

Available online at www.sciencedirect.com

Journal of Algebra 278 (2004) 360-369

www.elsevier.com/locate/jalgebra

Last syzygies of 1-generic spaces

Hans-Christian Graf von Bothmer¹

Institiut für Mathematik (C), Universität Hannover, Welfengarten 1, D-30167 Hannnover, Germany

Received 6 August 2003

Available online 19 May 2004 Communicated by Craig Huneke

Abstract

We consider determinantal varieties $X(\gamma)$ of expected codimension defined by the maximal minors of a matrix $M(\gamma)$ of linear forms representing a linear map γ . Eisenbud and Popescu have conjectured that 1-generic linear maps γ have the property that the syzygy ideals I(s) of all last syzygies s of $X(\gamma)$ coincide with $I_{X(\gamma)}$. We prove a geometric version of this conjecture: for 1-generic linear maps γ the syzygy varieties Syz(s) = V(I(s)) of all last syzygies have the same support as $X(\gamma)$.

© 2004 Elsevier Inc. All rights reserved.

Introduction

In this note we study syzygies of determinantal varieties which are cut out by the maximal minors of a matrix of linear forms *M* that represents a linear map $\gamma : A \otimes B \rightarrow C$. Eisenbud and Popescu have studied these syzygies in [4]. There they define the syzygy ideal I(s) of a syzygy *s* and prove the following:

Theorem (Eisenbud, Popescu). Let $\gamma : A \otimes B \to C$ be a linear map such that the associated determinantal variety $X(\gamma_C) \subset \mathbb{P}(C)$ is of expected codimension. If $I(s) = I_{X(\gamma_C)}$ holds for all last syzygies $s \in E_{a-b}$ of $X(\gamma_C)$, then γ is 1-generic.

Conversely they conjecture:

E-mail address: bothmer@math.uni-hannover.de.

URL: http://www.-ifm.math.uni-hannover.de/~bothmer.

¹ Supported by Marie Curie Fellowship HPMT-CT-2001-001238.

^{0021-8693/\$ –} see front matter @ 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2004.02.032

Conjecture (Eisenbud, Popescu). Let $\gamma : A \otimes B \to C$ be a 1-generic linear map. Then the equality $I(s) = I_{X(\gamma_C)}$ holds for all last syzygies $s \in E_{a-b}$ of the determinantal variety $X(\gamma_C) \subset \mathbb{P}(C)$ associated to γ .

They can prove this conjecture in the case of dim B = 2. Here we consider a more geometric invariant, namely the syzygy variety Syz(s) of a syzygy *s* which is the vanishing locus of the syzygy ideal I(s). With this we obtain a geometric version of the Eisenbud–Popescu Conjecture:

Theorem 3.2. Let $\gamma : A \otimes B \to C$ be a 1-generic linear map. Then

$$\operatorname{supp} \operatorname{Syz}(s) = \operatorname{supp} X(\gamma_C)$$

holds for all last syzygies $s \in E_{a-b}$ of the determinantal variety $X(\gamma_C) \subset \mathbb{P}(C)$ associated to γ .

Also we obtain a partial strengthening of their theorem by

Theorem 3.3. Let $\gamma : A \otimes B \to C$ be a linear map, such that the associated determinantal variety $X(\gamma_C)$ has expected codimension a - b + 1 and also satisfies a > 2b - 2. If for every last syzygy $s \in E_{a-b}$ of $X(\gamma_C)$

$$\operatorname{supp} \operatorname{Syz}(s) = \operatorname{supp} X(\gamma_C)$$

holds, then γ is 1-generic.

Our methods also show that in the situation of our Theorem 3.2 both Syz(s) and $X(\gamma_C)$ have the same smooth locus. To obtain the conjecture of Eisenbud and Popescu one would have to show, that Syz(s) has no embedded components in the singular locus of $X(\gamma_C)$ and that the syzygy ideal I(s) is always saturated.

The main ingredient of our proof is an observation of Green [6] about exterior minors of 1-generic maps. This allows us to evaluate syzygies explicitly at certain points.

