m and beta
SMRs; and fast gamma rhythms. Event-related potentials (ERPs) are trig-
gered events such as the P300. FPs may be recorded (light blue) from sin-
gle or multiple sites on the scalp as the EEG, directly above the brain as the
ECoG, and within the brain as the local field potential (LFP). FP bandwidth,
signal-to-noise, or sampling area is influenced by distance from the brain
and electrode size, shape, and number. All but the EEG recordings require
invasive methods to place sensors. Spikes can only be recorded within the
brain parenchyma. Spikes originate from single neurons but can also be
recorded as local mixtures of spiking neurons (MUA, multiunit activity);
population signals are obtained by combining information from spikes
from different neurons or MUA channels. FP signals carry information (ar-
row to right) that appears to represent brain states or signs of underlying
subthreshold and threshold processes, while spikes are signals that carry
specific details of action such as hand velocity in space.
without the user engaging hand movement circuitry. Instrumen-

tal conditioning or biofeedback-like training is used to form an ar-

bitrary association between whatever modulates the brain signal

and the desired action for this learned form of indirect control. A

second subtype of indirect system is based on capturing event-

related potentials (ERPs) that respond to a time-locked event,

which signals the user’s intent. The clearest and most successful

example of this type of indirect NI is the P300 evoked potential

system, in which control is derived from amplitude differences

in this response to attended and nonattended computer-flashed

stimuli (Birbaumer, 2006). The P300 response can be used, with-

out learning, to select one attended character within a larger

matrix of characters to create a spelling device (Figure 4). Re-

search on indirect systems is driving inquiry into the various

types of brain rhythms and the ability of humans to learn to con-

trol them, as well as the nature of ERPs related to cognitive and

other events.

By contrast, a direct NI system attempts to reconnect the neu-

ral spiking patterns related to movement, say for the arm, directly

back to a device that carries out arm-like functions (Donoghue

et al., 2007). Thus, arm movement control signals used to guide

hand movement for mouse control of a computer cursor are in-

stead used to guide the cursor directly from the brain. Conse-

quently, a direct NI control signal does not require any initial

learning because it maps neural activity related to the intended

motor feature directly to the desired action. There has been a ma-

jor emphasis on arm function for direct NI systems because neu-

ral control of the arm in nonhuman primates at the single and

neuron population is comparatively well-understood and be-

cause restoration of arm-like functions, such as point and click

actions of a computer mouse, is both enabling and highly desired

by those with tetraplegia (Anderson, 2004). Direct systems,

which necessarily intercept movement commands from only

one part of a distributed motor control system, rely on a very lim-

ited sample of ongoing processes captured at an intermediate

stage. Learning, either by the human or decoders, is therefore

likely to play a critical part in optimizing direct NI function and

in compensating for missing or disconnected parts of the motor

system. An implicit assumption for a direct NI is that control

would be more natural and intuitive because it begins with the

signal ordinarily used to perform a particular missing action
(i.e., hand motor commands to achieve hand-like actions). Suc-

cess in testing this idea will be discussed below.

What Are the Most Useful Signals for NIs?
One contentious but key issue is selecting the optimal neural sig-

nal to provide control. In its ideal form, the neural control signal

would achieve the quality of the communication link between

the brain and the able body. Greater information content, speed

of transfer (information rate), reliability, and signal accessibility

are features that influence optimal neural signal selection. Lack

of fundamental knowledge concerning the nature of neural sig-

nals and information coding in the brain, as well as insufficient

human NI experience, limits our ability to judge how much con-

trol potential there is in various neural signals, although small

samples are unlikely to provide elaborate control without support

from physical systems.

Divergent opinions on the best signal sources have emerged

based on the main classes of neural signals. Two broad types

of electrical potentials form important information carrying

modes or signs of information processing in the nervous system

(Bullock, 1997; Figure 2): action potentials (spikes) and FPs. Both

classes are currently used as NI control sources, and the field

has divided, to some degree, along the lines of those using FP,

largely in humans, and those using spike-based systems in ani-

mal models and, more recently, humans. It is widely held that

action potentials, or spikes, are the major neural information-

carrying mode of the nervous system, and would thus seem to

be the richest source of movement information. Most agree

that information is largely carried by spike rate (number of spikes

in a specific interval or a related function). The vast majority of

systems neurophysiologists investigate information codes at

the level of spikes from single cells and, to a lesser extent, eval-

uate additional information conveyed by populations of spiking

neurons. It is not surprising then that researchers from this back-

ground form the base of those working on direct NI systems,

which are considered direct because they use spikes.

