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Let G be a finite group. Let cd(G) be the set of all complex
irreducible character degrees of G . In this paper, we will show
that if cd(G) = cd(H), where H is the simple Ree group 2 F4(q2),
q2 � 8, then G ∼= H × A, where A is an abelian group. This verifies
Huppert’s Conjecture for the simple Ree groups 2 F4(q2) when
q2 � 8.
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1. Introduction and notation

All groups considered are finite and all characters are complex characters. For a group G we denote
by Irr(G) the set of all irreducible characters of G and let cd(G) = {χ(1) | χ ∈ Irr(G)} be the set of all
character degrees of G .

Huppert proposed the following conjecture in the late 1990s.

Huppert’s Conjecture. Let G be a finite group and let H be a nonabelian simple group. If cd(G) = cd(H), then
G ∼= H × A, where A is abelian.

Huppert verified this conjecture for L2(q) and Sz(q2) in [10] and several small groups. Recently,
T. Wakefield verified this conjecture for some families of simple groups of Lie type of Lie rank 2
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(see [18]). The proof is based on verifying the following 5 steps outlined in [10], which we call
Huppert’s Method.

Step 1. Show G ′ = G ′′ . It follows that if G ′/M is a chief factor of G , then G ′/M ∼= Sk , where S is a
nonabelian simple group and k � 1.

Step 2. Show G ′/M ∼= H .

Step 3. If θ ∈ Irr(M) and θ(1) = 1, then θ is G ′-invariant, which implies [M, G ′] = M ′ .

Step 4. Show M = 1, which implies G ′ ∼= H .

Step 5. Show G = G ′ × CG(G ′). As G/G ′ ∼= CG(G ′) is abelian and G ′ ∼= H , Huppert’s Conjecture follows.

In this paper, we will verify this conjecture for the simple exceptional group of Lie type 2 F4(q2),
where q2 = 22m+1, m � 1. This family of nonabelian simple groups was discovered by Rimhak Ree in
1961 and so called the simple Ree groups. We note that when m = 0, the group 2 F4(2) is not simple
but its derived subgroup 2 F4(2)′ is simple. This group is called the Tits group. In his preprint, Huppert
already verified the conjecture for this group and so we only need to consider the case when m � 1.
The irreducible characters of 2 F4(q2) were computed by G. Malle [15] and CHEVIE [7] and their
maximal subgroups were classified by Malle in [14].

Theorem 1.1. Let G be a finite group and let H be the simple Ree group of type 2 F4(q2), q2 = 22m+1 , m � 1. If
cd(G) = cd(H), then G ∼= H × A, where A is abelian.

Huppert’s Method described above was improved by T. Wakefield in [18], especially for Step 2. In
this paper, we introduce the notion of an isolated character and use it to simplify the proof of Step 1.
For the definition of isolated characters, see the discussion right after the proof of Lemma 2.3. The
isolated character behaves like the Steinberg character of the simple groups of Lie type and in fact
this is an example of an isolated character (see Lemma 2.4). Now by Lemma 2.3 we can verify Step 1
provided that we know several isolated character degrees instead of all character degrees. This could
be used to verify Step 1 for all simple groups of Lie type. In order to verify Step 3, we rely heavily on
the criterion for the character extension using Schur multiplier (see [11, Theorem 11.7]) and a result
of R. Higgs on the fixed prime power projective character degrees (see [9, Theorem B]). Using the
same method, one can verify Step 3 for other simple groups of Lie type. In general, we need to know
all maximal subgroups of the simple group H whose indices divide some character degrees of H and
also the character degrees and the Schur multipliers of the nonabelian composition factors involved
in those maximal subgroups. This is in fact the most difficult step of Huppert’s Method. Finally, in
order to verify Step 5, we need to show that the character degree sets of a simple group H and any
almost simple group with socle H are different.

If n is an integer then we denote by π(n) the set of all prime divisors of n. If G is a group,
we will write π(G) instead of π(|G|) to denote the set of all prime divisors of the order of G . Let
ρ(G) = ⋃

χ∈Irr(G) π(χ(1)) be the set of all primes which divide some irreducible character degrees
of G . If N � G and θ ∈ Irr(N), then the inertia group of θ in G is denoted by IG(θ). Finally, the set of
all irreducible constituents of θG is denoted by Irr(G|θ). Other notation is standard.

2. Preliminaries

In this section, we present some results that we will need for the proof of Huppert’s Conjecture.

Lemma 2.1. (See [10, Lemma 2].) Suppose N � G and χ ∈ Irr(G).
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(a) If χN = θ1 + θ2 + · · · + θk with θi ∈ Irr(N), then k divides |G/N|. In particular, if χ(1) is prime to |G/N|
then χN ∈ Irr(N).

(b) (Gallagher’s Theorem) If χN ∈ Irr(N), then χψ ∈ Irr(G) for every ψ ∈ Irr(G/N).

Lemma 2.2. (See [10, Lemma 3].) Suppose N � G and θ ∈ Irr(N). Let I = IG(θ).

(a) If θ I = ∑k
i=1 ϕi with ϕi ∈ Irr(I), then ϕG

i ∈ Irr(G). In particular, ϕi(1)|G : I| ∈ cd(G).
(b) If θ extends to ψ ∈ Irr(I), then (ψτ )G ∈ Irr(G) for all τ ∈ Irr(I/N). In particular, θ(1)τ (1)|G : I| ∈ cd(G).
(c) If ρ ∈ Irr(I) such that ρN = eθ , then ρ = θ0τ0 , where θ0 is a character of an irreducible projective repre-

sentation of I of degree θ(1) while τ0 is the character of an irreducible projective representation of I/N of
degree e.

The following lemma will be used to verify Step 1. All these statements but the last one appear in
[10, Lemma 4]. We will give a proof for completeness.

Lemma 2.3. Let G/N be a solvable factor group of G, minimal with respect to being nonabelian. Then two
cases can occur.

(a) G/N is an r-group for some prime r. Hence there exists ψ ∈ Irr(G/N) such that ψ(1) = rb > 1. If χ ∈
Irr(G) and r � χ(1), then χτ ∈ Irr(G) for all τ ∈ Irr(G/N).

(b) G/N is a Frobenius group with an elementary abelian Frobenius kernel F/N. Then f = |G : F | ∈ cd(G)

and |F/N| = ra for some prime r, and F/N is an irreducible module for the cyclic group G/F , hence a
is the smallest integer such that ra ≡ 1 (mod f ). If ψ ∈ Irr(F ) then either f ψ(1) ∈ cd(G) or ra divides
ψ(1)2 . In the latter case, r divides ψ(1).
(1) If no proper multiple of f is in cd(G), then χ(1) divides f for all χ ∈ Irr(G) such that r � χ(1), and if

χ ∈ Irr(G) such that χ(1) � f , then ra | χ(1)2 .
(2) If χ ∈ Irr(G) such that no proper multiple of χ(1) is in cd(G), then either f divides χ(1) or ra divides

χ(1)2 . Moreover if χ(1) is divisible by no nontrivial proper character degree in G, then f = χ(1) or
ra | χ(1)2 .

