Last syzygies of 1-generic spaces

Hans-Christian Graf von Bothmer ${ }^{1}$
Institiut für Mathematik (C), Universität Hannover, Welfengarten 1, D-30167 Hannnover, Germany
Received 6 August 2003
Available online 19 May 2004
Communicated by Craig Huneke

Abstract

We consider determinantal varieties $X(\gamma)$ of expected codimension defined by the maximal minors of a matrix $M(\gamma)$ of linear forms representing a linear map γ. Eisenbud and Popescu have conjectured that 1 -generic linear maps γ have the property that the syzygy ideals $I(s)$ of all last syzygies s of $X(\gamma)$ coincide with $I_{X(\gamma)}$. We prove a geometric version of this conjecture: for 1-generic linear maps γ the syzygy varieties $\operatorname{Syz}(s)=V(I(s))$ of all last syzygies have the same support as $\boldsymbol{X}(\gamma)$. © 2004 Elsevier Inc. All rights reserved.

Introduction

In this note we study syzygies of determinantal varieties which are cut out by the maximal minors of a matrix of linear forms M that represents a linear map $\gamma: A \otimes B \rightarrow C$. Eisenbud and Popescu have studied these syzygies in [4]. There they define the syzygy ideal $I(s)$ of a syzygy s and prove the following:

Theorem (Eisenbud, Popescu). Let $\gamma: A \otimes B \rightarrow C$ be a linear map such that the associated determinantal variety $X\left(\gamma_{C}\right) \subset \mathbb{P}(C)$ is of expected codimension. If $I(s)=$ $I_{X\left(\gamma_{C}\right)}$ holds for all last syzygies $s \in E_{a-b}$ of $X\left(\gamma_{C}\right)$, then γ is 1-generic.

Conversely they conjecture:

[^0]Conjecture (Eisenbud, Popescu). Let $\gamma: A \otimes B \rightarrow C$ be a 1-generic linear map. Then the equality $I(s)=I_{X\left(\gamma_{C}\right)}$ holds for all last syzygies $s \in E_{a-b}$ of the determinantal variety $X\left(\gamma_{C}\right) \subset \mathbb{P}(C)$ associated to γ.

They can prove this conjecture in the case of $\operatorname{dim} B=2$. Here we consider a more geometric invariant, namely the syzygy variety $\operatorname{Syz}(s)$ of a syzygy s which is the vanishing locus of the syzygy ideal $I(s)$. With this we obtain a geometric version of the EisenbudPopescu Conjecture:

Theorem 3.2. Let $\gamma: A \otimes B \rightarrow C$ be a 1-generic linear map. Then

$$
\operatorname{supp} \operatorname{Syz}(s)=\operatorname{supp} X\left(\gamma_{C}\right)
$$

holds for all last syzygies $s \in E_{a-b}$ of the determinantal variety $X\left(\gamma_{C}\right) \subset \mathbb{P}(C)$ associated to γ.

Also we obtain a partial strengthening of their theorem by
Theorem 3.3. Let $\gamma: A \otimes B \rightarrow C$ be a linear map, such that the associated determinantal variety $X\left(\gamma_{C}\right)$ has expected codimension $a-b+1$ and also satisfies $a>2 b-2$. If for every last syzygy $s \in E_{a-b}$ of $X\left(\gamma_{C}\right)$

$$
\operatorname{supp} \operatorname{Syz}(s)=\operatorname{supp} X\left(\gamma_{C}\right)
$$

holds, then γ is 1-generic.

Our methods also show that in the situation of our Theorem 3.2 both $\operatorname{Syz}(s)$ and $X\left(\gamma_{C}\right)$ have the same smooth locus. To obtain the conjecture of Eisenbud and Popescu one would have to show, that $\operatorname{Syz}(s)$ has no embedded components in the singular locus of $X\left(\gamma_{C}\right)$ and that the syzygy ideal $I(s)$ is always saturated.

The main ingredient of our proof is an observation of Green [6] about exterior minors of 1-generic maps. This allows us to evaluate syzygies explicitly at certain points.

The paper has three sections. In the first the definition and properties of 1-generic maps are reviewed. The second section we collect what we need to know about syzygies and syzygy varieties. The last section contains the proofs of our theorems.