The paper has three sections. In the first the definition and properties of 1-generic maps are reviewed. The second section we collect what we need to know about syzygies and syzygy varieties. The last section contains the proofs of our theorems.

1. 1-generic linear maps

Let *A*, *B* and *C* be finite dimensional vector spaces of dimensions *a*, *b* and *c* together with a linear map $\gamma : A \otimes B \to C$. γ can be interpreted as a triple tensor $\gamma \in A^* \otimes B^* \otimes C$ or after choosing bases as an $(a \times b)$ -matrix of linear forms on $\mathbb{P}(C)$. Here we adhere to the Grothendieck convention of interpreting elements of $\mathbb{P}(C)$ as linear forms on *C* or equivalently the elements of *C* as linear forms on $\mathbb{P}(C)$. **Definition 1.1.** A nonzero linear map $\mathbb{C} \to A$ is called a *generalized row index* of γ since it induces a map $\mathbb{C} \otimes B \to C$ which can be interpreted, up to a constant factor, as a $1 \times b$ row vector of linear-forms.

If $\mathbb{C} \to A$ is such a generalized row index, the image of \mathbb{C} in A under this map is a line. We will call these images generalized rows. The generalized rows form a projective space $\mathbb{P}(A^*)$ which we call the *row space* of γ . Similarly $\mathbb{P}(B^*)$ is the *column space* of γ .

On the row space $\mathbb{P}(A^*)$ the linear map γ induces a map of vector bundles

$$\gamma_A: \mathcal{O}_{\mathbb{P}(A^*)}(-1) \otimes B \to C$$

by composing γ with the first map of the twisted Euler sequence

$$0 \to \mathcal{O}_{\mathbb{P}(A^*)}(-1) \otimes B \to A \otimes B \to \mathbb{T}_{\mathbb{P}(A^*)}(-1) \otimes B \to 0$$

on $\mathbb{P}(A^*)$. Similarly we have

$$\gamma_B: A \otimes \mathcal{O}_{\mathbb{P}(B^*)}(-1) \to C$$

on the column space $\mathbb{P}(B^*)$. From now on we will restrict our discussion to the row space $\mathbb{P}(A^*)$, leaving the analogous constructions for the column space $\mathbb{P}(B^*)$ to the reader.

Given a generalized row $\alpha \in \mathbb{P}(A^*)$ the restriction of γ_A to α

$$\gamma_{\alpha}: B \to C$$

is a map of vector spaces.

Definition 1.2. The *rank* of a generalized row α is defined as rank $\alpha := \operatorname{rank} \gamma_{\alpha}$.

Example 1.3. Consider vector spaces A, B and C of dimension 2, 3 and 4 with basis a_i , b_i and c_i . The linear map $\gamma : A \otimes B \to C$ with

$$\begin{aligned} \gamma(a_1 \otimes b_1) &= c_1, \qquad \gamma(a_1 \otimes b_2) = c_2, \qquad \gamma(a_1 \otimes b_3) = c_3, \\ \gamma(a_2 \otimes b_1) &= c_2, \qquad \gamma(a_2 \otimes b_2) = c_3, \qquad \gamma(a_2 \otimes b_3) = c_4, \end{aligned}$$

can be represented by the matrix

$$\begin{pmatrix} c_1 & c_2 & c_3 \\ c_2 & c_3 & c_4 \end{pmatrix}.$$

In this basis we see two rows of rank 3. Generalized rows are linear combinations of those two. The map $\gamma_A : \mathcal{O}_{\mathbb{P}(A^*)}(-1) \otimes B \to C$ can be represented by the matrix

~

$$\begin{pmatrix} a_1 & a_2 & 0 & 0 \\ 0 & a_1 & a_2 & 0 \\ 0 & 0 & a_1 & a_2 \end{pmatrix}.$$

362

Since this matrix has full rank everywhere on the row-space $\mathbb{P}(A^*)$ we see that all generalized rows of γ have the same rank 3.

