New Insights Into Old Problems: Infective Endocarditis and Redo Valvular Surgery

Tuesday, March 09, 2004, Noon-2:00 p.m.
Morial Convention Center, Hall G
Presentation Hour: 1:00 p.m.-2:00 p.m.

1143 The Risk of Prosthetic Valve Endocarditis in Patients With Staphylococcus Aureus Bacteremia
Fadi M. El-Ahdab, Andrew Wang, Christopher Cabel, Barth Reilly, Ralph Corey, Daniel Sexton, Vance Fowler, Duke University Medical Center, Durham, NC

Background: A major complication of prosthetic valves is prosthetic valve endocarditis (PVE). Staphylococcus aureus is a common cause of bacteremia and of infective endocarditis (IE) of native heart valves. However, there are limited data about the risk of IE in patients with a prosthetic valve and Staphylococcus aureus bacteremia (SAB). The aim of this study was to define the incidence of PVE in patients with SAB.

Methods: In order to define the risk of PVE, we prospectively evaluated all patients with a prosthetic valve or ring (PV) who presented to our hospital and developed SAB. Duke criteria for IE were used for the diagnosis of PVE. All patients were followed up for 12 weeks after diagnosis of SAB.

Results: Fifty-two patients met the criteria over a 94-month study period. The overall rate of definite PVE was 26/52 (50%). The risk of PVE was similar in patients with late SAB (more than 12 months after PV implantation) and those with early SAB (less than 12 months after PV implantation). The risk was also comparable among patients with a mitral prosthetic and those with an aortic prosthesis (55% vs. 46%). The presumed source of SAB was a surgical wound in 21 patients, an intravascular device (IV catheter, hemodialysis graft) in 9 patients, IV drug use in 4 patients, other tissue source in 3 patients, and unidentifiable in 15 patients. MRSA was present in 36% of the patients. The median age of PVE patients was 59.5 years (IQR 47.0-73.0); 69.2% were male. The interval from valve surgery to onset of PVE was <60 days in 21 patients and >60 days in 31 patients (median = 104.5 days, IQR 239-2399 days). The most common organisms were Staphylococcus aureus (25.8%), coagulase negative staphylococci (25.8%), viridans group streptococci (11.7%). PVE was demonstrated by echocardiography in 146 patients (92.4%): vegetations (70.6%), abscess (32%), dehiscence (18.3%), and viridans group streptococci (11.7%).

Conclusion: Among patients who develop SAB in the presence of a PV, 50% will be diagnosed with PVE regardless of the time from valve implantation to the onset of SAB. The diagnosis of PVE carries a high mortality rate. All patients with SAB in the presence of a prosthetic valve should be aggressively screened for PVE.

Prosthetic Valve Endocarditis: Report of 214 Cases From the Intraoperative Echocardiography Prospective Cohort Study
Christopher H. Cabell, Andrew Wang, Bruno Hoen, Jose M. Miro, Diane Iarussi, Christine Selton-Suty, Yvette Bernard, Eric Begue, Daniel Sexton, Andrew Wang, David E. Vaughan, Christopher Cabel, Ralph Corey, Vance Fowler, Duke University Medical Center, Durham, NC

Background: Prosthetic valve endocarditis (PVE) is an emerging but incompletely understood complication of medical progress.

Aim of Study: To determine the current clinical characteristics and outcome of patients with PVE utilizing the International Collaboration on Endocarditis (ICE) Prospective Cohort Study (ICE-PCS).

Methods: From January 2000 through November 2002, 1024 cases of definite IE were prospectively enrolled by 34 centers representing 15 countries using a standard case report form. Of these, 214 (20.8%) had PVE.

Results: The median age of PVE patients was 59.5 years (IQR 47.0-73.0); 69.2% were male. The interval from valve surgery to onset of PVE was ≤60 days in 21 patients and >60 days in 69 patients (median = 447.5 days, IQR 104-2399 days). The most common organisms were Staphylococcus aureus (25.8%), coagulase negative staphylococci (18.3%), and viridans group streptococci (11.7%). PVE was demonstrated by echocardiography in 146 patients (92.4%): vegetations (70.6%), abscess (32%), dehiscence (15%), and fistula (1%). Surgery during the acute episode was common (62.3%) with valve regurgitation (54.5%) and abscess (42%) the most frequent indications. Embolic events (stroke 13.5%, other emboli 13.2%, heart failure 31.2%, intracardiac abscess (33.2%), and death (23.8%) were frequent complications of PVE.