1. 1-generic linear maps

Let A, B and C be finite dimensional vector spaces of dimensions a, b and c together with a linear map $\gamma: A \otimes B \rightarrow C . \gamma$ can be interpreted as a triple tensor $\gamma \in A^{*} \otimes B^{*} \otimes C$ or after choosing bases as an $(a \times b)$-matrix of linear forms on $\mathbb{P}(C)$. Here we adhere to the Grothendieck convention of interpreting elements of $\mathbb{P}(C)$ as linear forms on C or equivalently the elements of C as linear forms on $\mathbb{P}(C)$.

Definition 1.1. A nonzero linear map $\mathbb{C} \rightarrow A$ is called a generalized row index of γ since it induces a map $\mathbb{C} \otimes B \rightarrow C$ which can be interpreted, up to a constant factor, as a $1 \times b$ row vector of linear-forms.

If $\mathbb{C} \rightarrow A$ is such a generalized row index, the image of \mathbb{C} in A under this map is a line. We will call these images generalized rows. The generalized rows form a projective space $\mathbb{P}\left(A^{*}\right)$ which we call the row space of γ. Similarly $\mathbb{P}\left(B^{*}\right)$ is the column space of γ.

On the row space $\mathbb{P}\left(A^{*}\right)$ the linear map γ induces a map of vector bundles

$$
\gamma_{A}: \mathcal{O}_{\mathbb{P}\left(A^{*}\right)}(-1) \otimes B \rightarrow C
$$

by composing γ with the first map of the twisted Euler sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}\left(A^{*}\right)}(-1) \otimes B \rightarrow A \otimes B \rightarrow \mathbb{T}_{\mathbb{P}\left(A^{*}\right)}(-1) \otimes B \rightarrow 0
$$

on $\mathbb{P}\left(A^{*}\right)$. Similarly we have

$$
\gamma_{B}: A \otimes \mathcal{O}_{\mathbb{P}\left(B^{*}\right)}(-1) \rightarrow C
$$

on the column space $\mathbb{P}\left(B^{*}\right)$. From now on we will restrict our discussion to the row space $\mathbb{P}\left(A^{*}\right)$, leaving the analogous constructions for the column space $\mathbb{P}\left(B^{*}\right)$ to the reader.

Given a generalized row $\alpha \in \mathbb{P}\left(A^{*}\right)$ the restriction of γ_{A} to α

$$
\gamma_{\alpha}: B \rightarrow C
$$

is a map of vector spaces.
Definition 1.2. The rank of a generalized row α is defined as $\operatorname{rank} \alpha:=\operatorname{rank} \gamma_{\alpha}$.
Example 1.3. Consider vector spaces A, B and C of dimension 2, 3 and 4 with basis a_{i}, b_{i} and c_{i}. The linear map $\gamma: A \otimes B \rightarrow C$ with

$$
\begin{array}{lll}
\gamma\left(a_{1} \otimes b_{1}\right)=c_{1}, & \gamma\left(a_{1} \otimes b_{2}\right)=c_{2}, & \gamma\left(a_{1} \otimes b_{3}\right)=c_{3}, \\
\gamma\left(a_{2} \otimes b_{1}\right)=c_{2}, & \gamma\left(a_{2} \otimes b_{2}\right)=c_{3}, & \gamma\left(a_{2} \otimes b_{3}\right)=c_{4},
\end{array}
$$

can be represented by the matrix

$$
\left(\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
c_{2} & c_{3} & c_{4}
\end{array}\right)
$$

In this basis we see two rows of rank 3. Generalized rows are linear combinations of those two. The map $\gamma_{A}: \mathcal{O}_{\mathbb{P}\left(A^{*}\right)}(-1) \otimes B \rightarrow C$ can be represented by the matrix

$$
\left(\begin{array}{cccc}
a_{1} & a_{2} & 0 & 0 \\
0 & a_{1} & a_{2} & 0 \\
0 & 0 & a_{1} & a_{2}
\end{array}\right) .
$$

Since this matrix has full rank everywhere on the row-space $\mathbb{P}\left(A^{*}\right)$ we see that all generalized rows of γ have the same rank 3.

Definition 1.4. A linear map $\gamma: A \otimes B \rightarrow C$ is called 1-generic, if all generalized rows have rank b and all generalized columns have rank a.