Definition 1.4. A linear map $\gamma : A \otimes B \to C$ is called 1-*generic*, if all generalized rows have rank *b* and all generalized columns have rank *a*.

Example 1.5. The (2×3) -matrix considered above is 1-generic.

In this paper we will use two properties of 1-generic linear maps. The first one concerns the following:

Definition 1.6. Let $\gamma : A \otimes B \to C$ be a linear map and

$$\gamma_C : A \otimes \mathcal{O}_{\mathbb{P}(C)}(-1) \to B^*$$

the third induced morphism of vector bundles. We call the locus $X(\gamma_C)$ where γ_C does not have rank *b* the *determinantal variety associated to* γ . The scheme structure of $X(\gamma_C)$ is given by the image $I_{X(\gamma_C)}$ of the natural map

$$\bigwedge^{b} A \otimes \bigwedge^{b} B \to \mathcal{O}_{\mathbb{P}(C)}(b)$$

induced by γ_C . If the codimension of $X(\gamma_C)$ in $\mathbb{P}(C)$ is a - b + 1 we say that $X(\gamma_C)$ is *of expected codimension*.

Proposition 1.7 (Eisenbud). Let $\gamma : A \otimes B \to C$ be a 1-generic linear map, then $X(\gamma_C) \subset \mathbb{P}(C)$ is of expected codimension.

Proof. [2, Corollary 3.3]. \Box

Green has observed, that the exterior minors of a 1-generic linear map also behave nicely:

Definition 1.8. Consider the natural map

$$\bigwedge^{n} A \otimes S_{n}B \xrightarrow{\qquad } \bigwedge^{n} (A \otimes B) \xrightarrow{\qquad } \bigwedge^{n} C$$

obtained by taking the *n*th exterior power of γ . Then the elements in the image of e_n are called degree *n* exterior minors of γ .

Proposition 1.9 (Green). If γ is 1-generic, then e_a is injective.

Proof. [6, Proposition 1.2]. \Box

2. Syzygies and syzygy varieties

In this section we recall some facts about the syzygies of determinantal varieties.

Theorem 2.1 (Eagon–Northcott). Let $\gamma : A \otimes B \to C$ be a linear map and $X(\gamma_C) \subset \mathbb{P}(C)$ be the associated determinantal variety. If $X(\gamma_C) \subset \mathbb{P}(C)$ is of expected codimension then there exists a minimal free resolution $I_{X(\gamma_C)} \leftarrow \mathcal{E}_{\bullet}$ with terms $\mathcal{E}_i := E_i \otimes \mathcal{O}(-i-b)$, where

$$E_i := \bigwedge^{b+i} A \otimes \bigwedge^b B \otimes S_i B.$$

Proof. See for example [3, Theorem A2.10]. \Box

Definition 2.2. In the situation of Theorem 2.1 we call E_i the space of *i*th syzygies and E_{a-b} the space of last syzygies.

Lemma 2.3. In the situation of Theorem 2.1 we have

$$E_i = H^0 \big(\Omega^i_{\mathbb{P}(C)} \otimes I_{X(\gamma_C)}(i+b) \big) \subset \bigwedge^{l} C \otimes H^0 \big(I_{X(\gamma_C)}(b) \big).$$

In particular an *i*th syzygy of $X(\gamma_C)$ can be interpreted as a twisted *i*-form that vanishes on $X(\gamma_C)$.

Proof. By Koszul cohomology [5] we have

$$E_i = \ker\left(\bigwedge^i C \otimes H^0(I_{X(\gamma_C)}(b)) \to \bigwedge^{i-1} C \otimes H^0(I_{X(\gamma_C)}(b+1))\right)$$

since $H^0(I_{X(\gamma_C)}(b-1)) = 0$. This kernel can easily be identified with

$$H^0(\Omega^i_{\mathbb{P}(C)} \otimes I_{X(\gamma_C)}(i+b))$$

by considering exterior powers of the Euler sequence [1, Section 4]. \Box

Definition 2.4 (*Ehbauer*). Let $s \in E_i$ be an *i*th syzygy of $X(\gamma_C)$. Then the *syzygy scheme* Syz(*s*) of *s* is the vanishing locus of the corresponding twisted *i*-form. The scheme structure of Syz(*s*) is given by the syzygy ideal

