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SUMMARY

Muscarinic receptor activation facilitates the induc-
tion of synaptic plasticity and enhances cognitive
function. However, the specific muscarinic receptor
subtype involved and the critical intracellular sig-
naling pathways engaged have remained controver-
sial. Here, we show that the recently discovered
highly selective allosteric M1 receptor agonist
77-LH-28-1 facilitates long-term potentiation (LTP)
induced by theta burst stimulation at Schaffer collat-
eral synapses in the hippocampus. Similarly, release
of acetylcholine by stimulation of cholinergic fibers
facilitates LTP via activation of M1 receptors.
N-methyl-D-aspartate receptor (NMDAR) opening
during theta burst stimulation was enhanced by M1

receptor activation, indicating this is the mechanism
for LTP facilitation. M1 receptors were found to en-
hance NMDAR activation by inhibiting SK channels
that otherwise act to hyperpolarize postsynaptic
spines and inhibit NMDAR opening. Thus, we de-
scribe a mechanism where M1 receptor activation
inhibits SK channels, allowing enhanced NMDAR
activity and leading to a facilitation of LTP induction
in the hippocampus.

INTRODUCTION

The cholinergic system in the brain plays a major role in learning

and memory through activation of muscarinic acetylcholine

receptors (mAChRs). Antagonists of mAChRs, such as scopol-

amine, impair the encoding of new memories in animal models

of learning and memory (De Rosa and Hasselmo, 2000; Warbur-

ton et al., 2003) and produce cognitive impairment in humans

(Atri et al., 2004). mAChR agonists and antagonists also modu-

late the induction of synaptic plasticity in the hippocampus,

a cellular correlate for learning and memory. Both the endoge-

nous release of acetylcholine in vivo (Leung et al., 2003; Ovse-

pian et al., 2004) and the exogenous application of mAChR
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agonists in vitro facilitate the induction of long-term potentiation

(LTP) (Boddeke et al., 1992; Shimoshige et al., 1997; Shinoe

et al., 2005). It is, therefore, tempting to infer that activation of

mAChRs by release of acetylcholine in the hippocampus facili-

tates the induction of synaptic plasticity leading to cognitive

enhancement.

Of the five mAChR subtypes potentially involved in cognitive

enhancement, the M1 subtype has received much attention

because of its ubiquitous expression in the cortex and hippo-

campus. Learning, working memory, and the induction of

synaptic plasticity are all impaired in M1 receptor knockout

mice (Anagnostaras et al., 2003; Shinoe et al., 2005; Wess,

2004). Furthermore, putative M1 receptor-specific agonists

improve cognitive function in animal models (Dean et al., 2003)

and facilitate LTP induction (Boddeke et al., 1992; Seol et al.,

2007) although the selectivity of these agonists remains unclear.

A new group of allosteric agonists potentially offers greater

subtype specificity, e.g., AC-42 at M1 receptors (Langmead

et al., 2006) and LY2033298 at M4 receptors (Chan et al.,

2008). An AC-42 derivative, 77-LH-28-1, has subsequently

been developed that penetrates the brain and exhibits full

agonist activity at M1 receptors (Langmead et al., 2008).

mAChR activation could facilitate LTP induction by direct en-

hancement of N-methyl-D-aspartate (NMDA) receptor (NMDAR)

opening (Aramakis et al., 1999; Harvey et al., 1993; Marino et al.,

1998; Markram and Segal, 1992) and/or reduced attenuation of

back-propagating action potentials (Tsubokawa and Ross,

1997). mAChRs also inhibit potassium channels, such as

KCNQ channels, which results in an increased input resistance.

In addition, recent evidence suggests that ion channels at post-

synaptic spines work in unison with neurotransmitter receptors,

enzymes, and other protein partners, thus creating multiprotein

functional units (Allen et al., 2007; Bildl et al., 2004). One such

example is the small conductance voltage-independent and

calcium-dependent SK channels that form feedback loops with

NMDARs and ultimately shape excitatory post-synaptic poten-

tials (EPSPs) and the induction of LTP (Behnisch and Reymann,

1998; Bloodgood and Sabatini, 2007; Faber, 2010; Faber et al.,

2005; Gu et al., 2008; Ngo-Anh et al., 2005).

Here, we find that the specificM1 receptor agonist 77-LH-28-1

facilitates LTP at the Schaffer collateral synapse. Importantly,

our data indicate that M1 activation leads to a previously
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unknown dynamic regulation of SK channel activity and subse-

quent modulation of NMDAR opening in response to synaptic

activation. We conclude that the inhibition of SK channels is

a critical link between M1 receptor activation and the facilitation

of LTP.

RESULTS

The Cellular and Synaptic Effects of M1 Receptor
Activation
To study the role of the M1 receptor in synaptic plasticity, we

made use of the recently discovered selective M1 receptor

agonist 77-LH-28-1 (1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-di-

hydro-2[1H]-quinolinone). This compound is an allosteric agonist

exhibiting >100-fold specificity for M1 over other mAChR

subtypes. We have previously shown that 10 mM 77-LH-28-1

selectively activates M1 receptors in cell lines expressing

specific human mAChRs and in rat hippocampal slices (Lang-

mead et al., 2008).

We first characterized the effects of 77-LH-28-1 on CA1 pyra-

midal cells examining both membrane properties and glutama-

tergic synaptic transmission in the Schaffer collateral pathway.

These actions were compared to those of the nonselective

cholinergic agonist carbachol. Whole-cell patch clamp record-

ings were made from visually identified CA1 pyramidal neurons

in hippocampal slices. In current clamp mode, bath application

of 1 mM carbachol caused a depolarization of 2.6 ± 0.8 mV

(Figures 1A and 1D; n = 8, p < 0.05) and elicited an increase in

the input resistance of 32 ± 8 MU (Figures 1A and 1E; 206 ±

20 MU to 234 ± 15 MU, n = 8, p < 0.05). The mean resting

membrane potential was �75 ± 1 mV (n = 15). A similar depolar-

ization and increase in input resistance was seen with bath

application of 10 mM 77-LH-28-1 that reversed with washout

(Figures 1B, 1D, and 1E; 1.9 ± 0.2 mV, p < 0.05, and 44 ± 7 MU,

p < 0.05, n = 6). The depolarization and increase in input resis-

tance were concentration-dependent for both carbachol and

77-LH-28-1. Application of 0.5 mM carbachol failed to produce

a statistically significant depolarization of the membrane poten-

tial (Figure 1D; �0.1 ± 1.3 mV, n = 6, p > 0.05) or increase in

input resistance (Figure 1E; 18 ± 13 MU, n = 6, p > 0.05), and

3 mM 77-LH-28-1 also failed to significantly depolarize the

membrane potential (Figure 1D; 1.3 ± 0.8 mV, n = 5, p > 0.05)

or produce a significant increase in input resistance (Figure 1E;

14 ± 9 MU, n = 5, p > 0.05).