Conclusion: In this large, multicenter, international cohort, S. aureus was the most common cause of PVE. Although over 50% of patients went to surgery, mortality remained high. Further work is needed to evaluate the emerging importance of S. aureus as a cause of PVE, to identify risk factors for death, and to define the impact of early surgery on survival.

Echocardiographic Features of Definite Infective Endocarditis: A French Collaborative Study on 561 Cases

Aim of the study: To describe echocardiographic (ECHO) features of definite infectious endocarditis (IE) in the Duke criteria era.

Methods: We reviewed the charts of 561 pts included in the French survey on IE (1999). The case report form included information on clinical and microbiological characteristics of IE. Specific categories included transthoracic (TTE) and transesophageal (TEE) description of valve lesions for each infected valve: vegetation (Vg), abscess (Ab), pathologic dehiscence (P), perforation (Pef), significant regurgitation (Reg).

Results: Among 561 pts (mean age: 59±17 yrs), Echo revealed a Vg in 487 pts (87%), an Ab in 92 (16%), a Reg in 476 (85%) and a PD in 20 (3%). Site of IE could not be identified precisely in 49 pts (9%). Among the 400 cases for whom TTE and TEE findings could be clearly separated, TEE proved to be more accurate in 238 (60%), yielding an additional identification of a Vg, an Ab, a Perf and a PD in 187 (47%), 55 (14%), 15 (4%) and 6 (1%) pts respectively.

Among the 264 pts (47%) treated surgically, information on macroscopic findings were available in 224. Comparison between Echo and macroscopic findings were in complete agreement in 126 pts (56%), but differed concerning the diagnosis of Vg in 52 pts (23%), Ab in 29 (13%), Perf in 41 (18%), and PD in 2.

When comparing responsible micro-organisms in 5 groups (1: staphylococci n=167, 2: streptococci n=270, 3: enterococci n=46, 4: others n=49, and 5: none identified n=29) and comparing Echo findings among them, there was a trend towards a lower frequency of Vg in enterococcal IE (1: 80%, 2: 87%, 3: 74%, 4: 88%, 5: 86%, p<0.09), a lower rate of Ab in streptococcal IE (1: 12%, 2: 17%, 3: 36%, 4: 40%, 5: 10%, p<0.07) and a significantly lower frequency of Reg in streptococcal IE (1: 78%, 2: 92%, 3: 87%, 4: 80%, 5: 69%, p<0.001). A Vg was found more often in pts with vascular phenomena (p<0.002) and embolic event (p<0.001). Pts with Ab (p<0.01) or PD (p<0.04) were more often operated on with surgery without.

Conclusion: TEE is of great importance for the diagnosis of IE. However, when compared to surgical findings, accuracy of TEE for description of valve lesions often remains suboptimal. Echocardiographic patterns may differ according to responsible micro-organisms.

Prognostic Implications of Vegetation Size at Hospital Admission in Infective Endocarditis
Maria Luaces, Mendez, Cristina Sarria, Jose Alberto San Roman, Cristina Fernandez, Javier Lopez, Cecilia Corros, Isidre Vilacosta, Hospital Clinico Universitari San Carlos, Madrid, Spain

BACKGROUND: The information obtained from echocardiography in infective endocarditis (IE) is employed with prognostic aims. We assessed the hypothesis that vegetation size in the first postesophageal study (TE) has prognostic implications on the clinical course of infective endocarditis. METHODS: We analyzed 265 consecutive episodes of infective endocarditis with vegetations documented on the first TEE. The relative risk obtained from the univariate analysis was adjusted by a logistic regression model including the following variables: age, acute or subacute course, underlying heart disease, microorganism, valve (native, mechanical, biological), position of the valve and embolisms before institution of correct antibiotic treatment. A cut-off value of vegetation size for risk increase was calculated according to quartile distribution of vegetation size. RESULTS: On the multivariate analysis, vegetation size resulted to be an independent factor for the following events: septic shock, persistent infection, renal failure and need for surgery. Clinically, risk was increased for vegetation size ≥ 20 mm (upper quartile, table). CONCLUSIONS: Vegetation size in the first TEE predicts the development of septic shock, signs of persistent infection, renal failure and, the need for surgery. The risk of these complications is particularly relevant when the vegetation size is ≥ 20mm.