Proof. Statements (a) and (b) follow from [11, Lemma 2.3] and [11, Theorem 12.4]. Suppose that G/N
is a Frobenius group.

Now assume that no proper multiple of f is in cd(G), and let χ ∈ Irr(G). Let ψ be an irreducible
constituent of χF . By [11, Lemma 6.8], we have that χ(1) = kψ(1) and by [11, Corollary 11.29] we
obtain k | f = |G : F |. By (b), we have that either f ψ(1) ∈ cd(G) or ra | ψ(1)2. Suppose r � χ(1). Then
r � ψ(1) so that f ψ(1) = f χ(1)/k ∈ cd(G). As no proper multiple of f is a character degree of G , we
deduce that f χ(1)/k = f so that χ(1) = k | f . Now assume χ(1) � f . Then r | χ(1). Since r � f , we
deduce that r � k, hence r | ψ(1) so that f ψ(1) > f . Thus f ψ(1) is not a character degree of G and so
ra | ψ(1)2. As ψ(1) | χ(1), (1) follows. The proof of (2) is exactly the same.

Suppose that χ ∈ Irr(G) such that no proper multiple of χ(1) is in cd(G). Let ψ ∈ Irr(F ) be an
irreducible constituent of χF . As above, we have that χ(1) = kψ(1), k | f and either f ψ(1) ∈ cd(G)

or ra | ψ(1)2. If the latter case holds then we are done since ψ(1) | χ(1). Now assume f ψ(1) ∈ cd(G).
Observe that ψ(1) = χ(1)/k so that ψ(1) f = f χ(1)/k ∈ cd(G), where f χ(1)/k is a multiple of χ(1)

since k | f . As no proper multiple of χ(1) belongs to cd(G), it follows that f χ(1)/k = χ(1), which
implies that f = k. Since k divides χ(1), we deduce that f | χ(1). The remaining statement is obvious.
The proof is now complete. �

Let χ ∈ Irr(G). We say that χ is isolated in G if χ(1) is divisible by no proper nontrivial character
degree of G , and no proper multiple of χ(1) is a character degree of G . In this situation, we also say
that χ(1) is an isolated degree of G . Recall that for χ ∈ Irr(G), χ is said to be of p-defect zero for some
prime p if |G|/χ(1) is coprime to p.

Lemma 2.4. If S is a simple group of Lie type in characteristic p with S �= 2 F4(2)′ , then the Steinberg character
of S of degree |S|p is an isolated character of S.
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Proof. The existence of the Steinberg character of S , denoted by StS , is well known. From [13, The-
orem 1.1], no proper nontrivial divisor of StS (1) is in cd(S). As StS is the only character of p-defect
zero (see [4, Theorem 4]), no proper multiple of StS (1) is in cd(S). This completes the proof. �

The next two lemmas will be used to verify Steps 2 and 4. The first lemma appears in [1, Theo-
rems 2, 3, 4].

Lemma 2.5. If S is a nonabelian simple group, then there exists a nontrivial irreducible character θ of S that
extends to Aut(S). Moreover the following hold:

(i) If S is an alternating group of degree at least 7, then S has two consecutive characters of degrees n(n−3)/2
and (n − 1)(n − 2)/2 that both extend to Aut(S).

(ii) If S is a sporadic simple group or the Tits group, then S has two nontrivial irreducible characters of coprime
degrees which both extend to Aut(S).

(iii) If S is a simple group of Lie type then the Steinberg character StS of S of degree |S|p extends to Aut(S).

Lemma 2.6. (See [1, Lemma 5].) Let N be a minimal normal subgroup of G so that N ∼= Sk, where S is a
nonabelian simple group. If θ ∈ Irr(S) extends to Aut(S), then θk ∈ Irr(N) extends to G.

The following result due to R. Higgs will be used to verify Step 3. The statement given below can
be found in [16, Theorem 2.3].

Lemma 2.7. (See [9, Theorem B].) Let N be a normal subgroup of a group G and let θ ∈ Irr(N) be G-invariant.
Assume that χ(1)/θ(1) is a power of a fixed prime p for every χ ∈ Irr(G|θ). Then G/N is solvable.

The following lemma will be used to verify Step 4.

Lemma 2.8. (See [10, Lemma 6].) Suppose that M � G ′ = G ′′ and that for any λ ∈ Irr(M) with λ(1) = 1,
λg = λ for all g ∈ G ′ . Then M ′ = [M, G ′] and |M/M ′| divides the order of the Schur multiplier of G ′/M.

3. The simple Ree groups

The Ree group 2 F4(q2), where q2 = 22m+1 with m � 0, is an exceptional group of Lie type of rank 2
discovered by Ree in [17]. The order of this group is

q24(q12 + 1
)(

q8 − 1
)(

q6 + 1
)(

q2 − 1
)
.

This group is nonabelian simple unless m = 0. In this case, the group 2 F4(2)′ is simple and is called
the Tits group. In his preprint, Huppert verified the conjecture for the Tits group so that we can
assume m � 1. The character table of this family of simple groups is available in [7] and is reproduced
in Table 1. The maximal subgroups of 2 F4(q2) were determined by G. Malle in [14]. In Table 3, we
list the maximal subgroups of 2 F4(q2) together with their indices. We denote by Φn := Φn(q), the
cyclotomic polynomial in variable q. We have

Φ1Φ2 = q2 − 1, Φ4 = q2 + 1, Φ8 = q4 + 1, Φ12 = q4 − q2 + 1, Φ24 = q8 − q4 + 1.

In Table 3, we use the following notation.

u1 := q2 − √
2q + 1, u2 := q2 + √

2q + 1,

w1 := q4 − √
2q3 + q2 − √

2q + 1, w2 := q4 + √
2q3 + q2 + √

2q + 1.
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Then u1u2 = Φ8 and w1 w2 = Φ24. Recall that if n is a positive integer and p is a prime then np and
np′ are the largest p-part and p′-part of n, respectively. That is n = npnp′ , where (np,np′) = 1 and np

is a p-power.
Let �i �= 3, i = 1,2,3, be prime divisors of w1, w2 and Φ12, respectively. In the next lemma, we

collect some properties of the character degree set of the simple Ree group 2 F4(q2), q2 = 22m+1,
where m � 1.

Lemma 3.1. Let H be the simple Ree group 2 F4(q2), q2 = 22m+1 , m � 1 and let a be a nontrivial character
degree of H. Then the following hold:

(i) If a �= q24 and (�1�2,a) = 1, then a is one of the following degrees:

q
√

2Φ1Φ2Φ
2
4Φ12/2, q4Φ2

1Φ2
2Φ2

4Φ2
8/3, q13

√
2Φ1Φ2Φ

2
4Φ12/2.

(ii) If a �= q24 and (�3,a) = 1, then a is one of the following degrees:

Φ1Φ2Φ
2
8Φ24, q4Φ2

1Φ2
2Φ2

4Φ24/6, q4Φ2
8Φ24/2,

q2Φ2
1Φ2

2Φ2
8Φ24, q6Φ1Φ2Φ

2
8Φ24, Φ2

1Φ2
2Φ2

4Φ2
8Φ24, q4Φ2

1Φ2
2Φ2

4Φ2
8/3.