$$I(s) := s \wedge \bigwedge^{l} C^* \subset H^0(I_{X(\gamma_C)}(b)).$$

Remark 2.5. Syzygy ideals are not necessarily reduced or even saturated. Consider for example the variety *X* of 4 general points in \mathbb{P}^3 . The minimal free resolution of *X* is given by an Eagon–Northcott-Complex. Let $s \in E_1$ be a general first syzygy. As can be checked

364

with a computer algebra program I(s) is generated by 4 quadrics and Syz(s) is the union of X with one additional point. The saturation of I(s) turns out to be generated by 5 quadrics.

3. Main results

Lets now consider the last syzygies of $X(\gamma_C)$. The representation of a last syzygy of $X(\gamma_C)$ as an element of $\bigwedge^{a-b} C \otimes H^0(I_{X(\gamma_C)}(b))$ can be given explicitly:

Lemma 3.1 (Eisenbud, Popescu). The inclusion

$$E_{a-b} \hookrightarrow \bigwedge^{a-b} C \otimes H^0(I_{X(\gamma_C)}(b))$$

is given by the composition

$$E_{a-b} = \bigwedge^{a} A \otimes \bigwedge^{b} B \otimes S_{a-b} B$$

$$\bigwedge^{b} A \otimes \bigwedge^{b} B \otimes \bigwedge^{a-b} A \otimes S_{a-b} B$$

$$\bigvee^{id \otimes e_{a-b}}$$

$$\bigwedge^{b} A \otimes \bigwedge^{b} B \otimes \bigwedge^{a-b} C = H^{0}(I_{X(\gamma_{C})}(b)) \otimes \bigwedge^{a-b} C.$$

Proof. [4, Theorem 2.1 and proof of Theorem 3.1]. \Box

With this we can prove our first theorem:

Theorem 3.2. Let $\gamma : A \otimes B \to C$ be a 1-generic linear map. Then

$$\operatorname{supp} \operatorname{Syz}(s) = \operatorname{supp} X(\gamma_C)$$

holds for all last syzygies $s \in E_{a-b}$ of the determinantal variety $X(\gamma_C) \subset \mathbb{P}(C)$ associated to γ .

Proof. Let $x \in \mathbb{P}(C)$ a point not contained in $X(\gamma_C)$ and $s \in E_{a-b}$ any last syzygy. We have to prove that *s* does not vanish in *x*.

Since $x \notin X(\gamma_C)$ the map γ_C has full rank in *x*. Therefore we can choose bases of *A*, *B* and *C* such that γ_C can be represented by a matrix of linear forms

$$M = \begin{pmatrix} c_{11} & \dots & c_{1b} \\ \vdots & & \vdots \\ c_{a1} & \dots & c_{ab} \end{pmatrix}$$

such that

$$M(x) = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \\ \hline 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

Now by the Lemma 3.1, the representation of a last syzygy s in this basis is

$$s = \sum_{|\beta|=b} f_{\beta} \otimes g_{\bar{\beta}}$$

where f_{β} is the $(b \times b)$ -minor involving the rows β_1, \ldots, β_b of M and $g_{\overline{\beta}}$ is a degree a - b exterior minor of the remaining $(a - b) \times b$ matrix. At x all minors of M except $f_{1,2,\ldots,b}(x) = 1$ vanish, and therefore $s(x) = g_{b+1,\ldots,a}$. Since $g_{b+1,\ldots,a}$ is a degree a - b exterior minor of a 1-generic $(a - b) \times b$ matrix it is nonzero by Proposition 1.9. \Box

We can also prove a partial converse of this theorem, strengthening the theorem of Eisenbud and Popescu in the case where a > 2b - 2.