The amount of movement information available from spiking

activity is impressive. Hand velocity, position, forces, and goals,

among other variables, can all be gleaned from single cells in

motor cortex (Scott, 2008). Higher information levels, such as

upcoming plans for hand motion, can be decoded from parietal
Neuron 60, November 6, 2008 ª2008 Elsevier Inc. 513
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and frontal neuron spiking (Achtman et al., 2007; Pesaran et al.,

2006; Scherberger and Andersen, 2007). Recording many cells

at once adds information distributed across heterogeneous pop-

ulations and reduces noise (information variability) by averaging

across neurons (e.g., Maynard et al., 1999). The number of neu-

rons required for a reasonably reliable reconstruction of hand

motion is remarkably small. For example, about 50 cells in the

MI arm area can provide a very good estimate of hand motion

in 2D or 3D space (Serruya et al., 2002; Taylor et al., 2002; Car-

mena et al., 2005). Consequently, there has been great interest in

using signals from populations of a few dozen neurons, now

technically feasible to gather, as control signals for direct NI sys-

tems. The mixed signal, when many spikes are intermingled

together from a single site, is called multiunit activity (MUA),

which is thought to represent averaged spiking of a local popu-

lation. MUA is also a spiking signal of interest for NI applications

because it reduces the technical demands of isolating single

neurons on each electrode, although MUA is just beginning to

be studied in this domain (Stark et al., 2008).

FPs are the other type of neural electrical potential that is used

to obtain control signals. FPs are more complex than spikes, in

that they reflect the flow of transmembrane currents, usually of

synaptic origin, summed across groups of neurons of varying

size, frequency, and spatial distribution. While the recognition

of FPs as an information-carrying signal is long standing, the re-

cent surge in NI interest has renewed and accentuated study into

the nature, origin, and significance of FPs and their relationship

to spiking. FPs are both signals and signs (Bullock, 1997) of un-

derlying neural processes that generally reflect brain states,

such as stages of sleep or alertness or higher cognitive pro-

cesses. A comprehensive discussion of the many subtypes

and sources of these signals is not possible here; only a brief

explanation of the type of control signals possible from FP and

recent advances in their use in NI will be presented (for additional

perspectives see Clinical Neurophys. volume 117:3; Birbaumer,

2006; Vaughan et al., 2006).

A schema to organize common types and subbands of signals

relevant to NI control is shown in Figure 2. In this context, FPs in-

clude two major subgroups: (1) rhythmic signals that can be

grouped as slow, medium, or fast, and (2) ERPs, which are re-

sponses triggered by a time-locked event. All three rhythms

have been used as NI control signals. Slower cortical potentials

(<1 Hz), which might not actually be rhythms but slow potential

shifts, were among the first successfully used for NI control in

humans (Birbaumer et al., 2006). These slowly modulating po-

tentials may last seconds, such as the Bereitschaft or readiness

potential (BP or RP), which is linked to an impeding self-paced

movement. Humans can learn to modulate slow potentials voli-

tionally for continuous, single-dimension control (Iversen et al.,

2008). Faster FP rhythms have received increasing attention in

recent years, because they seem to carry more information

and require less learning than slow rhythms, as tested in NI

applications. Medium-range rhythms include m (8–12 Hz, over

Rolandic cortex or the similar band, but potentially different; al-

pha elsewhere) and beta (12–20 Hz or higher) rhythms. Medium

rhythms, particularly those over sensorimotor cortex (SMR), are

now actively being tested as an NI control signal (McFarland

et al., 2008) in part because humans can learn to modulate their
514 Neuron 60, November 6, 2008 ª2008 Elsevier Inc.
amplitude by imagining various types of movement. The higher

range and broad gamma band (>30 Hz to �100 Hz) are only re-

cently being carefully evaluated with intracranial recordings

because they are heavily filtered in more common scalp record-

ings. Middle and high bands appear to carry distinctly different

information (Belitski et al., 2008). Beta oscillations appear in pri-

mary motor cortex (MI) in able-bodied monkeys (Baker et al.,

2003; Donoghue et al., 1998; Murthy and Fetz, 1996) and in hu-

mans with paralysis (Hochberg et al., 2006), where they, rather

than spiking patterns, mark the transition from preparation to

intended action. By contrast, gamma rhythms are correlated

with aspects of spiking as shown in visual (Belitski et al., 2008)

and parietal cortex (Andersen et al., 2004), suggesting that

they might provide specific forms of information (Womelsdorf

and Fries, 2006) useful for NI movement applications. Beyond

rhythms, FPs include ERPs. ERPs signify large-scale potential

shifts in neuronal populations that can be elicited and modulated

by various external or internal events. As noted earlier, the P300

has been intensively investigated for NI applications.

FP can radiate considerable distances, especially in the lower

frequencies, and can therefore be recorded electrically outside

as well as inside the head, unlike spikes. FP recorded by scalp

electrodes is called the EEG; FP recorded inside the skull, close

to the cortical surface (above or below the dura) is the electrocor-

ticogram (ECoG); and the FP recorded intraparenchymally is the

local field potential (LFP). The ease of recording FP at the scalp

has made the EEG attractive as a signal source to create, test,

and develop NI systems using humans in a number of laborato-

ries, and has allowed them to be usefully adopted by persons

with paralysis (Vaughan et al., 2006). EEG systems have draw-

backs as potential sensors and FP signal sources for NIs that

include limited bandwidth (loss of higher frequencies due to

scalp filtering), significant noise and environmental artifact (mus-

cle contamination), the need for an able-bodied person to attach

sensors to the scalp, variability in sensor contact over time, teth-

ering to instruments, and appearance issues. However, efforts to

enhance signals, reduce sensor application problems, and deal

with tethering issues are underway (Farshchi et al., 2004).

