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Abstract

We consider determinantal varietieg(y) of expected codimension defined by the maximal
minors of a matrixM (y) of linear forms representing a linear map Eisenbud and Popescu have
conjectured that 1-generic linear mapshave the property that the syzygy idedlg) of all last
syzygiess of X(y) coincide with Iy ,). We prove a geometric version of this conjecture: for
1-generic linear mapg the syzygy varieties Syz) = V(I (s)) of all last syzygies have the same
support asx (y).

0 2004 Elsevier Inc. All rights reserved.

Introduction

In this note we study syzygies of determinantal varieties which are cut out by the
maximal minors of a matrix of linear form¥ that represents alinearmagpA® B — C.
Eisenbud and Popescu have studied these syzygies in [4]. There they define the syzygy
ideal I (s) of a syzygys and prove the following:

Theorem (Eisenbud, Popescul.et y:A ® B — C be a linear map such that the
associated determinantal variety(yc) C P(C) is of expected codimension. Afs) =
Ix () holds for all last syzygies e E,_,, of X (y¢), theny is 1-generic.

Conversely they conjecture:
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Conjecture (Eisenbud, PopesclW)ety : A ® B — C be al-generic linear map. Then the
equality 7 (s) = Ix () holds for all last syzygies € E,_; of the determinantal variety
X (yc) C P(C) associated to.

They can prove this conjecture in the case of @irx 2. Here we consider a more
geometric invariant, namely the syzygy variety Byaf a syzygys which is the vanishing
locus of the syzygy ideal(s). With this we obtain a geometric version of the Eisenbud—
Popescu Conjecture:

Theorem 3.2. Lety: A ® B — C be al-generic linear map. Then

Supp SyZs) = suppX (yc)

holds for all last syzygiese E,_; of the determinantal variet¥ (yc) C P(C) associated
toy.

Also we obtain a partial strengthening of their theorem by

Theorem 3.3. Lety : A ® B — C be alinear map, such that the associated determinantal
variety X (y¢) has expected codimensian- b + 1 and also satisfiea > 2b — 2. If for
every last syzygye E,_p of X (y¢)

supp Syzs) = suppX (yc)
holds, thery is 1-generic.

Our methods also show that in the situation of our Theorem 3.2 botty Sgad X (y¢)
have the same smooth locus. To obtain the conjecture of Eisenbud and Popescu one would
have to show, that Syz) has no embedded components in the singular locig pf) and
that the syzygy ideal (s) is always saturated.

The main ingredient of our proof is an observation of Green [6] about exterior minors
of 1-generic maps. This allows us to evaluate syzygies explicitly at certain points.

The paper has three sections. In the first the definition and properties of 1-generic maps
are reviewed. The second section we collect what we need to know about syzygies and
syzygy varieties. The last section contains the proofs of our theorems.

1. 1-genericlinear maps

Let A, B andC be finite dimensional veot spaces of dimensiors » andc together
with a linear map/ : A ® B — C. y can be interpreted as a triple tensoe A* ® B* ® C
or after choosing bases as &nx b)-matrix of linear forms oriP(C). Here we adhere
to the Grothendieck convention of interpreting element®@f) as linear forms orC or
equivalently the elements @f as linear forms ofP(C).
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Definition 1.1. A nonzero linear maf — A is called ageneralized row indegf y since
it induces a mai ® B — C which can be interpreted, up to a constant factor, axa1
row vector of linear-forms.

If C — A is such a generalized row index, the imag&dh A under this map is a line.
We will call these imagegeneralized rowsThe generalized rows form a projective space
P(A*) which we call theow spaceof y. Similarly P(B*) is thecolumn spacef y .

On the row spac®(A*) the linear map induces a map of vector bundles
v4:0pan(-1)® B— C
by composing’ with the first map of the twisted Euler sequence
0— Opasy (D) ®B - A® B — Tpas(-1)®B—0
onP(A*). Similarly we have
vB:A® Opp+(=1) — C
on the column spad®(B*). From now on we will restrict our discussion to the row space
P(A*), leaving the analogous constructions for the column sfpasé) to the reader.
Given a generalized row € P(A*) the restriction ofy4 to «
Yo.:B— C
is a map of vector spaces.

Definition 1.2. Therank of a generalized row is defined as rank := ranky,,.

Example 1.3. Consider vector spaces, B andC of dimension 2, 3 and 4 with basis,
b; andc;. The linear mapy : A ® B — C with

y(a1®b1) =ca, y (a1 ® b2) =c2, y(a1 ® b3) =c3,
y(a2 ® b1) = c2, v (a2 ® b2) =cs, y (a2 ® b3) = cy,

can be represented by the matrix

c1 Cc2 C3

c2 3 c4)’
In this basis we see two rows of rank 3. Getiegead rows are linear combinations of those
two. The mapy : Opa+(—1) ® B — C can be represented by the matrix

ai ao 0 O
( 0O a1 a2 O ) .
0 O a1 a2
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Since this matrix has full rank everywhere on the row-sg&cE*) we see that all genera-
lized rows ofy have the same rank 3.