Theorem 3.3. Let $\gamma : A \otimes B \to C$ be a linear map, such that the associated determinantal variety $X(\gamma_C)$ has expected codimension a - b + 1 and also satisfies a > 2b - 2. If for every last syzygy $s \in E_{a-b}$ of $X(\gamma_C)$

$$\operatorname{supp} \operatorname{Syz}(s) = \operatorname{supp} X(\gamma_C)$$

holds, then γ is 1-generic.

Proof. Suppose γ is not 1-generic. Then there exists a generalized row α of rank at most b - 1. We can therefore choose bases of *A*, *B* and *C* such that *M* has the form

$$M = \begin{pmatrix} 0 & c_{12} & \dots & c_{1b} \\ c_{21} & c_{22} & \dots & c_{2b} \\ \vdots & \vdots & & \vdots \\ c_{a1} & c_{a2} & \dots & c_{ab} \end{pmatrix}.$$

Since $\operatorname{codim} X(\gamma_C) = a - b + 1 > b - 1$ by the assumptions of the theorem, the vanishing locus of the first row $L = \{x \in \mathbb{P}(C) \mid c_{12}(x) = \cdots = c_{1b}(x) = 0\}$ can not lie completely inside $X(\gamma_C)$. We can therefore find a point $x \in L$ outside of $X(\gamma_C)$. There M(x) has full

366

rank and after a coordinate change in A which does not involve the first row, we can assume that M(x) has the form

$$M(x) = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \\ 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}.$$

Now consider the syzygy $s = (b_1)^{a-b}$ where b_1 is the basis element of *B* corresponding to the first column. When we evaluate *s* at *x* we obtain $s(x) = f_{a-b+1,...,a}(x) \otimes g_{1,...,a-b,s} = g_{1,...,a-b,s}$ since $f_{a-b+1,...,a}(x) = 1$ is the only nonzero maximal minor of M(x).

The exterior minor $g_{1,...,a-b,s}$ of the upper $(a - b) \times b$ submatrix corresponding to $s = (b_1)^{a-b}$ is the wedge product of the first a - b linear forms in the first column of M. This wedge product vanishes since the first of these linear forms is identically zero. So s is a syzygy whose syzygy variety has support outside of $X(\gamma_C)$. \Box

Our methods also allow us to describe the smooth locus of all last syzygy varieties:

Theorem 3.4. Let $\gamma : A \otimes B \to C$ be a 1-generic linear map. Then

$$\operatorname{reg} \operatorname{Syz}(s) = \operatorname{reg} X(\gamma_C)$$

for all last syzygies $s \in E_{a-b}$ of the determinantal variety $X(\gamma_C) \subset \mathbb{P}(C)$ associated to γ .

Proof. Let $s \in E_{a-b}$ be any last syzygy of $X(\gamma_C)$. Since $I(s) \subset I_{X(\gamma_C)}$ by definition and supp $X(\gamma_C) = \text{supp Syz}(s)$ by Theorem 3.2, we know that the smooth locus of Syz(s) = V(I(s)) is contained in the smooth locus of $X(\gamma_C)$.

For the converse, let $x \in \mathbb{P}(C)$ be a point contained in the smooth locus of $X(\gamma_C)$. We have to prove, that the tangent space of Syz(s) in x is the same as the tangent space of $X(\gamma_C)$ in x.

Since x is in the smooth locus of $X(\gamma_C)$ the morphism γ_C has rank b-1 in x. Therefore we can choose bases of A, B and C such that γ_C can be represented by a matrix of linear forms

$$M = \begin{pmatrix} c_{11} & \dots & c_{1b} \\ \vdots & & \vdots \\ c_{a1} & \dots & c_{ab} \end{pmatrix}$$

such that

$$M(x) = \begin{pmatrix} 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 1 & 0 \\ 0 & \dots & 0 & 0 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & 0 \end{pmatrix}.$$