The effects of 77-LH-28-1 on the cellular properties of CA1

pyramidal cells were blocked by addition of the M1 receptor

antagonist pirenzepine, again in a concentration-dependent

manner. Application of 3 mM pirenzepine reduced the depolar-

ization induced by 10 mM 77-LH-28-1 to 0.5 ± 0.7 mV (Figure 1D;

n = 8, p > 0.05) and the increase in input resistance to 9 ± 2 MU

(Figure 1E; n = 8, p < 0.05). Application of 25 mM pirenzepine

reduced the depolarization to �1 ± 1 mV and the increase in

input resistance to 5 ± 4 MU (Figures 1C, 1D, and 1E; n = 4,

p > 0.05). The effects of carbachol and 77-LH-28-1 on the cellular

properties of CA1 pyramidal cells are therefore similar.

The specificity of 77-LH-28-1 was verified in mice lacking

the M1 receptor. Application of 10 mM 77-LH-28-1 produced a

3.9 ± 3 mV depolarization of the membrane potential in slices
prepared fromM1+/+ mice (n = 5, p < 0.05) but no depolarization

in slices from M1�/� mice (Figure 1F; 0.7 ± 0.5 mV, n = 8,

p > 0.05). The mean resting membrane potential in cells from

either set of animals prior to agonist application was not signifi-

cantly different (�70 ± 2 mV and �71 ± 1 mV for +/+ and �/�
mice, respectively, p > 0.05). Similarly, 77-LH-28-1 produced

a 16 ± 3 MU increase in input resistance in slices prepared

from M1+/+ mice (n = 6, p < 0.05) that was abolished in slices

from M1�/� mice (Figure 1G; 6 ± 3 MU, n = 8, p > 0.05). These

results further illustrate the specificity of 77-LH-28-1 for the M1

receptor.

It is known that activation of cholinergic receptors in hippo-

campal slices induces short- and long-term changes in synaptic

transmission, depending on the precise recording conditions

and agonist used (Auerbach and Segal, 1996; Dickinson et al.,

2009; Fernández de Sevilla et al., 2008; Markram and Segal,

1990; Shimoshige et al., 1997). This has been attributed by

various groups to activation of nicotinic or muscarinic receptors.

Therefore, we next examined the effects of muscarinic receptor

activation on synaptic transmission. By maintaining CA1 pyra-

midal cells in voltage clamp and recording excitatory postsyn-

aptic currents (EPSCs) in response to stimulation of Schaffer

collateral axons, we found that application of 1 mM carbachol

induced a depression in EPSC amplitude (Figure 1H; 58% ±

6% of baseline 15–20 min after application, n = 5, p < 0.05). If

the concentration of carbachol was raised to 5 mM, the EPSC

depression increased (41% ± 9% of baseline, n = 5, p < 0.05,

data not shown), and lowering it to 0.5 mMdecreased the depres-

sion (71% ± 9%, n = 7, p < 0.05, data not shown). In contrast,

10 mM 77-LH-28-1 had no significant effect on EPSCs (Figure 1I;

81% ± 10% of baseline 15–20 min after application, n = 7,

p > 0.05) while still increasing the input resistance of the postsyn-

aptic cell (31 ± 11 MU, n = 7, p < 0.05). This indicates that the

depolarizing action of acetylcholine is due to M1 receptor

activation, but the effects on synaptic transmission are due to

activation of nicotinic receptors or mAChRs other than M1. The

specificity of 77-LH-28-1 enabled us to examine the role of M1

receptors in synaptic plasticity since 77-LH-28-1 had limited

effects on baseline synaptic transmission.

M1 Receptors Facilitate Induction of LTP
in the Hippocampus
We next investigated the role of selective M1 receptor activation

on LTP induced by a theta burst pairing (TBP) protocol. We have

previously shown this protocol does not induce LTP when EPSP

amplitude is kept below threshold for the initiation of action

potentials but can induce LTP when EPSPs are suprathreshold

(Buchanan and Mellor, 2007), indicating that TBP with sub-

threshold EPSP amplitudes is just below the threshold for LTP

induction. In the experiments described here, synaptic strength

was recorded in voltage clamp in two independent Schaffer

collateral pathways. In current clamp, TBP was then applied by

pairing stimulation to one of the input pathways with initiation

of back-propagating action potentials (b-APs, 2 ms current

injections of amplitude 2 nA) in the postsynaptic cell. Recordings

were then returned to voltage clampmode to measure the EPSC

amplitude in the two input pathways. Importantly, two input

pathways were used in all plasticity experiments to ensure that
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Figure 1. The Effect of Cholinergic Agonists on the Cellular and Synaptic Properties of CA1 Pyramidal Cells

(A) Bath application of 1 mM carbachol caused a depolarization of the membrane potential (middle) and an increase in input resistance (bottom). Top: Sample

voltage traces from a single experiment demonstrating the voltage response to a 100 pA current step during baseline (1) and in the presence of 1 mM carbachol

(2). The dotted line represents the baseline membrane potential and the overlay shows the offset traces.

(B) Bath application of 10 mM 77-LH-28-1 caused a depolarization of the membrane potential (middle) and increase in input resistance (bottom) that reversed on

washout. Top: Sample voltage traces as described in (A).

(C) The effect of 10 mM77-LH-28-1 on the membrane potential (middle) and input resistance (bottom) of CA1 pyramidal cells was blocked by the coapplication of

25 mM pirenzepine (black bar). Top: Sample traces as described in (A).

The scale bars represent 2 mV, 100 ms.

Summary bar graph of the concentration-dependent membrane potential (D) or input resistance (E) changes 8–10 min after application of cholinergic agonists

and antagonists. * indicates a significant difference from baseline values in (D) and (E) (p < 0.05).

Bath application of 10 mM 77-LH-28-1 caused a depolarization of the membrane potential (F) and an increase in input resistance (G) in slices taken from

M1+/+ mice but not M1�/� mice.
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Figure 2. The M1 Receptor Agonist 77-LH-

28-1 Facilitates the Induction of LTP by TBP

(A) Diagram of TBP protocol. Top: Voltage trace of

TBP protocol recorded at the soma of a CA1 pyra-

midal cell. The scale bars represent 40 mV,

100 ms. Middle and bottom: Traces illustrate the

timing of inputs to the stimulating and recording

electrodes evoking EPSPs and somatic action

potentials, respectively.

(B) TBP does not induce LTP under control condi-

tions. Bottom: Coincident TBP of subthreshold

EPSPs and somatic action potentials induced no

change in EPSC amplitude in the test (black

circles) or control (white circles) pathways. The

arrow indicates the timing of the TBP protocol.

Top: Example of voltage traces from a single

experiment showing the initial burst of five coinci-

dent EPSPs and action potentials (black) and

a single test burst of five subthreshold EPSPs

(gray). The scale bars represent 20 mV, 20 ms.

Middle: Example of current traces from a single

experiment illustrating the mean EPSC response

during the baseline (1) and at 30–35 min (2) in the

test and control pathways. The scale bars repre-

sent 10 pA, 40 ms.

(C) TBP does induce LTP in the presence of theM1

receptor agonist 77-LH-28-1. Bottom: In the

presence of 77-LH-28-1 (10 mM), coincident TBP

of subthreshold EPSPs and somatic action potentials induced pathway-specific LTP. Symbols as described in (B). Top: Example of voltage traces as described

in (B). The scale bars represent 20 mV, 20 ms. Middle: Example of EPSC current traces from a single experiment as described in (B). The scale bars represent

20 pA, 40 ms.