Example 1.5. The (2×3)-matrix considered above is 1 -generic.
In this paper we will use two properties of 1-generic linear maps. The first one concerns the following:

Definition 1.6. Let $\gamma: A \otimes B \rightarrow C$ be a linear map and

$$
\gamma_{C}: A \otimes \mathcal{O}_{\mathbb{P}(C)}(-1) \rightarrow B^{*}
$$

the third induced morphism of vector bundles. We call the locus $X\left(\gamma_{C}\right)$ where γ_{C} does not have rank b the determinantal variety associated to γ. The scheme structure of $X\left(\gamma_{C}\right)$ is given by the image $I_{X\left(\gamma_{C}\right)}$ of the natural map

$$
\bigwedge^{b} A \otimes \bigwedge^{b} B \rightarrow \mathcal{O}_{\mathbb{P}(C)}(b)
$$

induced by γ_{C}. If the codimension of $X\left(\gamma_{C}\right)$ in $\mathbb{P}(C)$ is $a-b+1$ we say that $X\left(\gamma_{C}\right)$ is of expected codimension.

Proposition 1.7 (Eisenbud). Let $\gamma: A \otimes B \rightarrow C$ be a 1-generic linear map, then $X\left(\gamma_{C}\right) \subset$ $\mathbb{P}(C)$ is of expected codimension.

Proof. [2, Corollary 3.3].
Green has observed, that the exterior minors of a 1-generic linear map also behave nicely:

Definition 1.8. Consider the natural map

obtained by taking the nth exterior power of γ. Then the elements in the image of e_{n} are called degree n exterior minors of γ.

Proposition 1.9 (Green). If γ is 1-generic, then e_{a} is injective.
Proof. [6, Proposition 1.2].

2. Syzygies and syzygy varieties

In this section we recall some facts about the syzygies of determinantal varieties.
Theorem 2.1 (Eagon-Northcott). Let $\gamma: A \otimes B \rightarrow C$ be a linear map and $X\left(\gamma_{C}\right) \subset \mathbb{P}(C)$ be the associated determinantal variety. If $X\left(\gamma_{C}\right) \subset \mathbb{P}(C)$ is of expected codimension then there exists a minimal free resolution $I_{X\left(\gamma_{C}\right)} \leftarrow \mathcal{E}_{\bullet}$ with terms $\mathcal{E}_{i}:=E_{i} \otimes \mathcal{O}(-i-b)$, where

$$
E_{i}:=\bigwedge^{b+i} A \otimes \bigwedge^{b} B \otimes S_{i} B
$$

Proof. See for example [3, Theorem A2.10].
Definition 2.2. In the situation of Theorem 2.1 we call E_{i} the space of ith syzygies and E_{a-b} the space of last syzygies.

Lemma 2.3. In the situation of Theorem 2.1 we have

$$
E_{i}=H^{0}\left(\Omega_{\mathbb{P}(C)}^{i} \otimes I_{X\left(\gamma_{C}\right)}(i+b)\right) \subset \bigwedge^{i} C \otimes H^{0}\left(I_{X\left(\gamma_{C}\right)}(b)\right)
$$

In particular an ith syzygy of $X\left(\gamma_{C}\right)$ can be interpreted as a twisted i-form that vanishes on $X\left(\gamma_{C}\right)$.

Proof. By Koszul cohomology [5] we have

$$
E_{i}=\operatorname{ker}\left(\bigwedge^{i} C \otimes H^{0}\left(I_{X\left(\gamma_{C}\right)}(b)\right) \rightarrow \bigwedge^{i-1} C \otimes H^{0}\left(I_{X\left(\gamma_{C}\right)}(b+1)\right)\right)
$$

since $H^{0}\left(I_{X\left(\gamma_{C}\right)}(b-1)\right)=0$. This kernel can easily be identified with

$$
H^{0}\left(\Omega_{\mathbb{P}(C)}^{i} \otimes I_{X\left(\gamma_{C}\right)}(i+b)\right)
$$

by considering exterior powers of the Euler sequence [1, Section 4].
Definition 2.4 (Ehbauer). Let $s \in E_{i}$ be an i th syzygy of $X\left(\gamma_{C}\right)$. Then the syzygy scheme $\operatorname{Syz}(s)$ of s is the vanishing locus of the corresponding twisted i-form. The scheme structure of $\operatorname{Syz}(s)$ is given by the syzygy ideal

$$
I(s):=s \wedge \bigwedge^{i} C^{*} \subset H^{0}\left(I_{X(\gamma C)}(b)\right)
$$