Definition 1.4. A linear mapy : A ® B — C is called lgeneric if all generalized rows
have rankb and all generalized columns have rank

Example 1.5. The (2 x 3)-matrix considered above is 1-generic.

In this paper we will use two properties of 1-generic linear maps. The first one concerns
the following:

Definition 1.6. Lety : A ® B — C be alinear map and
yc:A® Opy(—1) — B*
the third induced morphism of vector bundles. We call the lo€ug-) wherey does not

have rankb the determinantal variety associated ta The scheme structure &f(y¢) is
given by the imagdx,) of the natural map

b b

/\A ® /\B — Op(c)(b)

induced byyc. If the codimension oX (y¢) in P(C) isa — b + 1 we say thai (y¢) is of
expected codimension

Proposition 1.7 (Eisenbud)Lety : A ® B — C be al-generic linear map, theX (y¢) C
P(C) is of expected codimension.

Proof. [2, Corollary 3.3]. O

Green has observed, that the exterior minors of a 1-generic linear map also behave
nicely:

Definition 1.8. Consider the natural map

NA®SB > Na®B) —= \C
\—/

€n

obtained by taking theth exterior power of,. Then the elements in the image«fare
called degree exterior minors ofy.

Proposition 1.9 (Green)lIf y is 1-generic, therg, is injective.

Proof. [6, Proposition 1.2]. O
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2. Syzygiesand syzygy varieties
In this section we recall some facts abouwg #yzygies of determinantal varieties.
Theorem 2.1 (Eagon—Northcottlety : A ® B — C be alinear map and (y¢) C P(C)

be the associated determinantal varietyXifyc) C P(C) is of expected codimension then
there exists a minimal free resolutid,.y < &, with terms; := E; ® O(—i —b), where

b+i b

Ei:=/\A® /\B®SB.
Proof. See for example [3, Theorem A2.10]0

Definition 2.2. In the situation of Theorem 2.1 we cdll; the space ofith syzygiesand
E,_» thespace of last syzygies

Lemma 2.3. In the situation of Theorer®.1we have

i
Ei = H(Rbc) ® Ixye) (i + b)) € J\ € ® H(Ix () (b)).

In particular anith syzygy ofX (y¢) can be interpreted as a twistéeform that vanishes
on X (yc).

Proof. By Koszul cohomology [5] we have

i i—1
Ei= ker(/\ C® HO(Ix(ye) (b)) > /\ C® H(Ix(ye) (b + 1)))

sinceHO(IX(yC)(b — 1)) = 0. This kernel can easily be identified with
HO(Rp(c) ® Ixye) (i +0))
by considering exterior powers of the Euler sequence [1, Section®].
Definition 2.4 (Ehbaue). Let s € E; be anith syzygy ofX (y¢). Then thesyzygy scheme

Syz(s) of s is the vanishing locus of the corresponding twistefbrm. The scheme
structure of Sygs) is given by the syzygy ideal

I(s):=5 A /\C* C H(Ix e ().

Remark 2.5. Syzygy ideals are not necessarily reduced or even saturated. Consider for
example the variety of 4 general points ifP3. The minimal free resolution of is given
by an Eagon—Northcott-Complex. Let E1 be a general first syzygy. As can be checked
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with a computer algebra prograhts) is generated by 4 quadrics and &yas the union of
X with one additional point. The saturation bfs) turns out to be generated by 5 quadrics.
3. Main results

Lets now consider the last syzygies ¥fy¢). The representation of a last syzygy of
X (yc) as an element O/t\“’b C® HO(IX(,,C)(b)) can be given explicitly:

Lemma 3.1 (Eisenbud, Popesculhe inclusion

a—b
Eqimp = \ € ® H(Ix (e (D))

is given by the composition

Eqy =———= N"AQ N B® S,_1,B

NASN' BONT"A® SusB

l id®e,—p

ANARN B NP C =———= HUx,0() RN C.
Proof. [4, Theorem 2.1 and proof of Theorem 3.1]0
With this we can prove our first theorem:
Theorem 3.2. Lety : A ® B — C be al-generic linear map. Then

Supp SyZs) = suppX (yc)

holds for all last syzygiese E,_; of the determinantal variet¥ (yc) C P(C) associated
toy.

Proof. Let x € P(C) a point not contained iX (y¢c) ands € E,_, any last syzygy. We
have to prove that does not vanish in.

Sincex ¢ X (y¢) the mapyc has full rank inx. Therefore we can choose basesioB
andC such thaty/c can be represented by a matrix of linear forms

c11 -.- C1p
M=

Caql --- Cab
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such that
1 0
R
M(x) =
W=1""0
0 ... 0

Now by the Lemma 3.1, the representation of a last syzayigythis basis is

5= fr®g
|B1=b

where fg is the (b x b)-minor involving the rowsgs, ..., 8, of M and 85 is a degree
a — b exterior minor of the remainin@z — b) x b matrix. At x all minors of M except
Sf1.2....p(x) = 1 vanish, and thereforgx) = gpy1...., « IS a degreer — b
exterior minor of a 1-generi@: — b) x b matrix it is nonzero by Proposition 1.9.0

.....