ECoG provides a lower noise signal of higher bandwidth and

power, particularly in the gamma range, because filtering by

the scalp is reduced (Schalk et al., 2008). ECoG sensors, if im-

planted and wireless, potentially eliminate many of the draw-

backs of EEG signals, but a long-term ECoG recording system,

FDA approved for NI use, is not currently available. Presently

the main opportunity to study human ECoG-based control oc-

curs in conjunction with short-term placement of subdural grids

in candidates for epilepsy surgery. These grids usually have

many relatively large (�4 mm) electrodes (see Figure 4), regularly

arranged in a silastic sheet that covers large aspects of the cor-

tical surface for mapping in order to plan surgical resections.

Recordings made over cortex with this grid allow experimental

investigation of the person’s abiltity to control FP bands for NI

purposes. This test bed for humans has advanced understand-

ing of ECoG signals for NI control and is becoming a more wide-

spread development platform for indirect NIs. Most noteworthy

is the fact that humans using ECoG-derived signals can learn

to control SMRs within a single session, compared with the

need for many months of training with EEG-derived FPs (Schalk
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Figure 3. Intracortical Sensor Types Compared with
a Common Surface EEG Electrode
Three main types of intraparenchymal (intracortical) sensors now
in use are illustrated: platform array, an array of electrodes ema-
nating from a substrate that rests on the cortical surface; multisite
probe, with contacts along a flattened shank; and microwire as-
semblies, consisting of fine wires. Cone electrodes are a form of
microwire placed within a glass cone that is open at its end. Cel-
lular elements grow into the cone to establish contact with the
wire. Platform arrays and microwires, in their present form, record
from an exposed conductive tip (enlargement, yellow), while mul-
tisite probes record from many sites along their length. Only cone
electrodes and platform arrays are currently being evaluated in
human trials (see text for details).
et al., 2008). LFPs are being pursued because these higher-res-

olution FP signals might be able to provide information contained

in spiking populations, but with fewer of the technical demands

(see following section). In addition, LFPs can be recorded simul-

taneously with spikes (by different bandpass filtering), so that

both signals could be used together, thus expanding the infor-

mation that could be used for NI control. Direct evaluation of

LFP signal in NIs is limited; Philip Kennedy and colleagues

have demonstrated that a tetraplegic human could learn to use

LFP amplitude for control (Kennedy et al., 2004).

Are Invasive Technologies Justified? Are They Feasible?
An ongoing debate in the NI field has centered on concerns of

whether invasive sensors, which are required to obtain spiking

or FPs from ECoG or LFPs, can provide sufficiently stable and re-

liable signals to warrant the risks of neurosurgical placement and

the long-term presence of a foreign body. Safety is the first con-

cern for any NI being developed. The questions of safety and

invasiveness are currently raised by some to argue that only

indirect, EEG-based systems are reasonable and acceptable

for NI users. However, it is often not recognized outside the clin-

ical community that there is already substantial, FDA-approved

use of implantable neurological devices in humans, with a low

incidence of complications. In one example, there are now

more than 30,000 people with deep brain simulators (www.

medtronic.com/physician/activa/history.html), in which mm

scale electrodes are implanted centimeters deep into the brain

to provide subthalamic nucleus stimulation that reduces symp-

toms of Parkinson’s disease. Thus, placing sensors onto or just

into the brain’s surface (Figure 3) would not appear to present

a safety concern beyond that associated with other implanted de-

vices. In support of this view, there are >2500 days of experience

in four participants with an intracortical array in the BrainGate pilot

trial we are conducting, suggesting that this sensor may have an

acceptable safety profile for an implanted device, although this

represents a very limited sample from a study still in progress.

A second concern relates to the ability of sensors to provide

signals over the long term. Invasive electrical recordings may

be subject to tissue reaction, motion, and breakdown, although

current evidence from at least some sensors indicates that long-

term recording is possible despite these real issues. Spikes are

recorded in the extracellular space only by placing a small con-
ductor surface near enough to a neuron to detect the brief�1 ms

electrical field generated when a spike occurs. Since spikes can

be detected only at distances significantly smaller than 150 mm

from cell of origin (Buzsaki, 2004), motion tolerance is limited.

There are several types of multisite spike sensors being evalu-

ated in animal models. Existing multielectrode sensors include:

microwires, planar silicon probes, and platforms with microelec-

trode arrays (Figure 3). Microwires are assemblies of insulated

fine wire usually rigidly affixed to the skull; planar Si probes are

manufactured with semiconductor precision to provide multiple

sites along a flat, tapered shank; platform arrays contain a set of

typical microelectrodes emerging from a flat platform that rests

on the cortical surface (Donoghue, 2002). Each of these sensors

has characteristic design and materials features that may influ-

ence their stability and longevity. But these are initial-stage

sensors. It is widely recognized that sensor reliability needs to

be improved and better sensors developed. Only cone elec-

trodes, in which microwires are encased in a glass cone, from

Neural Signals, Inc, (Deluth, GA) and the platform array made

by I2S Implantable Microsystems (Salt Lake City, UT), are being

evaluated in humans at this time.