(iii) We have that (2Φ1Φ2Φ4,a) > 1.
(iv) If (�1�2�3,a) = 1 then a ∈ {q24,q4Φ2

1 Φ2
2 Φ2

4 Φ2
8 /3}.

(v) We have that q4Φ2
1 Φ2

2 Φ2
4 Φ2

8 /3 is an isolated degree of H.
(vi) If x, y ∈ cd(H) − {1,q24}, then (x, y) > 1.

(vii) H has no consecutive degrees.
(viii) If a �= q24 , then a2 � q13

√
2/2 = 213m+6 .

(ix) If a,b ∈ cd(H) such that b = za, where z > 1 is odd, then z � q2 − 1.
(x) The smallest nontrivial character degree of H is q

√
2Φ1Φ2Φ

2
4 Φ12/2.

Proof. Statements (i)–(v) and (viii)–(x) are obvious by checking Table 1. For (vi), if �3 divides both x
and y, then we are done. Hence we assume that (�3, x) = 1 or (�3, y) = 1. Without loss of generality,
assume (�3, x) = 1. Then x is one of the degrees appearing in (ii). It follows that either �1�2 divides
x or �1�2 is prime to x. Assume first that �1�2 | x. If (�1�2, y) > 1 then we are done. So assume
(�1�2, y) = 1 so that y is one of the degrees in (i). In this case, we can see that 2Φ1Φ2Φ4 divides y
and so we have that (x, y) is divisible by (x,2Φ1Φ2Φ4). Applying (iii) we obtain (x,2Φ1Φ2Φ4) > 1 so
that (x, y) > 1. Now assume that (�1�2, x) = 1. It follows that x = q4Φ2

1 Φ2
2 Φ2

4 Φ2
8 /3 and so 2Φ1Φ2Φ4

divides x. Using the same argument, we have that (x, y) is divisible by (2Φ1Φ2Φ4, y) which is non-
trivial by (iii) so that (x, y) > 1. This proves (vi). Next we will show that H has no two consecutive
degrees. By way of contradiction, assume that there exist x, y ∈ cd(H) such that x = y + 1. Since H is
nonabelian simple, it has no character of degree 2 so that we can assume y > 1 and then x > y > 1.
As x = y + 1, we deduce that (x, y) = 1 and since x > y > 1, by (vi), we have x = q24 or y = q24. It
follows that q24 − 1 ∈ cd(H) or q24 + 1 ∈ cd(H). However we can check that H has no such degrees.
This contradiction proves (vii). �
Lemma 3.2. Let H be the Ree group 2 F4(q2), q2 = 22m+1 , m � 1. If K is a maximal subgroup of H such that
the index |H : K | divides some character degree χ(1) of H, then one of the following cases holds:

(i) K ∼= Pa, |H : Pa| = Φ4Φ
2
8 Φ12Φ24 and

χ(1)/|H : Pa| ∈
{

1,q2 − 1,q2,q2 + 1
}
.
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Table 1
Character degrees of 2 F4(q2).

Degree Multiplicity

1 1

q
√

2Φ1Φ2Φ2
4 Φ12/2 2

q2Φ12Φ24 1
Φ1Φ2Φ2

8 Φ24 1
q4 · u2

1 · w1 · Φ2
1 Φ2

2 Φ12/12 1
q4 · u2

2 · w2 · Φ2
1 Φ2

2 Φ12/12 1
q4Φ2

1 Φ2
2 Φ2

4 Φ24/6 1
q4 · w1 · Φ2

1 Φ2
2 Φ2

4 Φ12/4 2
q4 · u2

1 · w2 · Φ2
4 Φ12/4 1

q4 · w2 · Φ2
1 Φ2

2 Φ2
4 Φ12/4 2

q4 · u2
2 · w1 · Φ2

4 Φ12/4 1
q4Φ2

1 Φ2
2 Φ12Φ24/3 1

q4Φ2
1 Φ2

2 Φ2
4 Φ2

8 /3 2
q4Φ2

8 Φ24/2 1

u1 · Φ1Φ2Φ2
4 Φ12Φ24 q(q + √

2)/4
Φ2

4 Φ8Φ12Φ24 (q2 − 2)/2

u2 · Φ1Φ2Φ2
4 Φ12Φ24 (q − √

2)q/4
q2Φ2

1 Φ2
2 Φ2

8 Φ24 1
Φ1Φ2Φ2

8 Φ12Φ24 (q2 − 2)/2
q10Φ12Φ24 1
Φ4Φ2

8 Φ12Φ24 (q2 − 2)/2

q
√

2 · u1 · Φ2
1 Φ2

2 Φ2
4 Φ12Φ24/2 (q + √

2)q/2

q13
√

2Φ1Φ2Φ2
4 Φ12/2 2

q
√

2Φ1Φ2Φ2
4 Φ8Φ12Φ24/2 q2 − 2

q
√

2 · u2 · Φ2
1 Φ2

2 Φ2
4 Φ12Φ24/2 (q − √

2)q/2

u2
1 · Φ2

1 Φ2
2 Φ2

4 Φ12Φ24 (q + 2
√

2)(q2 − 2)q/96

w1 · Φ2
1 Φ2

2 Φ2
4 Φ2

8 Φ12 (q + √
2)(q2 + 1)q/12

q4 · u1 · Φ1Φ2Φ2
4 Φ12Φ24 (q + √

2)q/4

u1 · Φ1Φ2Φ2
4 Φ8Φ12Φ24 (q − √

2)q(q + √
2)2/8

Φ2
1 Φ2

2 Φ2
8 Φ12Φ24 (q2 − 8)(q2 − 2)/48

q2Φ1Φ2Φ2
8 Φ12Φ24 (q2 − 2)/2

Φ2
1 Φ2

2 Φ2
4 Φ8Φ12Φ24 (q2 − 2)q2/16

q6Φ1Φ2Φ2
8 Φ24 1

Φ1Φ2Φ4Φ2
8 Φ12Φ24 (q2 − 2)q2/4

Φ2
1 Φ2

2 Φ2
4 Φ2

8 Φ24 (q2 − 2)(q2 + 1)/6
q24 1
q2Φ4Φ2

8 Φ12Φ24 (q2 − 2)/2
q4Φ2

4 Φ8Φ12Φ24 (q2 − 2)/2
Φ2

4 Φ2
8 Φ12Φ24 (q2 − 8)(q2 − 2)/16

w2 · Φ2
1 Φ2

2 Φ2
4 Φ2

8 Φ12 (q − √
2)(q2 + 1)q/12

q4 · u2 · Φ1Φ2Φ2
4 Φ12Φ24 (q − √

2)q/4

u2 · Φ1Φ2Φ2
4 Φ8Φ12Φ24 (q + √

2)q(q − √
2)2/8

u2
2 · Φ2

1 Φ2
2 Φ2

4 Φ12Φ24 (q − 2
√

2)(q2 − 2)q/96

(ii) K ∼= Pb, |H : Pb| = Φ2
4 Φ8Φ12Φ24 and

χ(1)/|H : Pb| ∈
{

q
√

2/2
(
q2 − 1

)
, u1

(
q2 − 1

)
, u2

(
q2 − 1

)
,
(
q2 − 1

)2
,q4,q4 + 1

}
.