(D) TBP does not induce LTP in the presence of the M1 receptor agonist 77-LH-28-1 and the M1 receptor antagonist pirenzepine. Bottom: Coapplication of

pirenzepine (25 mM) and 77-LH-28-1 (10 mM) prevented the induction of pathway-specific LTP. Symbols as described in (B). Top: Example of voltage traces

as described in (B). The scale bars represent 20 mV, 20 ms. Middle: Example of EPSC current traces from a single experiment as described in (B). The scale

bars represent 10 pA, 40 ms.

The data are plotted as the mean ± SEM.
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the application of cholinergic agonists did not cause any

nonspecific changes in synaptic strength. In addition, in all

experiments, baseline EPSC amplitudes were small (mean

10 ± 3 pA, n = 12) to avoid suprathreshold summation of EPSPs

during TBP (mean EPSP summation 6.1 ± 1.4 mV, mean resting

potential �71 ± 2 mV, n = 12) (Figure 2A; see Experimental

Procedures for full description of induction protocol). In agree-

ment with our previous results, no LTP was induced by TBP

(Figure 2B; 126% ± 10% control versus 136% ± 20% test

pathway, n = 12, p > 0.05). In contrast, in the presence of

10 mM 77-LH-28-1, robust pathway-specific LTP was induced

(Figure 2C; 105% ± 16% control versus 243% ± 56% test

pathway, n = 7, p < 0.05). The action of 77-LH-28-1 was specific

for M1 receptors because addition of pirenzepine (25 mM) pre-

vented the induction of LTP (Figure 2D; 91% ± 17% control

versus 85% ± 16% test pathway, n = 7, p > 0.05).

The experiments were repeated at near physiological temper-

atures (35�C) to check that the effects were not specific to

room temperature conditions. In control conditions, TBP did
(H) Bath application of 1 mMcarbachol caused a depression of the evoked EPSC a

and in the presence of 1 mM carbachol. The scale bars represent 10 pA, 20 ms.

(I) Bath application of 10 mM 77-LH-28-1 resulted in no change in EPSC amplitu

20 pA, 20 ms.

The data are plotted as the mean ± SEM.
not produce a significant increase in EPSC amplitude (Fig-

ure S1A, available online; 103% ± 13% control versus 107% ±

17% test pathway, n = 7, p > 0.05). In the presence of 10 mM

77-LH-28-1, LTP was similar in amplitude to that found at

room temperature (Figure S1B; 94% ± 4% control versus

358% ± 34% test pathway, n = 8, p < 0.01).

We also investigated the facilitation of LTP by 77-LH-28-1

using field potential recordings from hippocampal slices. Stimu-

lation of the Schaffer collateral pathway with a theta burst

protocol, consisting of 10 bursts at a frequency of 5 Hz where

each burst consisted of five pulses at 100 Hz, produced a small

but significant LTP (Figure S1C; 113% ± 4%, n = 7, p < 0.05). In

the presence of 77-LH-28-1, the amount of LTPwas increased to

135% ± 7% (n = 6, p < 0.05), demonstrating that M1 receptor

activation facilitates LTP in agreement with previous reports

(Ovsepian et al., 2004; Shinoe et al., 2005). When a maximal

LTP protocol was employed, consisting of the theta burst

protocol repeated three times with an interval of 10 s, this

induced a larger LTP, and M1 receptor activation was unable
mplitude. Right: Sample EPSC traces from a single experiment during baseline

de. Right: Sample EPSC traces as described in (H). The scale bars represent

Neuron 68, 948–963, December 9, 2010 ª2010 Elsevier Inc. 951



Figure 3. The Endogenous Release of

Acetylcholine Acting at M1 Receptors Facil-

itates the Induction of LTP by TBP

(A) mAChR-mediated EPSPs can be induced in

hippocampal slices. Top left: Schematic of a

hippocampal slice demonstrating the positioning

of the stimulating electrodes in stratum radiatum

and stratum oriens (s.o.). Top right: Example of

experiment shows the slow EPSP evoked by

stratum oriens stimulation was blocked by the

M1 receptor antagonist pirenzepine (25 mM).

Bottom: Example of voltage traces of the slow

EPSP in control conditions and in the presence

of pirenzepine (25 mM). The scale bars represent

10 mV, 2 s.

(B) Illustration of mAChR-mediated EPSP and TBP

protocol. Top: Example of voltage trace of the TBP

protocol recorded at the soma during stimulation

of the slow mAChR-mediated EPSP. The scale

bars represent 2 mV, 2 s. Bottom Left: Schematic

of the initial train of the TBP protocol illustrating

the timing of the TBP in relation to stratum oriens

stimulation. The scale bars represent 20 mV,

200 ms. Bottom right: Example of voltage trace

from a single experiment showing the initial burst

of five coincident EPSPs and action potentials

(black) and a single test burst of five subthreshold

EPSPs (gray) applied before stratum oriens stimu-

lation. The scale bars represent 20 mV, 20 ms.

(C) TBP does induce test pathway-specific LTP

with simultaneous stimulation of the muscarinic

EPSP. Arrow indicates the timing of the concurrent

stratum oriens stimulation and TBP. Top: Example of EPSC current traces from a single experiment illustrating the mean EPSC response during the baseline (1)

and at 30–35 min (2) in the test (black circles) and control (white circles) pathways. The scale bars represent 20 pA, 40 ms.

(D) The M1 receptor antagonist pirenzepine (25 mM) prevented the induction of LTP by concurrent stratum oriens stimulation and TBP. Symbols as described in

(C). Top: Example of EPSC current traces from a single experiment as described in (C). The scale bars represent 10 pA, 40 ms.

The data are plotted as the mean ± SEM.
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to facilitate LTP (Figure S1D; 133%± 11%control versus 137%±

5% 77-LH-28-1, n = 6 and 6).

We next tested whether the release of endogenous acetylcho-

line from cholinergic fibers in the hippocampus could activate

M1 receptors on CA1 pyramidal cells and facilitate the induction

of LTP. Stimulation of cholinergic fibers in stratum oriens (four

stimuli at 100 Hz) in the presence of the glutamatergic and

GABAergic antagonists NBQX (1 mM), D-AP5 (50 mM),

LY341495 (100 mM), picrotoxin (50 mM), and CGP55845 (1 mM)

resulted in long-lasting mAChR-mediated EPSPs that were

similar in amplitude and duration to those seen by other

researchers (Figure 3A) (Cole and Nicoll, 1983; Shinoe et al.,

2005). mAChR-mediated EPSPs were completely blocked by

pirenzepine (25 mM), demonstrating the role of M1 receptors

(Figure 3A). The average amplitude and duration of mAChR-

mediated EPSPs was 24 ± 4 mV and 19 ± 1 s (n = 5, pirenzepine

blocked on average 100% ± 2% of the response). To test the

role of the mAChR-mediated EPSP in gating LTP, we omitted

the glutamatergic and GABAB receptor antagonists and stimu-

lated the stratum oriens 2 s before TBP to ensure that the

mAChR-mediated EPSP was maximal during the induction

protocol (Figure 3B). Stimulation of the stratum oriens enabled

the induction of substantial pathway-specific LTP (Figure 3C;

121% ± 8% control versus 208% ± 44% test pathway, n = 15,

p < 0.05), and this was shown to result from M1 receptor activa-
952 Neuron 68, 948–963, December 9, 2010 ª2010 Elsevier Inc.
tion because the effect was blocked by bath application of

pirenzepine (Figure 3D; 123% ± 30% control versus 149% ±

31% test pathway, n = 8, p > 0.05). The average peak amplitude

of themAChR-mediated EPSP during the LTP induction protocol

was 5.0 ± 1.5 mV with a range of 1 to 22mV. However, there was

no correlation between the amount of LTP induced and the

amplitude of the mAChR-mediated EPSP during LTP induction

(data not shown).