Studies in monkeys routinely report declines in the number of

channels recorded and the signal quality over periods of many

months, as well as day-to-day changes in the number of neurons

observed (see Donoghue et al., 2004; Schwartz et al., 2006 for

discussion). The causes of these declines have not been ade-

quately determined. Tissue reaction around an intracortical

microelectrode is widely cited as the major impediment to

long-lasting recording and data clearly show that electrode pen-

etration leads to a number of concerning tissue responses. Of

major reported concern is a layering of glial cells around record-

ing surfaces that could prevent signal capture. Immediate and

chronic tissue responses to electrode implants have been care-

fully delineated (Shain et al., 2003; Szarowski et al., 2003; Yuen

et al., 1987), but general conclusions have been drawn by com-

paring studies in which species, electrode size, shape and as-

sembly design (e.g., platforms or single probes), coating mate-

rial, insertion type, surgical procedures, manufacturing

techniques (lab or commercial), and quality control have differed

substantially. Can results based on placing a blunt-tipped micro-

wire coated with Teflon, inserted slowly, and fixed to the skull be

realistically compared to those from a conical-shaped electrode
Neuron 60, November 6, 2008 ª2008 Elsevier Inc. 515
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array coated with parylene, emerging from a platform, inserted

quickly, floating on the arachnoid surface (Figure 3)? Each type

of sensor is very likely to have a unique tissue response profile

influenced by insertion, tissue reaction, micromotion, its foreign

materials, tethering from cables, etc. Most importantly, evalua-

tions of tissue response effects on the ability to record electrical

potentials have largely been lacking. A mild tissue reaction—

even if chronic—may be acceptable if neural signals are reliably

obtained for years without otherwise compromising health. Less

emphasis has been given to biostability issues, which may be

a significant reason why success rates vary for spike sensors.

The body provides a harsh environment. Implantation of biosta-

ble sensors, impervious to leaks, breakage, and chemical degra-

dation while robust against mechanical forces is a major chal-

lenge that is only beginning to be addressed.

Our experience is entirely with a 4 3 4 mm platform of 100 par-

ylene-coated Si microelectrodes in which the platform rests on

the arachnoid surface. Suner et al. (2005) showed with this array

in monkeys that more than 80% of the original data channels

continued to provide signals after 1 year of monitoring. Others

monitored for less time, but many months, also showed similar

signal retention. This same array type in humans (Hochberg

et al., 2006; Truccolo et al., 2008) has provided spike recordings

from MI cortex well over 1 year after implantation, although with

a decline in channel count and signal size. However, signal de-

clines we have observed appear to be mainly related to physical

failures of the implant or insulation leaks that shunt signals, rather

than gliosis. Further, signals obtained after more than 2 years are

sufficient for the one participant now being tested to perform ac-

curate point and click computer cursor control (Kim et al., 2007).

Further clinical study will determine whether useful signals can

be recorded for many years. Philip Kennedy’s glass cone elec-

trodes, a very different technology, have also been able to record

long-term, in this case by capitalizing on the tissue injury re-

sponse to induce neurite ingrowth to recording wires (Kennedy

and Bakay, 1998).

Thus, the prospects for using invasive systems seem promis-

ing, but not without challenges. The combined data from animals

and humans suggest that safety problems for implantable sys-

tems will not exceed those of established implantable neuro-

technologies. Results from humans and animals demonstrate

the potential for years of spike and LFP recording sufficient for

a useful NI device. In order to get large numbers of signals to

the outside, implantable systems will require sophisticated

internal signal processing and wireless transmission, which

adds to the challenge of invasive sensors. Implantable microsys-

tems for this purpose are very complex devices because they

must be small, produce little heat, not leak, and process and

transmit large amounts of data. While the challenges of creating

small-scale microelectronic sensors impervious to the internal

environment, and well-tolerated by the body for decades, are

substantial, sensor systems suitable for this purpose are being

developed (Song et al., 2005, 2007).

What Brain Area Provides Optimal Neural
Control Signals?
Motor cortex has been a successful source of control signals for

both FP- and spike-based NI systems. The MI has been a major
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target of investigation for spiking NI because there is so much

known about the relationship of its activity to arm movement

(Georgopoulos, 1991). Information about arm trajectory in space

can be readily recovered from MI spiking in able-bodied mon-

keys, allowing cursor control as if a computer mouse were being

moved by the hand (Serruya et al., 2002; Taylor et al., 2002). Fur-

ther, a population of MI neurons from a single 4 3 4 mm, 100

electrode BrainGate array generally placed within the precentral

arm region array in humans with tetraplegia can provide both

cursor motion signals related to imagined arm actions and a click

signal, based upon imagined hand squeeze (Kim et al., 2007).