Remark 2.5. Syzygy ideals are not necessarily reduced or even saturated. Consider for example the variety X of 4 general points in \mathbb{P}^{3}. The minimal free resolution of X is given by an Eagon-Northcott-Complex. Let $s \in E_{1}$ be a general first syzygy. As can be checked
with a computer algebra program $I(s)$ is generated by 4 quadrics and $\operatorname{Syz}(s)$ is the union of X with one additional point. The saturation of $I(s)$ turns out to be generated by 5 quadrics.

3. Main results

Lets now consider the last syzygies of $X\left(\gamma_{C}\right)$. The representation of a last syzygy of $X\left(\gamma_{C}\right)$ as an element of $\bigwedge^{a-b} C \otimes H^{0}\left(I_{X\left(\gamma_{C}\right)}(b)\right)$ can be given explicitly:

Lemma 3.1 (Eisenbud, Popescu). The inclusion

$$
E_{a-b} \hookrightarrow \bigwedge^{a-b} C \otimes H^{0}\left(I_{X\left(\gamma_{C}\right)}(b)\right)
$$

is given by the composition

Proof. [4, Theorem 2.1 and proof of Theorem 3.1].
With this we can prove our first theorem:
Theorem 3.2. Let $\gamma: A \otimes B \rightarrow C$ be a 1-generic linear map. Then

$$
\operatorname{supp} \operatorname{Syz}(s)=\operatorname{supp} X\left(\gamma_{C}\right)
$$

holds for all last syzygies $s \in E_{a-b}$ of the determinantal variety $X\left(\gamma_{C}\right) \subset \mathbb{P}(C)$ associated to γ.

Proof. Let $x \in \mathbb{P}(C)$ a point not contained in $X\left(\gamma_{C}\right)$ and $s \in E_{a-b}$ any last syzygy. We have to prove that s does not vanish in x.

Since $x \notin X\left(\gamma_{C}\right)$ the map γ_{C} has full rank in x. Therefore we can choose bases of A, B and C such that γ_{C} can be represented by a matrix of linear forms

$$
M=\left(\begin{array}{ccc}
c_{11} & \ldots & c_{1 b} \\
\vdots & & \vdots \\
c_{a 1} & \ldots & c_{a b}
\end{array}\right)
$$

such that

$$
M(x)=\left(\begin{array}{ccc}
1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 1 \\
\hline 0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & 0
\end{array}\right)
$$

Now by the Lemma 3.1, the representation of a last syzygy s in this basis is

$$
s=\sum_{|\beta|=b} f_{\beta} \otimes g_{\bar{\beta}}
$$

where f_{β} is the $(b \times b)$-minor involving the rows $\beta_{1}, \ldots, \beta_{b}$ of M and $g_{\bar{\beta}}$ is a degree $a-b$ exterior minor of the remaining $(a-b) \times b$ matrix. At x all minors of M except $f_{1,2, \ldots, b}(x)=1$ vanish, and therefore $s(x)=g_{b+1, \ldots, a}$. Since $g_{b+1, \ldots, a}$ is a degree $a-b$ exterior minor of a 1 -generic $(a-b) \times b$ matrix it is nonzero by Proposition 1.9.

We can also prove a partial converse of this theorem, strengthening the theorem of Eisenbud and Popescu in the case where $a>2 b-2$.

Theorem 3.3. Let $\gamma: A \otimes B \rightarrow C$ be a linear map, such that the associated determinantal variety $X\left(\gamma_{C}\right)$ has expected codimension $a-b+1$ and also satisfies $a>2 b-2$. If for every last syzygy $s \in E_{a-b}$ of $X\left(\gamma_{C}\right)$

$$
\operatorname{supp} \operatorname{Syz}(s)=\operatorname{supp} X\left(\gamma_{C}\right)
$$

holds, then γ is 1-generic.