M1 Receptor Enhancement of NMDAR-Mediated EPSCs
Is Indirect and Voltage Dependent
Reports in the literature indicate NMDAR function is modulated

by mAChRs (Aramakis et al., 1999; Harvey et al., 1993; Marino

et al., 1998; Markram and Segal, 1990, 1992). This suggests

that enhancement of NMDAR activation by mAChRs could be

the mechanism for the facilitation of LTP by 77-LH-28-1. We

tested this directly by recording NMDAR-mediated EPSCs in

voltage clamp at a holding potential of �60 mV in the presence

of NBQX (10 mM) and with reduced Mg2+ concentration

(0.5 mM). Application of 10 mM 77-LH-28-1 produced no change

in the amplitude (Figure 4A; 93% ± 6%, n = 6) or kinetics (Fig-

ure 4B; decay time constant 76 ± 8 ms control versus 71 ±

7 ms 77-LH-28-1, n = 6) of the NMDAR-mediated EPSC, and,

therefore, we conclude there is no direct effect of M1 receptor

activation on NMDARs.



Figure 4. 77-LH-28-1 Does Not Alter the

Amplitude or Decay of Isolated NMDA

EPSCs

(A) Bath application of 77-LH-28-1 (10 mM) did not

alter the amplitude of isolated NMDA receptor-

mediated EPSCs, which were completely blocked

by the bath application of D-AP5 (50 mM). Right:

Example of current traces illustrating the mean

EPSC response during the baseline (1), during

the application of 77-LH-28-1 (2), and in the pres-

ence of D-AP5 (3). The scale bars represent

40 pA, 100 ms.

(B) Bar graph showing the mean decay time

constant of the NMDA receptor-mediated EPSC

during the baseline and in the presence of 77-LH-

28-1. The bar graph is overlaid with data from

individual experiments.

(C) Bath application of carbachol (10 mM)

increased NMDA responses to exogenous NMDA

application (1 mM) at �60 mV but not at +40 mV

holding potential. Right: Example of traces of

NMDA responses before (1) and after (2) carbachol

application at the two membrane potentials. The

scale bars represent 50 pA, 2 s.

The data are plotted as the mean ± SEM.
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To verify this result, we also measured NMDAR activity by

exogenous NMDA application, an approach that has previously

shown an enhancement of NMDAR function by mAChR activa-

tion (Aramakis et al., 1999; Harvey et al., 1993; Marino et al.,

1998; Markram and Segal, 1990, 1992). We applied 1 mM

NMDA by pressure application through a patch pipette placed

in stratum radiatum close to the pyramidal cell-body layer while

holding the CA1 pyramidal cell at�60mV and with 1.3 mMMg2+

in the artificial cerebrospinal fluid (aCSF). This produced stable

responses that lasted �10 s, and under these conditions, bath

application of 10 mM carbachol produced an increase in the

amplitude of the NMDA response (Figure 4C; 150% ± 13%,

n = 6, p < 0.05) similar to that seen in previous reports (Marino

et al., 1998). However, when the membrane potential was set

at +40 mV, the effect of carbachol application on NMDA

responses was abolished (Figure 4C; 91% ± 4%, n = 5, p >

0.05). Taken together, these data indicate that NMDAR activa-

tion is enhanced by mAChR activation under conditions where

Mg2+ block of NMDARs is present (Figure 4C; �60 mV) but not

whenMg2+ is absent (Figure 4C; +40mV) or significantly reduced

(Figures 4A and 4B). This indicates that mAChR activation

modulates synaptic NMDAR function via changes in membrane

properties.

M1 Receptors Enhance the NMDAR-Mediated
Component of EPSPs
We next recorded cells in current clamp and examined the EPSP

waveform in the presence of the GABAA receptor antagonist

picrotoxin (50 mM) and the GABAB receptor antagonist

CGP55845 (1 mM). Under these conditions, application of

77-LH-28-1 prolonged the duration of EPSPs (Figure 5A) and

increased the decay time constant (Figure 5A; 80 ± 15 ms in
control, 172 ± 32 ms in 77-LH-28-1, n = 7, p < 0.05). The

membrane time constant of the cell, measured by short

subthreshold current injections, was also increased by applica-

tion of 77-LH-28-1 (Figure 5B; 64 ± 8 ms in control, 91 ± 16 ms

in 77-LH-28-1, n = 7, p < 0.05), which could, at least partially,

account for the prolongation of the EPSP.

The depolarization and increase in input resistance caused

by the activation of M1 receptors could also enhance NMDAR

activation during synaptic transmission and in particular during

TBP. To assess the component of the EPSP mediated by

NMDARs during TBP, we gave five presynaptic stimuli at

100 Hz and compared the resulting EPSP waveform in the

presence and absence of 50 mMD-AP5 (Figure 5C). EPSP ampli-

tude was set to ensure that EPSP summation was of a similar

magnitude to that used in the experiments shown in Figures 2

and 3. Under these control conditions, no NMDAR-mediated

component of the EPSP could be detected (Figure 5C; decay

time constant normalized to control, 1.1 ± 0.3, n = 8, p > 0.05).

Application of 77-LH-28-1 depolarized the membrane potential

by 2.8 ± 0.6 mV and caused a prolongation of the EPSPs similar

to that seen in response to a single presynaptic stimulation

(Figure 5D; decay time constant normalized to control, 1.8 ± 0.2,

n = 6, p < 0.05). Under these conditions, D-AP5 reversed the

EPSP prolongation induced by 77-LH-28-1 (Figure 5D; decay

time constant normalized to control, 0.9 ± 0.2, n = 6, p < 0.05).

When the membrane potential was repolarized to the membrane

potential prior to 77-LH-28-1, D-AP5 still reduced the EPSP

decay constant, indicating the EPSP prolongation and enhance-

ment of the NMDAR-mediated EPSP was not due to membrane

depolarization (decay constant normalized to control 1.1 ± 0.1

in 77-LH-28-1 and 0.77 ± 0.06 with addition of D-AP5, n = 6,

p < 0.05).
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Figure 5. M1 Receptor Activation Enhances the NMDAR-Mediated Component of EPSPs

(A) 77-LH-28-1 (10 mM) prolonged the duration of single EPSPs. Left: Example of voltage traces in the presence of 77-LH-28-1 (red) or control conditions (black).

The scale bars represent 0.6 mV, 40 ms. Right: Average decay time constant increase.

(B) 77-LH-28-1 (10 mM) prolonged themembrane decay time constant in response to a short subthreshold current injection. Left: Example of voltage traces in the

presence of 77-LH-28-1 (red) or control conditions (black). The scale bars represent 0.6 mV, 20 ms. Right: Average membrane decay time constant increase.