These findings show that a small MI arm area patch can provide

simultaneous information about both the arm and hand that is

useful as an NI control signal. It might also be possible to extend

volitional control to both arms and legs by placing sensors bilat-

erally in MI arm and leg representations.

The collection of other motor control areas could provide ad-

ditional, different or more flexible control signals. Shenoy and

colleagues (Achtman et al., 2007; Santhanam et al., 2006) have

shown that premotor cortex (PM) in monkeys contains informa-

tion about target goals that can be decoded as discrete selec-

tions, akin to keyboard entry, during movement planning. Com-

bining continuous control signals from MI and key press activity

from PM could allow the emulation of typing, pointing, and click-

ing actions for efficient operation of the usual input devices of

a computer. Parietal cortex spiking contains information about

upcoming movement and, when combined with simultaneously

recorded LFPs, various epochs of planning and action can be

delineated (Andersen et al., 2004). Thus, future NI systems

may gain considerably greater function if they employ multiple

sensors placed in a variety of cortical areas and use both FP

and spike signals for control. It appears likely that control capa-

bilities of multiarea sensors will be evaluated in animal models in

the near term.

How Much Information Can Be Derived
from Neural Signals?
Decoding neural signals for NI use is a key step in transforming

patterns of neural activity into useful control signals. Decoding

aims to produce stable, information-rich signals as quickly as

they are achieved in the normally operating nervous system.

This challenge has attracted major interdisciplinary interest,

both to understand the nature of neural signals (by showing

what is contained in them) and to develop useful control signals

for NI applications. Virtually every readily identifiable method of

decoding information has been attempted in both FP and spike

signals (for further discussion see Paninski et al., 2007; Schwartz

et al., 2006; Serruya et al., 2003; Srinivasan et al., 2007; Truccolo

et al., 2005; Wu et al., 2006).

Decoding efforts have focused on creating two types of con-

trol signals: (1) continuous state classifiers, to allow ongoing con-

trol as might be needed to move a cursor or wheelchair around in

space, and (2) discrete state classifiers, to make specific selec-

tions such as a button press or typing keystrokes. For continu-

ous control, a goal is to extract information about one or more

dimensions to move an effector, such as a robot arm or cursor,

from one place to another. By learning to modulate different

SMR bands independently, 2D continuous control can be
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decoded into a usable signal for an indirect NI system (McFar-

land et al., 2008). Using spikes in a direct NI, three dimensions

of hand motion can be recovered from spiking patterns in MI

arm area neurons (Taylor et al., 2002). For discrete decoding,

a goal is to identify how many different selections might be ob-

tained. ERP systems typically are used to make binary choices

based on FP amplitude differences. For example, a P300 de-

coder works in humans by classifying observed FP response dif-

ferences. The item in a set with the largest average response, the

one attended by the user, is selected. A discrete decoder using

the richer information in spikes is able to differentiate among

a large number of selections, potentially to achieve key selec-

tions that could enable typing at rates of�15 words/min (Santha-

nam et al., 2006).

Combining discrete and continuous classifiers adds further

control. Simple state selection (decoding a click by classifying

hand squeeze) has already been combined with continuous

state decoding of imagined or attempted reaching to achieve

point and click control for a direct, spike-based NI in a person

with tetraplegia (Kim et al., 2007). Point and click actions can

also be decoded using an indirect EEG NI, in which learned 2D

modulation of the SMR is coupled with a subsequent click selec-

tion learned from another EEG signal (McFarland et al., 2008). In

an animal model, Schwartz and colleagues have also demon-

strated the use of a continuous state-decoded spike signal to

guide a complex robot arm in 3D space, and a discrete decoder

coupled to close a gripper that allowed a monkey to use the

robot to reach and grasp food (Velliste et al., 2008).

Decoding remains at a level where neural signals do not

provide the same control, reliability, or speed possible as for

able-bodied people. Efforts are ongoing to improve speed and

accuracy in the face of limited and variable neural signal informa-

tion. Classification with a slow rhythm or P300 system is very

time-consuming, taking seconds to tens of seconds per choice,

and is more error prone, although new decoding schemes have

improved accuracy (Krusienski et al., 2008). Moving a cursor to a

location on a screen to select an icon using spiking-based de-

coding also currently takes several seconds; actions can now

be achieved with very high accuracy, but this level of perfor-

mance is not always reliable (Kim et al., 2007). These poorly un-

derstood sources of variability are, at present, critical areas

needing attention, and will likely be the subject of many studies

in coming years. One approach to improve performance adds

burden onto the computer, so that it deals with deficiencies in

the neural control signal, but this performance increase by fixed

algorithms comes at the cost of flexibility. Thus, with a single

switch, using existing technology, a robotic arm could be driven

automatically to pour water into a glass and bring it close to

one’s mouth, but the ability to deal with any unexpected obstacle

would require additional computational abilities and technology

not yet available. Adaptive decoding is an approach that adjusts

to unreliable neural signals and is now being implemented

(Helms Tillery et al., 2003; Wu and Hatsopoulos, 2008).