Proof. If K is one of the parabolic subgroups Pa or Pb , then the result is obvious. For the remaining
maximal subgroups of H except 2 F4(q2

0), we can see that the 2-part of the indices is larger than
q13

√
2/2 so that these indices cannot divide any degrees of H . Finally, assume K ∼= 2 F4(q2

0), where
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q2 = q2α
0 ,α prime. Assume q2

0 = 22l+1. Then α = 2m+1
2l+1 is odd, so that α � 3 is an odd prime. The

2-part of the index of 2 F4(q2
0) in 2 F4(q2) is q24α−24

0 . Moreover as this index is not a 2-power, it

cannot divide the degree of the Steinberg character of H so that q24α−24
0 � q13

√
2/2 < q14 = q14α

0 . It
follows that the 24α − 24 < 14α and hence 10α < 24. Thus α � 2, a contradiction. �

The following results are well known, see for example [10]. We note that the inclusion of the value
(q2 − 1)2 in Lemma 3.4(b) causes no difference as it is less than the smallest index of the maximal
subgroups of the Suzuki groups Sz(q2).

Lemma 3.3. Let q � 8 be an even prime power. Then the following hold:

(a) The Schur multiplier of L2(q) is trivial and cd(L2(q)) = {1,q − 1,q,q + 1}.
(b) If K is a maximal subgroup of L2(q) whose index divides some nontrivial character degree of L2(q), then

K is a Frobenius group of index q + 1. Moreover q + 1 is the smallest index of maximal subgroups of L2(q).

Lemma 3.4. Let q2 = 22m+1 , where m � 1. Then the following hold:

(a) The Schur multiplier of Sz(q2) is trivial when q2 > 8 while the Schur multiplier of Sz(8) is elementary
abelian of order 4, and

cd
(
Sz

(
q2)) = {

1,q4,q4 + 1,
(
q2 − 1

)
u1,

(
q2 − 1

)
u2,q

√
2
(
q2 − 1

)
/2

}
.

(b) If K is a maximal subgroup of Sz(q2) whose index divides some nontrivial character degree of Sz(q2) or
(q2 − 1)2 , then K is a Frobenius group of index q4 + 1. Moreover q4 + 1 is the smallest index of maximal
subgroups of Sz(q2).

4. Verifying Huppert’s Conjecture for the simple Ree groups

We are now ready to verify Huppert’s Conjecture for the simple Ree groups.

4.1. Verifying Step 1

Show G ′ = G ′′ . By way of contradiction, suppose that G ′ �= G ′′ . Then there exists a normal subgroup
N � G of G such that G/N is solvable minimal with respect to being nonabelian. By Lemma 2.3, G/N
is an r-group for some prime r or G/N is a Frobenius group.

Case 1. G/N is an r-group. Then there exists ψ ∈ Irr(G/N) such that ψ(1) = rb > 1. By [13, The-
orem 1.1], we deduce that ψ(1) = StH (1) = rb and so r = 2. By Thompson’s Theorem [11, Corol-
lary 12.2], G has a nonlinear character χ ∈ Irr(G) such that χ(1) is odd. As (χ(1), |G : N|) = 1, by
Lemma 2.1(a), we have χN ∈ Irr(N) and hence by Gallagher’s Theorem, we obtain that χτ ∈ Irr(G) for
all τ ∈ Irr(G/N). Thus StH (1) < StH (1)χ(1) ∈ cd(G), which contradicts Lemma 2.4.

Case 2. G/N is a Frobenius group with Frobenius kernel F/N , |F/N| = ra , 1 < f = |G : F | ∈ cd(G) and
ra ≡ 1 (mod f ). By Lemma 2.3(b)(2), if χ ∈ Irr(G) such that χ(1) is isolated then either f = χ(1) or
ra | χ(1)2. By Lemma 2.4, the Steinberg character of H is isolated in H and hence by Lemma 2.3(b),
either f = q24 or r = 2.

Assume first that f = q24. As r � f , r must be odd. Let ϕ ∈ Irr(G) with ϕ(1) = q
√

2Φ1Φ2Φ
2
4 Φ12/2.

As no proper multiple of f is a character of G and ϕ(1) � f , we deduce from Lemma 2.3(b)(1) that
ra | ϕ(1)2. As r is odd, we obtain ra | ϕ(1)2

2′ = Φ2
1 Φ2

2 Φ4
4 Φ2

12. We have

Φ1Φ2Φ
2
4Φ12 = (

q4 − 1
)(

q2 + 1
)(

q4 − q2 + 1
) = (

q4 − 1
)(

q6 + 1
)
< q10.
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As ra | ϕ(1)2
2′ , we deduce that ra � ϕ(1)2

2′ < q20. But then as f | ra − 1, we obtain f = q24 � ra − 1 <

q20 − 1 < q20, which is impossible.
Thus r = 2. Then f ∈ cd(G) is odd and so f �= q4Φ2

1 Φ2
2 Φ2

4 Φ2
8 /3, which is an isolated degree of G by

Lemma 3.1(v). Hence ra | (q4Φ2
1 Φ2

2 Φ2
4 Φ2

8 /3)2 by Lemma 2.3(b)(2). It follows that ra | q8 as ra is even.
As in the previous case, we have that f divides ra − 1 and since ra � q8, we deduce that f � q8 − 1.
However as q8 − 1 < q10 � q

√
2Φ1Φ2Φ

2
4 Φ12/2, where the latter is the smallest nontrivial character

degree of H by Lemma 3.1(x), we see that f cannot be a character degree of G . This contradiction
shows that G ′ = G ′′ .

4.2. Verifying Step 2

Let M � G ′ be a normal subgroup of G such that G ′/M is a chief factor of G . As G ′ is perfect,
G ′/M is nonabelian so that G ′/M ∼= Sk for some nonabelian simple group S and some integer k � 1.

(i) Eliminating the alternating groups. Assume that S = An , n � 7. Let θi , i = 1,2 be irreducible
characters of S obtained from Lemma 2.5(i). Then θ1(1) = n(n − 3)/2, θ2(1) = (n − 1)(n − 2)/2 =
θ1(1) + 1 and both θi extend to Aut(An) ∼= Sn . By Lemma 2.6, θk

i ∈ Irr(G ′/M) extend to G/M , hence
θi(1)k ∈ cd(G) and θi(1)k , i = 1,2, are coprime. By Lemma 3.1(vi), one of the degrees θi(1)k , i = 1,2,
must be q24. However we have that (n − 1,n − 2) = 1 and (n,n − 3) = (n,3) so that θi(1)k can never
be a power of 2. This shows that S is not an alternating group of degree at least 7.