(C) Summated EPSPs during synaptic theta burst stimulation do not exhibit an NMDAR-mediated component. Left: Example of voltage traces of a burst of five

EPSPs under control conditions (black) and in the presence of 50 mM D-AP5 (green). The scale bars represent 1.5 mV, 40 ms. Right: The average normalized

decay time constant for a burst of five EPSPs does not change in the presence of D-AP5.

(D) 77-LH-28-1 enabled NMDAR activation during synaptic theta burst stimulation. Left: Example of voltage traces showing a burst of five EPSPs under control

conditions (black), in the presence of 10 mM 77-LH-28-1 (red), and after addition of 50 mM D-AP5 (green). The scale bars represent 2 mV, 40 ms. Right: The

average normalized decay time constant is significantly reduced by addition of D-AP5 in the presence of 77-LH-28-1.

(E) 77-LH-28-1 had no effect on EPSP duration in the presence of pirenzepine. Left: Example of voltage traces showing a burst of five EPSPs under control

conditions (black) and in the presence of 10 mM 77-LH-28-1 (red) all in the presence of pirenzepine (25 mM). The scale bars represent 2 mV, 40 ms. Right:

The average normalized decay time constant is not increased by 77-LH-28-1 in the presence of pirenzepine.

(F) Oxotremorine-m enabled NMDAR activation during synaptic theta burst stimulation. Left: Example of voltage traces showing a burst of five EPSPs under

control conditions (black), in the presence of 10 mM oxotremorine-m (red), and after addition of 50 mM D-AP5 (green). The scale bars represent 2 mV, 40 ms.

Right: The average normalized decay time constant is significantly reduced by addition of D-AP5 in the presence of oxotremorine-m (oxo-m).

(G) 77-LH-28-1 had no effect on EPSP duration in slices taken from M1�/� mice. Left: Example of voltage traces showing a burst of five EPSPs under control

conditions (black) and in the presence of 10 mM77-LH-28-1 (red) inM1+/+ andM1�/�mice. The scale bars represent 2mV, 40ms. Right: The average normalized

decay time constant is increased in the presence of 77-LH-28-1 in M1+/+ mice but not M1�/� mice. * indicates significant difference (p < 0.05).

The data are plotted as the mean ± SEM.
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The role of the M1 receptor in mediating the effects of 77-LH-

28-1 on the NMDAR-mediated component of the EPSP was

confirmed with pirenzepine to block the 77-LH-28-1-induced

prolongation of EPSPs (Figure 5E; decay time constant normal-

ized to control, 1.0 ± 0.1, n = 6, p > 0.05) and by using an orthos-

teric muscarinic receptor agonist oxotremorine-m (oxo-m,

10 mM) that produced a similar prolongation of the EPSP to

77-LH-28-1 and was also reversed by subsequent application

of D-AP5 (Figure 5F; decay constant normalized to control

2.0 ± 0.2 in oxo-m and 1.0 ± 0.1 with addition of D-AP5, n = 6,

p < 0.05). These results were further confirmed with mice lacking

theM1 receptor. Application of 10 mM77-LH-28-1 to slices taken

fromM1+/+ mice produced a prolongation of the EPSP similar to

that found in slices from rats (Figure 5G; 1.7 ± 0.2, n = 5). In slices

taken fromM1�/�mice, the prolongationwas absent (Figure 5G;

1.1 ± 0.03, n = 7). This indicates that the M1 receptor agonist

77-LH-28-1 specifically activates M1 receptors and augments

the NMDAR-mediated component of the EPSP during the induc-

tion of LTP by TBP.

M1 Receptors Enhance NMDAR Activation
by Inhibition of SK Channels
Previous reports indicate that inhibition of SK channels prolongs

the NMDAR-mediated component of EPSPs (Faber, 2010; Ngo-

Anh et al., 2005) and that mAChRs can modulate SK channel

function (Fiorillo and Williams, 2000; Gulledge and Stuart,

2005). Therefore, we tested whether the effect of 77-LH-28-1

on NMDAR activity was mediated by SK channels. Application

of the selective SK channel blocker apamin (100 nM) caused

a prolongation of summated EPSPs (Figure 6A; decay time

constant normalized to control, 1.3 ± 0.1, n = 13, p < 0.01). Addi-

tion of 77-LH-28-1 did not produce any further prolongation of

EPSPs (Figure 6A; decay time constant normalized to control,

1.4 ± 0.1, n = 13, p > 0.05 compared to apamin alone), indicating

that apamin had occluded the action of 77-LH-28-1. Apamin

application alone had no effect on either the membrane potential

or input resistance of CA1 pyramidal cells (0 ± 0.2 mV and 28 ±

5MU, p > 0.05, n = 20) and the apamin-induced EPSP prolonga-

tion was also completely reversed by subsequent application of

D-AP5 (Figure 6B; decay time constant normalized to control,

1.39 ± 0.06 in apamin and 0.98 ± 0.06 with addition of D-AP5,

n = 7, p < 0.05). Interestingly, contrary to previous reports,

apamin produced no reliable effect on summated EPSP ampli-

tude (100% ± 6%, n = 20) (Faber et al., 2005; Ngo-Anh et al.,

2005). In addition, similar to the effects of 77-LH-28-1, apamin

did not produce any change in EPSC amplitude or decay time

constant (Figure S2).

M1 receptors are also known to modulate other potassium

channels, classically inhibiting KCNQ channels, which are

believed to underlie the M current (Marrion et al., 1989). When

we tested the effects of the KCNQ channel blocker XE-991

(10 mM), the summated EPSPs were prolonged in a similar

fashion to apamin (Figure 6C; decay time constant normalized

to control, 1.3 ± 0.1, n = 13, p < 0.01). However, subsequent

addition of 77-LH-28-1 produced a significant additional prolon-

gation (Figure 6C; decay time constant normalized to control,

1.6 ± 0.1, n = 13, p < 0.05 compared to XE-991 alone), indicating

that XE-991 does not occlude the action of 77-LH-28-1. XE-991
application alone produced a depolarization of the membrane

potential and an increase in the input resistance of CA1 pyra-

midal cells (1.7 ± 0.4 mV and 47 ± 5 MU, p < 0.05, n = 18) and

the XE-991-induced EPSP prolongation was only partially

reversed by subsequent application of D-AP5 (Figure 6D; decay

time constant normalized to control, 1.4 ± 0.1 in apamin and

1.2 ± 0.1 with addition of D-AP5, n = 7, p < 0.05 for control versus

XE-991 and XE-991 versus D-AP5).

The effects of KCNQ channel and SK channel blockade on

EPSP prolongation could be further separated into two distinct

processes. The application of apamin produced an additional

prolongation of the EPSP after the initial prolongation by

XE-991 (Figure 6E; decay time constant normalized to control,

1.40 ± 0.13 for XE-991 and 1.66 ± 0.20 for apamin combined

with XE-991, n = 11, p < 0.05 for control versus XE-991 and

XE-991 versus apamin). These data indicate that membrane

depolarization and increased input resistance seen in the pres-

ence of XE-991 are not sufficient to occlude the effects of M1

receptor activation on NMDAR function.