The total effective output of an NI system, has yet to have

a widely accepted method for direct comparison across sys-

tems. Establishing performance metrics is an essential step

toward meaningful discussions of recording, decoding and,

ultimately, total NI system function. Information extracted by a
decoder can be measured in ways that range from information

bits to surveys of user satisfaction. A single measure may give

poor estimates of decoding success. For example, it is

possible to decode the SMR well enough to achieve 2D cursor

control with a click (McFarland et al., 2008). However, this control

requires high attentional demands, considerable training of the

user to gain control over the neural signal, and participation of

the decoder in the task by terminating the control epoch and re-

centering the cursor every time a target is achieved. Similarly, 2D

control with a click can also be decoded from MI using spiking

signals. This control is continuous, does not require explicit pa-

tient training beyond a few minutes long filter-building epoch,

and necessitates no special attentional demands (Kim et al.,

2007). Therefore, comparing the total amount of information sim-

ply at the level of achieving point and click, without accounting

for these other differences, is problematic to communicate over-

all efficacy to both the research and user communities. While it is

difficult to compare the amount of information in the FP and spik-

ing systems, these two NI systems have viable point and click

decoding approaches that could provide a choice of invasive

or noninvasive system for persons with limited movement.

Will NI Systems Function in Individuals with Paralysis?
Although numerous studies in intact primates have advanced NI

research, ultimately the system must work in persons who have

long-standing paralysis or even ongoing degenerative disease

such as ALS. Indirect, FP-NI systems were tested early on in hu-

mans with tetraplegia (Birbaumer, 2006). Successful use of NI

systems in this population, based upon slow and middle rhythms

and on the P300, demonstrates that these rhythms and ERPs are

preserved and controllable in tetraplegia, including late stage

ALS (Iversen et al., 2008). However, there is concern that indirect

signals may fail at end stages of the fully locked-in state (Bir-

baumer, 2006). Development of direct NIs has largely been per-

formed in able-bodied monkeys. Based on current concepts of

plasticity and injury response, humans with tetraplegia, irrespec-

tive of its cause, could have lost the potential to control neural

activity or even lack functional neural activity after motor areas

were disconnected from the body (Enzinger et al., 2008). Ken-

nedy (Kennedy and Bakay, 1998) first showed that a person

with severe paralysis could engage neuron spiking by intention.

Pilot clinical studies have now further demonstrated that years

after SCI or stroke, MI spiking as well as LFP activity remains

and both signals can be immediately modulated by intention or

attempts to move (Hochberg et al., 2006; Truccolo et al.,

2008). These findings are remarkable in at least two aspects.

First, SCI damages MI axons, which could result in their inactivity

or cell loss. Second, plasticity after lack of use or injury would be

expected to produce marked restructuring of the cortex, per-

haps by having other areas take over the former arm motor cor-

tex (Donoghue et al., 1990; Sanes et al., 1990). Remarkably,

participants in our study with tetraplegia from sources as varied

as SCI, pontine stroke, or ALS have been able to engage MI

activity immediately upon the request to imagine arm actions. Al-

though the generality of these findings need to be confirmed, it is

very promising that the neural substrate to provide complex NI

control has been obtained. Thus, both FP and spiking signals

useful for NIs remain long after onset of paralysis in injury or
Neuron 60, November 6, 2008 ª2008 Elsevier Inc. 517
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Figure 4. Three Types of NI Spellers
(A) P300 speller in which rows and then columns are flashed
successively and the P300 ERP is monitored. The unique re-
sponse to one row and one column predicts that the letter at
the intersection ‘‘U’’ is being attended. Several repeats are
necessary to make an estimate from averaged responses.
(B) A 1D speller. A computer displays three possible letter
choices and moves the cursor from left to right across the
screen. The upward movement of the cursor is controlled by
the learned modulation of the amplitude of an FP rhythm.

(C) A 2D NI. In this case the cursor can be moved anywhere on the screen either by learned modulation of two FP SMRs or by decoding spiking patters of a direct
NI. In the present instantiation of learned SMR control, the cursor must be replaced at the center by the computer after each trial, while the direct NI allows con-
tinuous control, including return to the center under the control of the user. In either of these cases letters could be replaced by icons that could indicate more
complex choices, such as a desire for food or a drink. Yellow dot represents the cursor under neural control.
degenerative diseases. It is significant that controllable MI spik-

ing signals remain, at least in single test participants, years after

stroke (Kim et al., 2007; Truccolo et al., 2008), suggesting that

the very large population of individuals with stroke-related im-

pairments might benefit from NI technology. However, human

demonstrations of retained activity are limited in number; there-

fore, further studies will be essential to understand the range of

capabilities that remains in these various disorders.

What Types of Devices Are Possible to Control?
With sufficiently rich and reliable signals, various types of phys-

ical systems could be used to allow greater control and indepen-

dence in humans with paralysis. These include computers, other

commonly useful technologies, robots, or muscles themselves.