(ii) Eliminating the sporadic simple groups and the Tits group. It follows from [1, Table 1] that there
exist two nontrivial irreducible characters θi , i = 1,2, such that θi extend to Aut(S), θi(1), i = 1,2, are
coprime and θi(1) are not 2-power. Now argue as in case (i), we obtain a contradiction.

(iii) If S is a simple group of Lie type in characteristic p, with S �= 2 F4(2)′ , then k = 1 and p = 2. By
way of contradiction, assume that k � 2. Let θ be the Steinberg character of S . Then θ(1) = |S|p and
θ extends to Aut(S). By Lemma 2.6, θk ∈ Irr(G ′/M) extends to G/M , hence θ(1)k = |S|kp ∈ cd(G). Since

q24 is the unique nontrivial prime power character degree of G by [13, Theorem 1.1], we deduce that
θ(1)k = q24. In particular, we have p = 2. Write θ(1) = qs

1. Then qsk
1 = q24. Let ψ = τ × θ × · · · × θ ∈

Irr(Sk), where τ ∈ Irr(S) with 1 < τ(1) �= θ(1). Then ψ(1) = τ (1)qs(k−1)
1 � q24 and is nontrivial, so that

it must divide some character degree of G , which is different from q24. By Lemma 3.1(viii), we have
that qs(k−1)

1 = q24(k−1)/k < q14 and hence 24(k − 1) < 14k, which implies that k � 2. Therefore k = 2.
Let C be a normal subgroup of G such that C/M = CG/M(G ′/M). Then G ′C/C ∼= S2 is a unique minimal
normal subgroup of G/C so that G/C embeds into Aut(S) � Z2, where Z2 is a cyclic group of order 2.
Let B = Aut(S)2 ∩ G/C . Then |G/C : B| = 2. As above, let ψ = 1 × θ ∈ Irr(G ′C/C). Then ψ extends to B
and so B is the inertia group of ψ in G/C so that by Lemma 2.2(a), |G/C : B|ψ(1) = 2ψ(1) ∈ cd(G).
Hence 2θ(1) = 2qs

1 = 2q12 ∈ cd(G). Obviously 1 < 2q12 < q24, which leads to a contradiction again by
using [13, Theorem 1.1]. Thus k = 1.

(iv) If S is a simple group of Lie type in characteristic 2 and S �= 2 F4(2)′ , then S ∼= 2 F4(q2). We
will prove this by eliminating other possibilities for S . Assume that S is a simple group of Lie type in
characteristic 2 and S is not the Tits group. We have shown that G ′/M ∼= S and |S|2 = q24 = 212(2m+1) .
Observe that if θ ∈ Irr(S) is extendible to Aut(S), then θ extends to G/C , where C/M = CG/M(G ′/M),
so that θ(1) ∈ cd(G). In fact, we will choose θ to be a unipotent character of S , so that by results
of Lusztig, θ is extendible to Aut(S) apart from some exceptions (see [12, Theorem 2.5]). We refer to
[2, 13.8, 13.9] for the classification of unipotent characters and the notion of symbols. In Table 2, for
each simple group of Lie type S in characteristic p, we list the p-part of some unipotent character of
S that is extendible to Aut(S).

(a) Case S ∼= Lε
n(2b), where b � 1 and n � 2. We have bn(n − 1) = 24(2m + 1). If n = 2 then b =

12(2m + 1) so that S = L2(q24) and hence S has a character of degree q24 + 1. Obviously this degree
does not divide any degree of G since q24 + 1 � |2 F4(q2)|. Next if n = 3 then b = 4(2m + 1) and
so S = Lε

3(q8). By [2, (13.8)], S possesses a unipotent character parametrized by the partition (1,2)

of degree q8(q8 + ε1). However by checking Table 1, 2 F4(q2) has no such degree. If n = 4, then
b = 2(2m + 1) so that S = Lε

4(q4). In this case, the unipotent character parametrized by the partition
(2,2) has degree q8(q8 +1). As above, this degree does not belong to cd(G). Thus we can assume that
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Table 2
Some unipotent characters of simple groups of Lie type.

S = S(pb) Symbol p-part of degree

Lε
n(pb), n � 3 (1n−2,2) pb(n−1)(n−2)/2

S2n(pb), p = 2
(0 1 2 ··· n−2 n−1 n

1 2 ··· n−2

)
2b(n−1)2−1

S2n(pb), p > 2 pb(n−1)2

O 2n+1(pb), p > 2
(0 1 2 ··· n−2 n−1 n

1 2 ··· n−2

)
pb(n−1)2

O +
2n(pb)

(0 1 2 ··· n−3 n−1
1 2 3 ··· n−2 n−1

)
pb(n2−3n+3)

O −
2n(pb)

(0 1 2 ··· n−2 n−1
1 2 ··· n−2

)
pb(n2−3n+2)

3 D4(pb) φ′′
1,3 p7b

F4(pb) φ9,10 p10b

2 F4(q2) 2 B2[a], ε 1√
2

q13

E6(pb) φ6,25 p25b

2 E6(pb) φ′′
2,16 p25b

E7(pb) φ7,46 p46b

E8(pb) φ8,91 p91b

Table 3
The maximal subgroups of 2 F4(q2).

Group Index

Pa = [q22] : (L2(q2) × (q2 − 1)) (q12 + 1)(q6 + 1)(q4 + 1)

Pb = [q20] : (Sz(q2) × (q2 − 1)) (q12 + 1)(q6 + 1)(q2 + 1)

3.U3(q2) : 2 q18(q12 + 1)(q4 + 1)(q2 − 1)/2
(Zq2+1 × Zq2+1) : GL2(3) q24(q4 + 1)2(q2 − 1)2.Φ12Φ24/(3.24)

(Zq2−√
2q+1 × Zq2−√

2q+1) : [96] q24(q4 − 1)2.u2
2.Φ12Φ24/(3.25)

(Zq2+√
2q+1 × Zq2+√

2q+1) : [96] q24(q4 − 1)2.u2
1.Φ12Φ24/(3.25)

Zq4−√
2q3+q2−√

2q+1 : 12 q24(q8 − 1)2 w2.Φ12/(3.22)

Zq4+√
2q3+q2+√

2q+1 : 12 q24(q8 − 1)2 w1.Φ12/(3.22)

PGU3(q2) : 2 q18(q4 + 1)(q2 − 1)Φ24/2
Sz(q2) � 2 q16(q6 + 1)(q2 + 1)Φ24/2
Sz(q2) : 2 q20(q8 − 1)(q6 + 1)Φ24/2

2 F4(q2
0), q2 = q2α

0 , α prime
q24α

0 (q12α
0 +1)(q8α

0 −1)(q6α
0 +1)(q2α

0 −1)

q24
0 (q12

0 +1)(q8
0−1)(q6

0+1)(q2
0−1)

n � 5. By Table 2, S possesses a unipotent character χ different from the Steinberg character with
χ(1)2 = 2b(n−1)(n−2)/2. By Lemma 3.1(viii), we have b(n − 1)(n − 2)/2 < 7(2m + 1). Multiplying both
sides by 2n, we obtain bn(n − 1)(n − 2) = 24(2m + 1)(n − 2) < 14n(2m + 1), and so 24(n − 2) < 14n.
Thus 5n < 24 so that n < 5, which is a contradiction.