Muscarinic receptors have previously been shown to tran-

siently enhance SK channel function by causing release of

Ca2+ from internal stores (Gulledge and Stuart, 2005), but there

is no evidence for muscarinic receptor activation inhibiting SK

channel function. Therefore, we sought to confirm that M1 recep-

tors inhibit SK channels by measuring SK channel current

directly. To do this, we recorded from CA1 pyramidal cells in

voltage clamp using the perforated-patch technique. Depolar-

ization of the cell from �50 mV to +10 mV for 100 ms and back

to �50 mV revealed an afterhyperpolarization current (IAHP)

that was largely insensitive to the KCNQ channel blocker

XE-991 (10 mM, 90% ± 2% of peak control current, n = 6) but

was robustly inhibited by the SK channel blocker apamin

(100 nM, 10% ± 2% of peak control current, n = 6) (Figure 6F).

For all subsequent experiments, XE-991 (10 mM) was present

throughout and the SK channel-mediated component of the

IAHP was calculated by subtraction of the current remaining in

apamin. The M1 receptor agonist 77-LH-28-1 reduced the SK

channel-mediated component of the IAHP to 57% ± 8% (Figures

6G and 6K; n = 6, p < 0.05). When 77-LH-28-1 was removed, the

inhibition partially reversed (74% ± 6%). We confirmed that

activation of M1 receptors inhibits the SK channel-mediated

component of IAHP by reversing the sequence of drug application

with the result that 77-LH-28-1 produced no additional inhibition

of IAHP when applied after apamin (Figures 6H and 6K). The

specificity of 77-LH-28-1 was confirmed by preincubation with

pirenzipine (25 mM), which blocked the inhibition of IAHP by

77-LH-28-1 (Figures 6I and 6K; 99% ± 6% of control, n = 5,

p > 0.05) and by the use of oxotremorine-m (oxo-m, 10 mM),

which produced a similar inhibition of IAHP to 77-LH-28-1

(Figures 6J and 6K; 39% ± 8% of control, n = 6, p < 0.05).

Inhibition of PKC Blocks the Inhibition of SK Channels
by M1 Receptors
We next investigated the mechanism for the M1 receptor-

mediated inhibition of SK channels. M1 receptors are thought

to couple to Gq/11 subunits whose downstream signaling bifur-

cates into the production of IP3 and DAG, leading to activation of

PKC (Delmas and Brown, 2005). Therefore, we tested whether
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Figure 6. The M1 Receptor Agonist 77-LH-28-1 Prolongs the NMDAR-Mediated Component of EPSPs via Inhibition of SK Channels

(A) Apamin prolongs the duration of summated EPSPs and occludes the action of 77-LH-28-1. Example of peak normalized voltage traces showing a burst of five

EPSPs under control conditions (black), in the presence of 100 nM apamin (red), and after addition of 10 mM77-LH-28-1 (green). The scale bar represents 40 ms.

The average normalized decay time constant is significantly prolonged by addition of apamin with no further change in the presence of 77-LH-28-1.

(B) Prolongation of EPSPs by apamin is reversed by application of D-AP5. Example of peak normalized voltage traces showing a burst of five EPSPs under control

conditions (black), in the presence of 100 nM apamin (red), and after addition of 50 mM D-AP5 (green). The scale bar represents 40 ms. The average normalized

decay time constant is significantly prolonged by addition of apamin and reversed by D-AP5.

(C) The KCNQ channel blocker XE-991 prolongs the duration of summated EPSPs but does not occlude the action of 77-LH-28-1. Example of peak normalized

voltage traces showing a burst of five EPSPs under control conditions (black), in the presence of 10 mM XE-991 (red), and after addition of 10 mM 77-LH-28-1

(green). The scale bar represents 40 ms. The average normalized decay time constant is significantly prolonged by addition of XE-991, but there is an additional

significant prolongation with 77-LH-28-1.
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PKC inhibitors could block the M1 receptor-mediated prolonga-

tion of EPSPs and inhibition of IAHP. Bath application of the PKC

inhibitor Go6976 (200 nM) significantly reduced the M1 receptor-

induced inhibition of IAHP (Figure 7A; 87% ± 2% of control, n = 6,

p < 0.05 compared to 77-LH-28-1), indicating that activation of

PKC by M1 receptors is necessary for the inhibition of SK

channels. Go6976 also significantly reduced the prolongation

of EPSPs induced by application of 77-LH-28-1 (Figure 7B;

decay time constant normalized to control, 1.16 ± 0.08, n = 6,

p < 0.05 compared to 77-LH-28-1). Similarly, inclusion of the

inhibitory PKC fragment PKC 19-36 in the patch pipette also

significantly reduced the prolongation of EPSPs induced by

application of 77-LH-28-1 compared to the prolongation

induced in the presence of the inactive single mutation control

peptide (Glu27)PKC 19-36 (House and Kemp, 1987) (Figure 7C;

decay time constant normalized to control, 1.35 ± 0.05, n = 7

versus 1.17 ± 0.05, n = 14, p < 0.05 for (Glu27)PKC 19-36 versus

PKC 19-36, respectively).

The calcium sensitivity of SK channels has been shown to be

regulated by casein kinase 2 (CK2) in response to neuromodula-

tors such as noradrenaline (Allen et al., 2007; Maingret et al.,

2008). Therefore, we also tested whether the CK2 inhibitors

4,5,6,7-tetrabromobenzotriazole (TBB) or 2-(4,5,6,7-tetrabromo-

2-(dimethylamino)-1H-benzo[d]imidazol-1-yl) acetic acid (TMCB)

(Pagano et al., 2008) could block theM1 receptor-induced inhibi-

tion of IAHP. Incubation of slices in either 10 mM TBB or 10 mM

TMCB for at least 1 hr had no effect on the M1 receptor-induced

inhibition of IAHP (Figure 7D; TBB, 46% ± 7% of control, n = 6;

TMCB, 71% ± 9% of control, p > 0.05 compared to 77-LH-28-1

for both) suggesting that CK2 activity is not required for the inhi-

bition of SK channels. CK2 also has direct effects on NMDAR

function (Lieberman and Mody, 1999; Sanz-Clemente et al.,

2010). We found that incubation in 10 mM TMCB or TBB for

periods of more than 1 hr greatly prolonged EPSPs (Figure 7E;

decay time constant, TMCB, 127 ± 34 ms, n = 9; TBB, 156 ±

29 ms, p < 0.05 compared to control for both). This prolongation

wasalsoseenafter 20minof acuteTMCBorTBBapplication (Fig-

ure 7F; decay time constant normalized to control, TMCB, 1.21 ±

0.07, n = 7, TBB, 1.38 ± 0.12, n = 7, p < 0.05 for both) but this

prolongation was still seen in the presence of apamin (Figure 7G;

decay time constant normalized to control, apamin 1.24 ± 0.06,

TBB 1.43 ± 0.09, n = 6, p < 0.05), indicating that the effects of
(D) Prolongation of EPSPs by XE-991 is partially reversed by application of D-AP

under control conditions (black), in the presence of 10 mM XE-991 (red), and after

normalized decay time constant is significantly prolonged by addition of XE-991

(E) Apamin prolongs the duration of summated EPSPs but does not occlude the a

five EPSPs under control conditions (black), in the presence of 100 nM apamin (re

The average normalized decay time constant is significantly prolonged by additi

(F) IAHPs recorded from CA1 pyramidal cells in the perforated patch configuration

in the presence of TTX (1 mM) by switching the membrane potential from �50 mV

XE-991 (10 mM) reduced IAHP by 10% ± 2%; apamin (100 nM) blocked the rema

(G) 77-LH-28-1 (10 mM) inhibited the SK channel-mediated component of the IA
component of the IAHP revealed the SK-channel-mediated component (right). Th

(H) 77-LH-28-1 had no effect on IAHP after application of 100 nM apamin. The sc

(I) 77-LH-28-1 had no effect on IAHP after incubation in 25 mM pirenzepine. The s

(J) Oxotremorine-m (oxo-m, 10 mM) inhibited the SK channel-mediated compone

(K) Summary of the effects of M1 receptor activation on IAHP measured by pharma

(p < 0.05).