Computer Interfaces

Computers are ordinarily operated by pointing (mouse) actions,

as well as discrete selections (keystrokes and mouse clicks).

Computer operation achieving both of these functions has

been demonstrated. A P300 BCI allows computer-based letter

selections, albeit slowly, for spelling, an approach that is being

tested in persons with severe paralysis unable to communicate

verbally. Importantly this system has been able to achieve nearly

80% correct classification at a rate of about 2/min in persons

with ALS (Nijboer et al., 2008). Cursor control has become

a gold standard in demonstrating the achievement of brain con-

trol. In most cases monkeys or humans have used cursor control

to reach targets on a screen that mimic paradigms used to study

motor control. With simple continuous cursor control, humans

have been able to operate an FP-based speller that places letters

or words on a computer screen (Figure 4). In one version, a cursor

sweeps across the screen under computer control and is then

moved up (0.5D) or up and down (1D) under neural control to

end on one choice. Nearly fully paralyzed persons have been

able to spell using a 1D slow-rhythm FP system (Kubler et al.,

2005) or LFPs through an implanted electrode (Kennedy et al.,

2004). In both cases control was difficult and the device was er-

ror-prone, very slow, and effortful. Cursor actions are improved

using SMR-EEG systems, which have shown control sufficient

to move a cursor in 2D to one of four targets, and then click using

a discrete classification of another EEG signal (McFarland et al.,

2008). This approach, which has not yet been advanced to per-

sons with tetraplegia, required extensive training, computer

oversight to adapt to signal changes and to recenter the cursor

after each target is obtained, and considerable attention of the

user. With this NI, users reached their target on 59%–88% of
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trials. Using ECoG-based SMR modulation, 2D cursor control

was in about the same range, but impressively, learning could

be achieved within a single session (Schalk et al., 2008). These

findings indicate that basic computer operations could be

achieved using either invasive or noninvasive indirect NIs.

Our recent work with the BrainGate NI system has shown that

persons with tetraplegia can operate computer software with

a direct NI based on multineuron spiking from MI (Hochberg

et al., 2006). In demonstrations a participant moved a cursor to

icons to use simple custom email programs and played video

games (videos: www.nature.com/nature/focus/brain/experiments/

videopage4.html). The attentional demands for this direct NI sys-

tem appeared to be low, in that other natural actions, such as

head motion or speech, could occur while the cursor was being

controlled. Importantly,no learningwasrequired:spike-basedcon-

trol was available immediately after a decoding filter was created.

Using simple linear decoders the cursor moved to targets,but wob-

bled and was difficult to stabilize over an icon. Nevertheless, one

participant studied across five sessions successfully reached

>73% (up to 95%) of screen targets. It is noteworthy that error

did not decline systematically across sessions, suggesting that

learning is not being automatically engaged for control improve-

ment. Advances in decoding have now improved computer control

considerably so that a person with tetraplegia (from a pontine

stroke) can reliably place a cursor under continuous control onto

any of eight small targets, stop, and a click with 96%–100% suc-

cess rate over three sessions (Kim et al., 2007), effectively mimick-

ing computer mouse control. This system still shows within- and

between-day control variability that is suboptimal for everyday

computer use, but this level of control is potentially useful even in

its present form. Overall the levels of successful control of a com-

puter cursor suggest that persons with tetraplegia could operate

typical computer software with few modifications to accomplish

everyday actions in a natural way.

Assistive Technologies

Pointing or discrete selections can be used to operate a wide

range of ATs that could significantly enhance independence,

control, and quality of life for persons with tetraplegia. Real or vir-

tual switches on a computer screen can be coupled to any elec-

trical device through readily available technology. In our pilot

trial, for example, participants have demonstrated the ability to

use commercial interfaces to control lights, fans, and a television

by making button selections on a computer-based AT system

(Hochberg et al., 2006). Because both FP and spike-based NI

systems are capable of switch function, they should be able to

http://www.nature.com/nature/focus/brain/experiments/videopage4.html
http://www.nature.com/nature/focus/brain/experiments/videopage4.html
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operate many ATs. With larger numbers of selections and greater

dimensional control, choices could be more numerous and

made faster (Figure 4).

Robots

One of the more captivating demonstrations of NI technology

has been the demonstration of neural control of various kinds

of robots. In any early closed loop spike-based system, rats con-

trolled a lever arm that delivered a water tube (Chapin et al.,

1999). One participant in our pilot clinical trial used a simple robot

arm to grasp a piece of candy and deliver it to a technician

(Hochberg et al., 2006) via a control interface displayed on

a screen. In a more recent demonstration of spike-based NI sys-

tems, an able-bodied monkey used a robot arm to feed itself

(Velliste et al., 2008). In this case, the monkey remapped neural

activity formerly related to arm movements to actions of the ro-

botic arm, without a control interface intermediary. These stud-

ies demonstrate that direct NIs can be adapted to the complex-

ities of a dynamical, physical system to establish arm-like control

that may be useful in operating assistive robots that subserve

useful functions.