(b) Case S ∼= S2n(q1), or O 2n+1(q1), where q1 = 2b , b � 1, n � 2 and S �= S4(2). As S2n(2b) ∼=
O 2n+1(2b), we can assume S = S2n(q1) and S �= S4(2). We have bn2 = 12(2m + 1). If n = 2 then
b = 3(2m + 1) and so S = S4(q6). By [2, (13.8)], S possesses a unipotent character labeled by the
symbol

(0 1 2
−

)
of degree q6(q6 − 1)2/2. However by checking Table 1, 2 F4(q2) has no such character

degree. If n = 3 then 3b = 4(2m + 1) and so q3
1 = q8. By [2, (13.8)], S possesses a unipotent character

labeled by the symbol
(1 2

1

)
with degree q3

1(q
2
1 −q1 +1)(q2

1 +q1 +1) = q8(q2
1 −q1 +1)(q2

1 +q1 +1), which
leads to a contradiction since G has no degree whose 2-part is q8. If n = 4 then 4b = 3(2m + 1) and
hence q4

1 = q6. By Table 2, there exists a unipotent character χ with χ(1)2 = 29b−1. As 4b = 3(2m +1)

and m � 1, we have that 9b − 1 = 6(2m + 1) + (6m − 1)/4 = 13m + 6 + (2m − 1)/4 > 13m + 6, which
contradicts Lemma 3.1(viii). Hence we can assume that n � 5. By Table 2, S possesses a nontrivial
irreducible character χ different from the Steinberg character with χ(1)p = 2b(n−1)2−1. Since b(n −
1)2 − 1 � b(n − 1)2 − b = bn(n − 2), by Lemma 3.1(viii), we have bn(n − 2) < 7(2m + 1). Multiplying
both sides by n, we obtain bn2(n − 2) = 12(n − 2)(2m + 1) < 7n(2m + 1) so that 5n < 24 and hence
n < 5, a contradiction.
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(c) Case S ∼= O ε
2n(q1), where q1 = 2b , b � 1, and n � 4. We have bn(n − 1) = 12(2m + 1). If

n = 4, then b = 2m + 1 hence q1 = q2. Now if S = O +
8 (q2), then S has a unipotent character

χ with χ(1)2 = q2(42−3·4+3) = q14 and if S = O −
8 (q2), then S has a unipotent character χ with

χ(1)2 = q2(42−3·4+2) = q12, by Table 2. However G has no such degrees by Table 1 since q2 � 8.
Observe that q14 > q13

√
2/2 and q13

√
2/2 = q12 if and only if q2 = 2. Thus we can assume that

n � 5. By Table 2, S possesses a unipotent character χ different from the Steinberg character with
χ(1)2 � 2b(n−1)(n−2) . By Lemma 3.1(viii), we have b(n − 1)(n − 2) < 7(2m + 1). Multiplying both sides
by n, we obtain bn(n − 1)(n − 2) = 12(n − 2)(2m + 1) < 7n(2m + 1) so that 5n < 24 and hence n < 5,
which is a contradiction.

(d) Case S ∼= G2(q1), where q1 = 2b , b � 1. We have 6b = 12(2m + 1) and so b = 2(2m + 1). Thus
S = G2(q4), where q4 > 2 so that S has an irreducible character of degree q24 − 1 by [5, Table IV-2].
However this degree divides no degrees of G since q24 − 1 = Φ1Φ2Φ3Φ4Φ6Φ8Φ12Φ24 � |2 F4(q2)|.

(e) Case S ∼= 2 B2(q2
1), where q2

1 = 22n+1, n � 1. We have 2(2n + 1) = 12(2m + 1) and so 2n + 1 =
6(2m + 1), which is impossible.

(f) Case S ∼= 2G2(q2
1), where q2

1 = 32n+1, n � 1. This case cannot occur as the characteristic of
2G2(q2

1) is 3.
(g) Case S ∼= 2 F4(q2

1), where q2
1 = 22n+1, n � 1. We have 12(2n + 1) = 12(2m + 1) so that n = m.

Thus S ∼= 2 F4(q2).
(h) For the remaining cases, we can argue as follows. We have |S|2 = 212(2m+1) . Lemma 3.1(viii)

yields χ(1)2 � 213m+6, where χ is a unipotent character different from the Steinberg character listed
in Table 2. Using these two properties, we will obtain a contradiction. For example, assume S ∼=
E8(q1), where q1 = 2b , b � 1. We have 120b = 12(2m+1) and so 10b = 2m+1. By Table 2, S possesses
a unipotent character χ with χ(1)2 = 291b . By Lemma 3.1(viii), we have 91b < 7(2m + 1). Thus 91b <

7 · 10b = 70b, a contradiction. This completes the proof of Step 2.

4.3. Verifying Step 3

Suppose θ ∈ Irr(M) with θ(1) = 1 and let I = IG ′ (θ). We need to show that I = G ′ . By way of
contradiction, suppose I < G ′ . Write θ I = ∑s

i=1 eiμi , where μi ∈ Irr(I). As M � I < G ′ and G ′/M ∼= H ,
there exists a subgroup U such that I � U and U/M is a maximal subgroup of G ′/M . By Lemma 2.2(a),
we have |G ′ : I|μi(1) = |G ′ : U ||U : I|μi(1) divides some character degree of G . Thus the index
|G ′ : U | = |G ′/M : U/M| of 2 F4(q2) must divide some character degree of 2 F4(q2) and hence by
Lemma 3.2, U/M ∼= Pa or U/M ∼= Pb , where Pa and Pb are maximal parabolic subgroups of 2 F4(q2).
Note that both unipotent radicals [q22] and [q20] of the parabolic subgroups Pa and Pb , respectively,
are nonabelian by using the commutator relations (see [8]). Let t = |U : I| and recall that if N � G
and λ ∈ Irr(N), then Irr(G|λ) denotes the set of all irreducible constituents of λG .