The data are plotted as the mean ± SEM.
CK2 inhibition on EPSP duration are not mediated by SK

channels. Application of 77-LH-28-1 produced an additional

prolongation of the EPSP after incubation in TMCB (Figure 7H;

decay time constant normalized to TMCB, 1.34 ± 0.07, n = 9,

p < 0.05) but not TBB (Figure 7I; decay time constant normalized

to TBB, 1.05 ± 0.15, n = 6, p > 0.05). However, the large apamin-

insensitive prolongation of EPSPs by CK2 inhibition precluded

strong conclusions being drawn concerning the role of CK2 in

M1-induced prolongation of EPSPs.

Inhibition of SK Channels by Apamin Facilitates LTP
Induction
The application of apamin has previously been shown to

facilitate the induction of LTP (Behnisch and Reymann, 1998;

Lin et al., 2008; Ngo-Anh et al., 2005; Stackman et al., 2002)

and genetic overexpression of SK2 channels inhibits the induc-

tion of LTP (Hammond et al., 2006). We confirmed the role of

SK channels in the facilitation of LTP by applying TBP in the pres-

ence of 100 nM apamin, which produced significant pathway-

specific LTP (Figure 8A; 100% ± 10% control versus 335% ±

60% test pathway, n = 8, p < 0.01). Furthermore, a similar magni-

tude LTP was induced in the continuous presence of both 10 mM

77-LH-28-1 and 100 nM apamin (Figure 8B; 107% ± 5% control

versus 365%± 33% test pathway, n = 7, p < 0.01), indicating that

no additional facilitation of LTP was gained by stimulation of M1

receptors after blockade of SK channels (Figure 8C).

DISCUSSION

Activation of mAChRs facilitates the induction of LTP in the

hippocampus (Boddeke et al., 1992; Ovsepian et al., 2004;

Shinoe et al., 2005) and is critical for various forms of learning

and memory (Atri et al., 2004; De Rosa and Hasselmo, 2000;

Warburton et al., 2003). The present study confirms a critical

role for M1 receptors in the facilitation of LTP and provides

data demonstrating a role for SK channels mediating this

facilitation.

mAChR activation has been linked tomodulation of potassium

channels such as M-channels (KCNQ) (Pfaffinger et al., 1985;

Seeger and Alzheimer, 2001) and G protein-coupled inward-

rectifier potassium channels (GIRK) (Brown et al., 1997). Our

data support an additional inhibition of SK channels that is
5. Example of peak normalized voltage traces showing a burst of five EPSPs

addition of 50 mMD-AP5 (green). The scale bar represents 40 ms. The average

and partially reversed by D-AP5.

ction of XE-991. Example of peak normalized voltage traces showing a burst of

d), and after addition of 10 mMXE-991 (green). The scale bar represents 40 ms.

on of apamin, but there is additional significant prolongation with XE-991.

are primarily composed of current through SK channels. IAHPs are stimulated

to +10 mV for 100 ms. The IAHP is seen after return to �50 mV. Application of

inder. The scale bars represent 50 pA, 50 ms.

HP that partially recovered on washout. Subtraction of the apamin-insensitive

e scale bars represent 50 pA, 50 ms.

ale bars represent 75 pA, 50 ms.

cale bars represent 30 pA, 50 ms.

nt of the IAHP. The scale bars represent 30 pA, 50 ms.

cological subtraction after apamin application. * denotes statistical significance
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Figure 7. PKC Mediates the M1 Receptor-Induced Inhibition of SK Channels

(A) Inhibition of IAHP by 77-LH-28-1 (10 mM) is reduced by preincubation with the PKC inhibitor Go6976 (100 nM). The scale bars represent 30 pA, 50 ms.

(B) Prolongation of EPSPs by 77-LH-28-1 is blocked by preincubation with the PKC inhibitor Go6976 (100 nM). Example of peak normalized voltage traces

showing a burst of five EPSPs after preincubation with Go6976 (black) and no prolongation in the presence of 10 mM 77-LH-28-1 (red). The scale bar represents

40 ms. The average normalized decay time constant is not significantly prolonged.

(C) Prolongation of EPSPs by 77-LH-28-1 is blocked by inclusion of the PKC inhibitor PKC 19-36 in the patch pipette. Example of peak normalized voltage

traces showing a burst of five EPSPs after infusion of (Glu27)PKC 19-36 or PKC 19-36 (black). Prolongation in the presence of 10 mM77-LH-28-1 (red) only occurs

in the presence of (Glu27)PKC 19-36. The scale bar represents 40 ms. The average normalized decay time constant is significantly prolonged by 77-LH-28-1 in

the presence of (Glu27)PKC 19-36 and this is significantly reduced by PKC 19-36.

(D) Inhibition of IAHP by 77-LH-28-1 (10 mM) is unchanged by preincubation with the CK2 inhibitors TBB (10 mM) or TMCB (10 mM). The scale bars represent 30 pA,

50 ms.

(E) Incubation in TMCB (10 mM) or TBB (10 mM) greatly prolonged the EPSP compared to control. Example of peak normalized voltage traces showing a burst of

five EPSPs under control conditions (black) and, in separate experiments, after incubation in 10 mM TMCB (red) or 10 mM TBB (green). The scale bar represents
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Figure 8. SK Channel Inhibition Facilitates LTP Induction

(A) SK channel blockade facilitates LTP induction. In the continuous presence of apamin (100 nM) TBP induces pathway-specific LTP. The arrow indicates the

timing of the TBP protocol. Top: Example of voltage traces from a single experiment showing the initial burst of five coincident EPSPs and action potentials (black)

and a single test burst of five subthreshold EPSPs (gray). The scale bars represent 25 mV, 20 ms. Middle: Example of current traces from a single experiment

illustrating the mean EPSC response during the baseline (1) and at 30–35 min (2) in the test (black circles) and control (white circles) pathways. The scale

bars represent 50 pA, 40 ms.

(B) In the continuous presence of apamin (100 nM) and 77-LH-28-1 (10 mM), TBP induces pathway-specific LTP similar in magnitude to apamin or 77-LH-28-1 in

isolation. The arrow indicates the timing of the TBP protocol. Symbols as described in (A). Top: Example of voltage traces. The scale bars represent 25mV, 20ms.

Middle: Example of EPSC current traces from a single experiment. The scale bars represent 50 pA, 40 ms.