Proof. Suppose γ is not 1 -generic. Then there exists a generalized row α of rank at most $b-1$. We can therefore choose bases of A, B and C such that M has the form

$$
M=\left(\begin{array}{cccc}
0 & c_{12} & \ldots & c_{1 b} \\
c_{21} & c_{22} & \ldots & c_{2 b} \\
\vdots & \vdots & & \vdots \\
c_{a 1} & c_{a 2} & \ldots & c_{a b}
\end{array}\right)
$$

Since $\operatorname{codim} X\left(\gamma_{C}\right)=a-b+1>b-1$ by the assumptions of the theorem, the vanishing locus of the first row $L=\left\{x \in \mathbb{P}(C) \mid c_{12}(x)=\cdots=c_{1 b}(x)=0\right\}$ can not lie completely inside $X\left(\gamma_{C}\right)$. We can therefore find a point $x \in L$ outside of $X\left(\gamma_{C}\right)$. There $M(x)$ has full
rank and after a coordinate change in A which does not involve the first row, we can assume that $M(x)$ has the form

$$
M(x)=\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & 0 \\
1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 1
\end{array}\right)
$$

Now consider the syzygy $s=\left(b_{1}\right)^{a-b}$ where b_{1} is the basis element of B corresponding to the first column. When we evaluate s at x we obtain $s(x)=f_{a-b+1, \ldots, a}(x) \otimes g_{1, \ldots, a-b, s}=$ $g_{1, \ldots, a-b, s}$ since $f_{a-b+1, \ldots, a}(x)=1$ is the only nonzero maximal minor of $M(x)$.

The exterior minor $g_{1, \ldots, a-b, s}$ of the upper $(a-b) \times b$ submatrix corresponding to $s=\left(b_{1}\right)^{a-b}$ is the wedge product of the first $a-b$ linear forms in the first column of M. This wedge product vanishes since the first of these linear forms is identically zero. So s is a syzygy whose syzygy variety has support outside of $X\left(\gamma_{C}\right)$.

Our methods also allow us to describe the smooth locus of all last syzygy varieties:

Theorem 3.4. Let $\gamma: A \otimes B \rightarrow C$ be a 1-generic linear map. Then

$$
\operatorname{reg} \operatorname{Syz}(s)=\operatorname{reg} X\left(\gamma_{C}\right)
$$

for all last syzygies $s \in E_{a-b}$ of the determinantal variety $X\left(\gamma_{C}\right) \subset \mathbb{P}(C)$ associated to γ.

Proof. Let $s \in E_{a-b}$ be any last syzygy of $X\left(\gamma_{C}\right)$. Since $I(s) \subset I_{X\left(\gamma_{C}\right)}$ by definition and $\operatorname{supp} X\left(\gamma_{C}\right)=\operatorname{suppSyz}(s)$ by Theorem 3.2, we know that the smooth locus of $\operatorname{Syz}(s)=V(I(s))$ is contained in the smooth locus of $X\left(\gamma_{C}\right)$.

For the converse, let $x \in \mathbb{P}(C)$ be a point contained in the smooth locus of $X\left(\gamma_{C}\right)$. We have to prove, that the tangent space of $\operatorname{Syz}(s)$ in x is the same as the tangent space of $X\left(\gamma_{C}\right)$ in x.

Since x is in the smooth locus of $X\left(\gamma_{C}\right)$ the morphism γ_{C} has rank $b-1$ in x. Therefore we can choose bases of A, B and C such that γ_{C} can be represented by a matrix of linear forms

$$
M=\left(\begin{array}{ccc}
c_{11} & \ldots & c_{1 b} \\
\vdots & & \vdots \\
c_{a 1} & \ldots & c_{a b}
\end{array}\right)
$$

such that

$$
M(x)=\left(\begin{array}{cccc}
1 & \ldots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \ldots & 1 & 0 \\
\hline 0 & \ldots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \ldots & 0 & 0
\end{array}\right)
$$