Case 1. U/M ∼= Pa . Recall that Pa ∼= [q22] : (L2(q2)× (q2 − 1)). Let L and V be subgroups of U contain-
ing M such that L/M ∼= [q22] and V /M ∼= L2(q2), and let W = LV . Then M � W � U , L ∩ V = M , and
W /L ∼= V /M ∼= L2(q2). By Lemma 3.2(i), tμi(1) divides q2 ± 1 or q2. We consider the following cases:

Case 1(a). tμ j(1) | q2 ± 1 for some j. Then t is odd. As L � U , we deduce that I � I L � U so that
t = |U : I L| · |I L : I|. Now |I L : I| = |L : L ∩ I|. As |L : L ∩ I| divides |L : M| = q20, if L � I , then |L : L ∩ I| > 1
is even so that t is even, a contradiction. Thus L � I � U . Assume W � I . Then I � W I � U and
t = |U : W I| · |W I : I|. As |W I : I| = |W : W ∩ I| and |W I : I| > 1, we deduce that |W : W ∩ I| > 1 and
divides q2 ± 1. Observe that W /L ∼= L2(q2) and since L � W ∩ I � W , we deduce that |W : W ∩ I| is
divisible by some index of a maximal subgroup of L2(q2). By Lemma 3.3(b), we have |W : W ∩ I| =
q2 +1 and W ∩ I/L is isomorphic to the Borel subgroup of L2(q2), in particular W ∩ I/L is nonabelian.
Furthermore t = q2 + 1 and hence tμi(1) | q2 ± 1, for all i, which implies that μi(1) = 1 for all i. Thus
θ extends to θ0 ∈ Irr(I). By Gallagher’s Theorem, we have θ I = ∑

τ∈Irr(I/M) τ θ0 and so τ (1) = 1 for
all τ ∈ Irr(I/M), which implies that I/M is abelian, which is a contradiction as I/M possesses a
nonabelian section W ∩ I/L. Thus W � I .
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Let λ be an irreducible constituent of (μ j)L . Then λM = eθ for some integer e. Now λ(1) = e
divides |L/M| = q22 by [11, Corollary 11.29]. By [11, Lemma 6.8], we have that λ(1) | μ j(1), which
yields that λ(1) is odd. Thus e = 1 and so λ is an extension of θ to L. Since L/M ∼= [q22] is nonabelian,
it possesses a nonlinear irreducible character τ with even degree. By Gallagher’s Theorem, γ = τλ ∈
Irr(L|θ) and γ (1) = τ (1)λ(1) is even. If μk is any irreducible constituent of γ I then as L � I , by
[11, Lemma 6.8] we have that γ (1) | μk(1) and since tμk(1) divides q2 ± 1 or q2, we deduce that
tμk(1) | q2 and so as t is odd, t = 1 and hence I = U and μk(1) is a 2-power for any μk ∈ Irr(I|γ ).
Let L � J = IW (γ ) and suppose that J < W . Let δ ∈ Irr( J |γ ). We have δW ∈ Irr(W |γ ) and δW (1) =
|W : J |δ(1). Since W � I , we deduce that |W : J |δ(1) | q2 and hence |W : J | � q2, and |W : J | is
divisible by the index of some maximal subgroup of W /L ∼= L2(q2), so that by Lemma 3.3(b), we
obtain |W : J | � q2 + 1, a contradiction. Thus γ is W -invariant and every irreducible constituent of
Irr(W |γ ) is a 2-power. By Lemma 2.7, we deduce that W /L ∼= L2(q2) is solvable, which is impossible
as q2 � 8. Thus this case cannot happen.

Case 1(b). tμi(1) | q2 for all i. Then t | q2 and all μi(1) are 2-powers. We will show that I/M is
nonsolvable. If t = 1, then I = U , hence I/M ∼= Pa is nonsolvable. Assume t > 1. As W /M ∼= [q22] :
L2(q2) is nonsolvable, if W � I , then we are done. So assume W � I . Let X = W ∩ I . Then X � W .
Since |W I : I| = |W : W ∩ I| = |W : X |, we have t = |U : W I| · |W : X |, and hence |W : X | is a nontrivial
divisor of q2. If L � X , then X/L is a proper subgroup of W /L ∼= L2(q2) and hence |W : X | � q2 + 1 by
Lemma 3.3(b), which is impossible as 1 < |W : X | � q2. Thus L � X . Since L � W and X = W ∩ I � W ,
we deduce that X � X L � W and L � X L � W . It follows that |W : X | = |W : X L| · |X L : X | is a
nontrivial divisor of q2. If |W : X L| > 1, then as L � X L � W , by Lemma 3.3(b), we obtain |W : X L| �
q2 + 1, which is impossible since |W : X L| � |W : X | � q2. Thus W = X L and so L2(q2) ∼= W /L ∼=
X/X ∩ L. We have M � X ∩ L � X � I and X/X ∩ L ∼= L2(q2) so that I/M is nonsolvable. Hence
μi(1) are 2-power for all i, θ is I-invariant and I/M is nonsolvable. Now Lemma 2.7 will provide
a contradiction.

Case 2. U/M ∼= Pb . Recall that Pb
∼= [q20] : (Sz(q2) × (q2 − 1)). Let L and V be subgroups of U con-

taining M such that L/M ∼= [q20], V /M ∼= Sz(q2) and let W = LV . It follows that L � U , W � U , V ∩
L = M , and W /L ∼= V /M ∼= Sz(q2). Let B = {q4,q4 +1, (q2 −1)u1, (q2 −1)u2,q

√
2(q2 −1)/2, (q2 −1)2}.

By Lemma 3.2(ii), we deduce that for each i, tμi(1) divides one of the members of B.

Case 2(a). t is odd. As L � U , we have I � I L � U so that t = |U : I L| · |I L : I|. As |I L : I| = |L : L ∩ I|,
if L � I , then |L : L ∩ I| > 1 is even so is t , a contradiction. Thus L � I � U . Assume that W � I . Then
I � W I � U and t = |U : W I| · |W I : I|. As |W I : I| = |W : W ∩ I| and |W I : I| > 1, we deduce that
|W : W ∩ I| > 1 and divides one of the members in B. Observe that W /L ∼= Sz(q2) and since L �
W ∩ I � W , we deduce that |W : W ∩ I| is divisible by some index of a maximal subgroup of Sz(q2).
By Lemma 3.4(b), we have |W : W ∩ I| = q4 + 1 and W ∩ I/L is isomorphic to the Borel subgroup of
Sz(q2), in particular W ∩ I/L is nonabelian. It follows that t = q4 + 1 and hence tμi(1) = q4 + 1, as
q4 + 1 divides no other members of B, which implies that μi(1) = 1 for all i. Now arguing as in the
first paragraph of Case 1(a), we obtain a contradiction. Therefore W � I � U .

Let λ be an irreducible constituent of θ L . We have that λ(1) = eθ(1) for some integer e. By [11,
Corollary 11.29], we deduce that e | q20. If e = 1 then θ extends to λ ∈ Irr(L) so that as L/M is
nonabelian, L/M has a nontrivial irreducible character τ of even degree and then by Gallagher’s
Theorem γ = τλ ∈ Irr(L|θ) with γ (1) is even. If e > 1, then obviously e is even and so we choose
γ = λ ∈ Irr(L|θ) and γ (1) is even. In both cases, we can choose γ ∈ Irr(L|θ) such that γ (1) is even.
Let J be the stabilizer in W of γ . Write γ J = δ1 + δ2 + · · · + δk , where δi ∈ Irr( J ). Since L � W � I ,
the degrees of irreducible constituents of γ W divide some μi(1) and since μi(1) divides one of the
member of B, we deduce that δW

i (1) = |W : J |δi(1) divides either q4 or q
√

2(q2 − 1)/2 for all i,
as δi(1) is even since γ (1) | δi(1). By Lemma 3.4(b), we can deduce that γ is W -invariant and if
ϕ ∈ Irr(W |γ ) then as W � I , we have that ϕ(1) divides q4 or q

√
2(q2 − 1)/2.