We can also prove a partial converse of this theorem, strengthening the theorem of
Eisenbud and Popescu in the case whete2b — 2.

Theorem 3.3. Lety : A ® B — C be alinear map, such that the associated determinantal
variety X (y¢) has expected codimensian- b + 1 and also satisfiea > 2b — 2. If for
every last syzygye E,_p of X (yc¢)

supp Syzs) = suppX (yc)
holds, thery is 1-generic.

Proof. Suppose is not 1-generic. Then there exists a generalizedaayf rank at most
b — 1. We can therefore choose basesio3 andC such thatM has the form

0 c12 ... cw
c21 €22 ... C2p

M = . . .
Cal Ca2 ce. Cab

Since codinX (y¢) =a — b+ 1> b — 1 by the assumptions of the theorem, the vanishing
locus of the first rowL = {x € P(C) | c12(x) = --- = c15(x) = 0} can not lie completely
inside X (yc). We can therefore find a pointe L outside ofX (y¢). ThereM (x) has full
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rank and after a coordinate changelinvhich does not involve the first row, we can assume
that M (x) has the form

0 ... 0
0

MO=11 o
0 ... 1

Now consider the syzygy= (b1)*~? whereb; is the basis element & corresponding to
the first column. When we evaluai@tx we obtains(x) = fo—p+1,...a(X) ® 81.....a—b.s =
81,...a—b.s SINCEfy_py1...a(x) =1is the only nonzero maximal minor & (x).

The exterior minorgs, ... 4—p s Of the upper(a — b) x b submatrix corresponding to
s = (b1)*? is the wedge product of the first— b linear forms in the first column af/.
This wedge product vanishes since the first of these linear forms is identically zerts So
a syzygy whose syzygy variety has support outsid¥ @fc). O

Our methods also allow us to describe the smooth locus of all last syzygy varieties:

Theorem 3.4. Lety : A ® B — C be al-generic linear map. Then
reg Sys) = regX (yc)

for all last syzygies € E,_, of the determinantal variet¥ (y¢) C P(C) associated to .

Proof. Let s € E,_;, be any last syzygy oX (yc). SinceI(s) C Ix(,.) by definition
and supX (y¢) = suppSy#s) by Theorem 3.2, we know that the smooth locus of
Syz(s) = V(I (s)) is contained in the smooth locus &f(y¢).

For the converse, let € P(C) be a point contained in the smooth locusX¥fyc). We
have to prove, that the tangent space of (Syin x is the same as the tangent space of
X (yc) inx.

Sincex is in the smooth locus of (y¢) the morphismyc has rank — 1 in x. Therefore
we can choose bases af B andC such thatyc can be represented by a matrix of linear
forms

c11 -.. C1p

Caql --- Cab
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such that
1 0 0
0 10
Mx =173 0 0
0O ... 00

Now supposer + ¢y is a tangent vector oK (y¢) at x. Then all maximal minors of
M (x + ey) have to vanish, in particular those that contain the first 1 rows and the
ithrow (i > b):

l+ecna(y) ... ec1,p-1(y) ec1p(y)
0=det : hE : : =ecip(y).
ecp—11(y) ... l+ecp1p-1(y) €cp-1,5(y)
eci1(y) e eci1p-1(y) ecip(y)

All other minors vanish since every term of the corresponding determinant involves at
leaste2. Sox + ey is tangent taX (y¢) if and only if

cpp(y) ="+ =cap(y) =0.

Now assume that + ¢y is not a tangent vector of (y¢). Then we can assume after
another base change 6f that M (x + ey) has the form

1+ecu(y) ... ec1,p-1(y) 0

ecp-1,1(y) ... 14ecp_1p-2(y) O

Mx+ey)=| ecpa(y) ... ecpb—-1(y) 3
ecpr11(y) ... ecpy1p-1(y) O

gca1(y) ... eca,p—1(y) 0

As before the representation of a last syzydwg this basis is

s=2_ fs®gp
|B1=b

where fg is the (b x b)-minor involving the rowsgs, ..., 8, of M and 85 is a degree

a — b exterior minor of the remaining — b x b matrix. At x 4+ ¢y all minors of M
except f12,.. »(x) = ¢ vanish, ands(x) = egp+1,...4. SiNCegpy1...4 IS again a degree
a — b exterior minor of a 1-generia — b) x b matrix it is nonzero by Proposition 1.9.
Thereforex + ¢y is not a tangent vector of Sg9). This shows that the tangent space of
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Syz(s) atx is contained in the tangent spaceXfy¢) atx. Since on the other hand Syz
containsX (y¢) as scheme both tangent spaces have to coincide.
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