Now suppose $x+\varepsilon y$ is a tangent vector of $X\left(\gamma_{C}\right)$ at x. Then all maximal minors of $M(x+\varepsilon y)$ have to vanish, in particular those that contain the first $b-1$ rows and the i th row $(i \geqslant b)$:

$$
0=\operatorname{det}\left(\begin{array}{cccc}
1+\varepsilon c_{11}(y) & \ldots & \varepsilon c_{1, b-1}(y) & \varepsilon c_{1 b}(y) \\
\vdots & \ddots & \vdots & \vdots \\
\varepsilon c_{b-1,1}(y) & \ldots & 1+\varepsilon c_{b-1, b-1}(y) & \varepsilon c_{b-1, b}(y) \\
\varepsilon c_{i, 1}(y) & \ldots & \varepsilon c_{i, 1 b-1}(y) & \varepsilon c_{i b}(y)
\end{array}\right)=\varepsilon c_{i b}(y)
$$

All other minors vanish since every term of the corresponding determinant involves at least ε^{2}. So $x+\varepsilon y$ is tangent to $X\left(\gamma_{C}\right)$ if and only if

$$
c_{b b}(y)=\cdots=c_{a b}(y)=0
$$

Now assume that $x+\varepsilon y$ is not a tangent vector of $X\left(\gamma_{C}\right)$. Then we can assume after another base change of C, that $M(x+\varepsilon y)$ has the form

$$
M(x+\varepsilon y)=\left(\begin{array}{cccc}
1+\varepsilon c_{11}(y) & \ldots & \varepsilon c_{1, b-1}(y) & 0 \\
\vdots & \ddots & \vdots & \vdots \\
\varepsilon c_{b-1,1}(y) & \ldots & 1+\varepsilon c_{b-1, b-1}(y) & 0 \\
\varepsilon c_{b, 1}(y) & \ldots & \varepsilon c_{b, b-1}(y) & \varepsilon \\
\varepsilon c_{b+1,1}(y) & \ldots & \varepsilon c_{b+1, b-1}(y) & 0 \\
\vdots & \ddots & \vdots & \vdots \\
\varepsilon c_{a 1}(y) & \cdots & \varepsilon c_{a, b-1}(y) & 0
\end{array}\right)
$$

As before the representation of a last syzygy s in this basis is

$$
s=\sum_{|\beta|=b} f_{\beta} \otimes g_{\bar{\beta}}
$$

where f_{β} is the $(b \times b)$-minor involving the rows $\beta_{1}, \ldots, \beta_{b}$ of M and $g_{\bar{\beta}}$ is a degree $a-b$ exterior minor of the remaining $a-b \times b$ matrix. At $x+\varepsilon y$ all minors of M except $f_{1,2, \ldots, b}(x)=\varepsilon$ vanish, and $s(x)=\varepsilon g_{b+1, \ldots, a}$. Since $g_{b+1, \ldots, a}$ is again a degree $a-b$ exterior minor of a 1 -generic $(a-b) \times b$ matrix it is nonzero by Proposition 1.9. Therefore $x+\varepsilon y$ is not a tangent vector of $\operatorname{Syz}(s)$. This shows that the tangent space of
$\operatorname{Syz}(s)$ at x is contained in the tangent space of $X\left(\gamma_{C}\right)$ at x. Since on the other hand $\operatorname{Syz}(s)$ contains $X\left(\gamma_{C}\right)$ as scheme both tangent spaces have to coincide.

References

[1] S. Ehbauer, Syzygies of points in projective space and applications, in: F. Orecchia (Ed.), Zero-Dimensional Schemes, Proceedings of the International Conference Held in Ravello, Italy, June 8-13, 1992, de Gruyter, Berlin, 1994, pp. 145-170.
[2] D. Eisenbud, Linear sections of determinantal varieties, Amer. J. Math. 110 (3) (1988) 541-575.
[3] D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, in: Grad. Texts in Math., vol. 150, Springer-Verlag, Berlin, 1995.
[4] D. Eisenbud, S. Popescu, Syzygy ideals for determinantal ideals and the syzygetic Castelnuovo lemma, in: Commutative Algebra, Algebraic Geometry, and Computational Methods (Hanoi, 1996), Springer-Verlag, Singapore, 1999, pp. 247-258.
[5] M.L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984) 125-171.
[6] M.L. Green, The Eisenbud-Koh-Stillman conjecture, Invent. Math. 136 (1999) 411-418.

[^0]: E-mail address: bothmer@math.uni-hannover.de.
 URL: http://www.-ifm.math.uni-hannover.de/~bothmer.
 ${ }^{1}$ Supported by Marie Curie Fellowship HPMT-CT-2001-001238.
 0021-8693/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2004.02.032