Assume first that q2 > 8. By Lemma 3.4(a), the Schur multiplier of W /L ∼= Sz(q2) is trivial so that
by [11, Theorem 11.7], γ extends to γ0 ∈ Irr(W ). Hence by Gallagher’s Theorem, τγ0 are all the
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irreducible constituents of γ W , where τ ∈ Irr(W /L), and thus τ (1)γ0(1) = γ (1)τ (1) divides (q2 −
1)q

√
2/2, or q4. But this is impossible since W /L ∼= Sz(q2) has an irreducible character of degree

q4 + 1, which divides none of the degrees above.
Now assume q2 = 8. We have W /L ∼= Sz(8), γ ∈ Irr(L) is W -invariant and all irreducible con-

stituents of γ W divide 64 or 14. Write γ W = f1φ1 + f2φ2 + · · · , where φi ∈ Irr(W ). Then φi(1) =
f iγ (1) divides 64 or 14. If f i = 1 for some i, then γ extends to γ0 ∈ Irr(W ), and hence argue as
in the previous case to obtain a contradiction. Thus f i > 1 for all i. Also by Lemma 2.2(c), all f i
are character degrees of irreducible projective representations of W /L ∼= Sz(8). Thus all f i > 1 are
character degrees of irreducible projective representations of Sz(8) with f i dividing 64 or 14. Us-
ing [3], we have cd(Sz(8)) = {1,14,35,64,65,91}, and the projective but not ordinary degrees of
Sz(8) are 40, 56, 64, 104. It follows that f i is either 14 or 64. Since γ W = f1φ1 + · · · + ftφt , and
φi(1) = f iγ (1), we deduce that |Sz(8)| = ∑t

i=1 f 2
i . Let a and b be the numbers of f i ’s which equal 14

and 64, respectively. Then 82 · 5 · 7 · 13 = 142a + 642b. Obviously both a and b are nonzero. We have
4 ·16 ·5 ·7 ·13 = 4 ·72a +4 ·16 ·82b. After simplifying, we obtain 16 ·5 ·7 ·13 = 72a +16 ·82b, and then
b = 7b1 and a = 16a1, where a1,b1 � 1 are integers. Thus 5 · 13 = 7a1 + 82b1 so that 65 = 7a1 + 64b1.
As b1 � 1, we deduce that b1 = 1 and then 1 = 7a1, which is impossible.

Case 2(b). t > 1 is even. Then tμi(1) divides q4 or q
√

2(q2 − 1)/2 for all i. Let X = W ∩ I � I . Assume
first that L � X . Then L � I . Suppose that W � I . Then I � W I � U and t = |U : W I| · |W I : I|. As
|W I : I| = |W : X | and |W I : I| > 1, we deduce that |W : X | > 1 and divides q4 or q

√
2(q2 − 1)/2.

Hence |W : X | � q4 and since L � X � W , we deduce that |W : X | is divisible by the index of some
maximal subgroup of Sz(q2), which is impossible by Lemma 3.4(b). Thus W � I . But then t = |U : I|
divides |U : W | = q2 − 1, which is an odd number, a contradiction. Thus L � X . It follows that X �
X L � W . We have that |W : X | = |W : X L| · |X L : X | > 1 and |W : X | � t � q4 as t = |U : W I| · |W : X |.

Assume X L < W . We have L � X L < W and X � X L < W . Since W /L ∼= Sz(q2), we deduce that
|W : X L| is divisible by the index of some maximal subgroup of Sz(q2), and hence by Lemma 3.4(b),
|W : X L| � q4 + 1, which is impossible since |W : X L| � |W : X | � q4.

Hence W = X L and so W /L ∼= X L/L ∼= X/X ∩ L. Let L1 = X ∩ L. Then M � L1 � X � I and X/L1 ∼=
Sz(q2). Let λ ∈ Irr(L1|θ). Observe that the degree of every irreducible constituent of λX must divide
some degree μi(1) so that it divides q4 or q

√
2(q2 − 1)/2. Now Lemma 3.4(b) yields that λ is X-

invariant. Applying the same argument as in the last two paragraphs of Case 2(a) for λ ∈ Irr(L1|θ) and
L1 � X with X/L1 ∼= Sz(q2), we obtain a contradiction.

This finishes the proof of Step 3.

4.4. Verifying Step 4

Show M = 1. We have shown that G ′/M ∼= 2 F4(q2) and for any θ ∈ Irr(M), if θ(1) = 1, then θ is
G ′-invariant so that by Lemma 2.8, |M : M ′| divides the order of the Schur multiplier of 2 F4(q2). As
the Schur multiplier of 2 F4(q2),q2 � 8, is trivial, we deduce that M = M ′ . If M is abelian then we
are done. Assume that M is nonabelian. Let N � M be a normal subgroup of G ′ such that M/N is
a chief factor of G ′ . It follows that M/N ∼= Sk , for some nonabelian simple group S . By Lemmas 2.5
and 2.6, S possesses a nontrivial irreducible character ϕ such that ϕk ∈ Irr(M/N) which extends to
G ′/N . Gallagher’s Theorem yields ϕ(1)kτ (1) ∈ cd(G ′/N) ⊆ cd(G ′) for any τ ∈ Irr(G ′/M) ⊆ Irr(G ′/N).
Since cd(G ′/M) = cd(G) and ϕ(1) > 1, if we choose τ to be the Steinberg character of G ′/M , then
ϕ(1)kτ (1) cannot divide any degree of G , a contradiction. Thus M = 1.

4.5. Verifying Step 5

G = G ′ × CG (G ′). It follows from Step 4 that G ′ ∼= 2 F4(q2) is a nonabelian simple group. Let C =
CG (G ′). Then G/C is almost simple with socle 2 F4(q2). Assume that G ′ × C < G . Then G induces some
outer automorphism on G ′ . Note that the only nontrivial outer automorphisms of 2 F4(q2) are field
automorphisms. Let σ be a nontrivial outer automorphism of G ′ . By [6, Theorem C], σ does not fix
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some conjugacy class of G ′ , and so by [11, Theorem 6.32], the action of σ on the conjugacy classes
of G ′ is permutation isomorphic to the action of σ on Irr(G ′), so that σ does not fix some nontrivial
irreducible character ψ ∈ Irr(G ′). Let γ ∈ Irr(G) be an irreducible constituent of ψG . As ψ is not σ -
invariant, we deduce that γ (1) = zψ(1), where z > 1 and z | |Out(G ′)| = 2m + 1. We have ψ(1) > 1,
zψ(1) ∈ cd(G) and ψ(1) ∈ cd(G ′) = cd(G). Thus ψ(1) and zψ(1) are in cd(G) with z > 1 being odd, so
that by Lemma 3.1(ix), we have that z � q2 −1. But then as z | 2m+1, we have 2m+1 � z � 22m+1 −1,
which is impossible as m � 1. Thus G = G ′ × C . It follows that C ∼= G/G ′ is abelian. The proof is now
complete.
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