What Is the Future of NI?
The rapid rise of the NI field in the last decade and the early suc-

cess of several technologies in humans indicate that NI research

will become an established subfield of neuroscience and neuro-

engineering, potentially creating a wide set of neurotechnologies

that will be coupled invasively or noninvasively to the nervous

system. These systems hold the great potential to improve the

lives of those with limited movement abilities. Early devices

with modest capabilities, such as spelling control, are emerging

for severely affected persons, but once established, it is my opin-

ion that performance will readily be extended to allow and en-

compass many activities of daily living now requiring caretakers.

A complete indirect NI system, called BCI 2000, is being made

generally available for researchers to improve or elaborate this

BCI and for persons with paralysis (Vaughan et al., 2006). This ef-

fort will accelerate development of indirect NI and availability to

a wider user group. The overall rate of advancement and growing

interest in NI research suggests that the quality of control will

continue to improve for both direct and indirect systems. Two

types of invasive systems, ECoG using SMR and direct NIs, ap-

pear to be able to provide multidimensional control with many

advantages over EEG-based systems. These invasive systems

will receive greater emphasis in the next years. Spike-based sys-

tems appear to have the advantage of not making substantial at-

tentional demands, requiring no learning (at least for initial use),

being under more natural control, and ultimately being more ex-

pandable to multiple discrete and continuous control signals. It is

likely that these differences will be more closely examined and

used to drive more rapid development of the most promising

systems. This will lead to a number of human trials of different

NI pilot devices. Automation, miniaturization, and the develop-

ment of a fully implantable, wireless system, which are essential

advances, are likely to be achieved in the near term through en-

gineering advances, better decoding and adaptive control strat-

egies, and enhanced understanding of the underlying signals.

Beyond connecting the brain to machines, computers, or

other physical devices, restoration of brain-to-muscle function
is also a realistic possibility. Neural signals coupled to implanted

FES systems could provide motor commands capable of driving

paralyzed arm muscles, thus creating a physical nervous system

that would restore movement. Although the NI components still

require development, stimulation systems to drive muscles al-

ready exist and are being used by persons with SCI to gain

arm and leg function (Peckham and Knutson, 2005). Recovering

complex limb control is an ambitious, longer-term possibility, but

even restoring simple actions that allow limited reach and grasp

would be a marked advance toward the top priority of those with

tetraplegia from SCI (Anderson, 2004). Meeting more basic goals

such as an effective communication interface for a person fully

locked in provides an important new life choice for these individ-

uals. NI may follow the course of cardiac pacemakers, which

went from a primitive device with large, technician-controlled

external components to a sophisticated implantable technology

incorporating intelligent signal processing within a few decades

(Jeffrey, 2001).

Connecting directly to the brain raises ethical issues when one

can ‘‘eavesdrop’’ on internal neural processes related to inten-

tions. Because the choice of accepting this technology in re-

search trials is determined by the potential user, after lengthy

and carefully considered informed consent, there are not over-

arching ethical concerns at the current time about these clinical

applications. Trial participation requires the use of established

regulatory processes with oversight to ensure an informed deci-

sion. By contrast, ethical dilemmas could emerge if capabilities

include the unlikely ability to read out details of internal thoughts

or to augment cognitive abilities (Serruya and Kahana, 2008).

These science-fiction-esque possibilities, nevertheless, need

to be carefully monitored, with diligent but sensible oversight

and guidance from the scientific community as well as regulatory

authorities and ongoing discussions with future users.

The full translation of NI technology to users is difficult and

costly. Early attempts to move this neurotechnology from labora-

tory to users has been influenced by the entry of commercial

entities, which is the usual route for providing medical devices

on a large scale. I have participated in this process through Cy-

berkinetics Neurotechnology Systems, Inc., an NI technology

development company I cofounded (makers of the BrainGate

system). Cyberkinetics added substantial funding and commer-

cialization insight to make possible the complex move of NI tech-

nology to human pilot clinical trials. This entry raises the dilemma

of objective evaluation competing with financial interests. Man-

agement of this process requires balanced and rational oversight

to attain successful translation to those who need these medical

devices, which is not easily achieved. Efforts by academic

groups to make the noninvasive BCI system available outside

of a commercial scheme has aided both in helping persons

and advancing the technology while testing another model for

technology transfer that may or may not be viable. The appear-

ance of a commercially or noncommercially available system

for persons with paralysis will not mark the end of NI develop-

ment, nor will it block the creation of competitive systems. As

with the development path of cardiac pacemakers, NIs are on

a trajectory of ongoing improvements and advancements lead-

ing to new ways to restore independence, control, and commu-

nication for the broad spectrum of persons with paralysis. The
Neuron 60, November 6, 2008 ª2008 Elsevier Inc. 519
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study of neural signals in humans, especially at the spiking and

LFP level, complemented by animal models, will also radically

expand our understanding of neural processing and its changes

in disease. The appearance of the first widely available (and

useful) NI system will be an important landmark showing the

successful translation of substantial intellectual, temporal, and

financial investment in science and engineering into a clinical

breakthrough with great significance to humans with movement

limitations.
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