Now suppose $x + \varepsilon y$ is a tangent vector of $X(\gamma_C)$ at x. Then all maximal minors of $M(x + \varepsilon y)$ have to vanish, in particular those that contain the first b - 1 rows and the *i*th row $(i \ge b)$:

$$0 = \det \begin{pmatrix} 1 + \varepsilon c_{11}(y) & \dots & \varepsilon c_{1,b-1}(y) & \varepsilon c_{1b}(y) \\ \vdots & \ddots & \vdots & \vdots \\ \varepsilon c_{b-1,1}(y) & \dots & 1 + \varepsilon c_{b-1,b-1}(y) & \varepsilon c_{b-1,b}(y) \\ \varepsilon c_{i,1}(y) & \dots & \varepsilon c_{i,1b-1}(y) & \varepsilon c_{ib}(y) \end{pmatrix} = \varepsilon c_{ib}(y).$$

All other minors vanish since every term of the corresponding determinant involves at least ε^2 . So $x + \varepsilon y$ is tangent to $X(\gamma_C)$ if and only if

$$c_{bb}(y) = \cdots = c_{ab}(y) = 0.$$

Now assume that $x + \varepsilon y$ is not a tangent vector of $X(\gamma_C)$. Then we can assume after another base change of *C*, that $M(x + \varepsilon y)$ has the form

$$M(x + \varepsilon y) = \begin{pmatrix} 1 + \varepsilon c_{11}(y) & \dots & \varepsilon c_{1,b-1}(y) & 0\\ \vdots & \ddots & \vdots & \vdots\\ \varepsilon c_{b-1,1}(y) & \dots & 1 + \varepsilon c_{b-1,b-1}(y) & 0\\ \varepsilon c_{b,1}(y) & \dots & \varepsilon c_{b,b-1}(y) & \varepsilon\\ \varepsilon c_{b+1,1}(y) & \dots & \varepsilon c_{b+1,b-1}(y) & 0\\ \vdots & \ddots & \vdots & \vdots\\ \varepsilon c_{a1}(y) & \dots & \varepsilon c_{a,b-1}(y) & 0 \end{pmatrix}.$$

As before the representation of a last syzygy *s* in this basis is

$$s = \sum_{|\beta|=b} f_{\beta} \otimes g_{\bar{\beta}}$$

where f_{β} is the $(b \times b)$ -minor involving the rows β_1, \ldots, β_b of M and $g_{\overline{\beta}}$ is a degree a - b exterior minor of the remaining $a - b \times b$ matrix. At $x + \varepsilon y$ all minors of M except $f_{1,2,\ldots,b}(x) = \varepsilon$ vanish, and $s(x) = \varepsilon g_{b+1,\ldots,a}$. Since $g_{b+1,\ldots,a}$ is again a degree a - b exterior minor of a 1-generic $(a - b) \times b$ matrix it is nonzero by Proposition 1.9. Therefore $x + \varepsilon y$ is not a tangent vector of Syz(s). This shows that the tangent space of

Syz(*s*) at *x* is contained in the tangent space of $X(\gamma_C)$ at *x*. Since on the other hand Syz(*s*) contains $X(\gamma_C)$ as scheme both tangent spaces have to coincide. \Box

References

- S. Ehbauer, Syzygies of points in projective space and applications, in: F. Orecchia (Ed.), Zero-Dimensional Schemes, Proceedings of the International Conference Held in Ravello, Italy, June 8–13, 1992, de Gruyter, Berlin, 1994, pp. 145–170.
- [2] D. Eisenbud, Linear sections of determinantal varieties, Amer. J. Math. 110 (3) (1988) 541-575.
- [3] D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, in: Grad. Texts in Math., vol. 150, Springer-Verlag, Berlin, 1995.
- [4] D. Eisenbud, S. Popescu, Syzygy ideals for determinantal ideals and the syzygetic Castelnuovo lemma, in: Commutative Algebra, Algebraic Geometry, and Computational Methods (Hanoi, 1996), Springer-Verlag, Singapore, 1999, pp. 247–258.
- [5] M.L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984) 125–171.
- [6] M.L. Green, The Eisenbud–Koh–Stillman conjecture, Invent. Math. 136 (1999) 411–418.