(C) 77-LH-28-1 (10 mM), apamin (100 nM), or a combination of 77-LH-28-1 and apamin all induce a similar amount of LTP.

The data are plotted as the mean ± SEM.
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critical for the facilitation of LTP. SK channels have been shown

to be ideally placed on the postsynaptic spine of Schaffer collat-

eral synapses in the hippocampus where they can act to rapidly

repolarize dendritic spines after AMPA receptor activation

thereby limiting NMDAR activation and calcium influx through

voltage-activated calcium channels (Bloodgood and Sabatini,

2007; Lin et al., 2008; Ngo-Anh et al., 2005). Studies have also

shown that blocking SK channels facilitates the induction of

LTP (Behnisch and Reymann, 1998; Stackman et al., 2002) and

that genetic overexpression of SK2 channels inhibits LTP induc-

tion and hippocampal-dependent learning (Hammond et al.,

2006). However, until now it was unclear whether SK channel

function could be modulated to regulate the induction of LTP.

In the present study, we show that SK channels mediating a

component of the IAHP are directly modulated by M1 receptors
60 ms. The average decay time constant is significantly prolonged by incubati

unchanged compared to control.

(F) Acute application of TMCB (10 mM) or TBB (10 mM) prolonged the average no

(G) Apamin prolongs the duration of summated EPSPs but does not occlude the ac

EPSPs under control conditions (black), in the presence of 100 nM apamin (red),

average normalized decay time constant is significantly prolonged by addition of a

of TBB.

(H) Incubation in TMCB does not block the action of 77-LH-28-1. Example of pea

TMCB (black) and with addition of 10 mM 77-LH-28-1 (red). The scale bar repres

change in the presence of 77-LH-28-1.

(I) Incubation in TBB blocks the action of 77-LH-28-1. Example of peak normalize

and after addition of 10 mM 77-LH-28-1 (red). The scale bar represents 60 ms. The

77-LH-28-1.

The data are plotted as the mean ± SEM.
(Figure 6) and that blockade of SK channels with apamin

occludes the action of M1 receptor activation on NMDAR func-

tion (Figure 6) and LTP induction (Figure 8). Therefore, our data

support the conclusion that SK channels can regulate the induc-

tion of LTP and provide evidence that SK channel function is

controlled by activation of M1 receptors.

The detailed mechanism and the molecular interactions that

connect M1 receptor activation to SK channel inhibition are

currently unknown. It has been shown that M1 receptors and

the G protein subunits Gq/11 are located at dendritic spines

(Tanaka et al., 2000; Yamasaki et al., 2010). Gq/11 subunits’

downstream signaling bifurcates into the production of IP3 and

DAG, which has been shown to promote Ca2+ release from

intracellular stores, activate PKC, and locally deplete PIP2 levels

(Delmas and Brown, 2005). Our data support the view that PKC
on in TMCB or TBB. Input resistance after incubation in TMCB or TBB was

rmalized decay time constant of the EPSP.

tion of TBB. Example of peak normalized voltage traces showing a burst of five

and after addition of 10 mM TBB (green). The scale bar represents 40 ms. The

pamin, but there is an additional significant prolongationwith 30min application

k normalized voltage traces showing a burst of five EPSPs after incubation in

ents 60 ms. The average normalized decay time constant shows a significant

d voltage traces showing a burst of five EPSPs after incubation in TBB (black)

average normalized decay time constant shows no change in the presence of
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activation is necessary for the inhibition of SK channels, but we

cannot rule out an additional role for Ca2+ release and/or PIP2

depletion. Interestingly, SK channel inhibition by noradrenergic

receptors in superior cervical ganglion cells acts through

a different mechanism involving CK2 rather than PKC leading

to a decrease in the calcium sensitivity of SK channels (Maingret

et al., 2008). However, there is little evidence that M1 receptors

couple to CK2. Our results suggest that muscarinic receptor

inhibition of SK channels is not mediated by CK2. There is

emerging evidence demonstrating that CK2 directly modulates

NMDAR (Lieberman and Mody, 1999) or regulates NMDAR

subunit complement (Sanz-Clemente et al., 2010), and our

results showing a SK channel-independent modulation of

EPSP duration (Figure 7) potentially support such roles for CK2

at Schaffer collateral synapses in the hippocampus.

Although KCNQ channels are thought to be preferentially

targeted to the somatic membrane and are not present on

dendritic spines, their blockade may still increase NMDAR

activation as a result of cellular membrane depolarization and

increase in input resistance (Hu et al., 2007; Yue and Yaari,

2004). While this may indeed be the case, our data indicate

that KCNQ channels do not mediate the facilitation of NMDAR

function induced by M1 receptor activation since blockade of

KCNQ channels with XE-991 did not prevent the actions of M1

receptor activation on NMDAR function (Figure 6). The actions

of M1 receptors may therefore be separated into (1) an inhibition

of SK channels that promotes NMDAR activity in dendritic

spines and (2) an inhibition of KCNQ channels at the somatic

membrane that depolarizes the membrane potential and

increases input resistance. The other ion channels thought to

be modulated by mAChRs, GIRK channels, are not thought to

be modulated by M1 receptors in CA1 pyramidal cells and are

instead activated by M2 receptors (Seeger and Alzheimer,

2001). Our results also show that M1 receptors inhibit somatic

SK channels, which will presumably increase excitability by

reducing the AHP (Figure 6).

Our data show that M1 receptor activation prolongs the

NMDAR-mediated component of the EPSP during LTP induc-

tion, and we suggest this is the mechanism for the facilitation

of LTP (Figure 5). We also show that under optimized voltage

clamp conditions, such as recording NMDA responses

at +40 mV or small NMDAR-mediated EPSCs at �60 mV in

reduced Mg2+, NMDAR activity is unchanged by M1 receptor

activation (Figure 4). These data argue strongly against a direct

action of M1 receptor activation on NMDARs, such as has

been suggested in previous reports (Aramakis et al., 1999; Har-

vey et al., 1993; Marino et al., 1998; Markram and Segal, 1990,

1992). However, because of the voltage-dependent nature of

the SK inhibition of NMDARs, when we record exogenous

NMDA responses at�60mV or EPSPs in current clamp, NMDAR

activity is enhanced (Figure 4).

From a therapeutic point of view, this study suggests

77-LH-28-1 and similar compounds may be highly attractive as

potential treatments for cognitive disorders (Dean et al., 2003).

Currently, the only effective treatments for patients with

Alzheimer’s disease are cholinesterase inhibitors and meman-

tine. M1 receptor agonists have been shown to ameliorate Ab

and tau pathology in animal models of Alzheimer’s disease
960 Neuron 68, 948–963, December 9, 2010 ª2010 Elsevier Inc.
(Caccamo et al., 2006) and to be beneficial for patients suffering

from Alzheimer’s disease and schizophrenia (Dean et al., 2003;

Koch et al., 2005) so the development of new allosteric M1

receptor agonists could provide a major breakthrough in the

treatment of these cognitive disorders.

We have shown that LTP is facilitated when M1 receptors are

activated by either the specific allosteric M1 receptor agonist

77-LH-28-1 (Figure 2) or the endogenous ligand acetylcholine

(Figure 3). Since TBP does not induce LTP in control conditions,

the facilitation by M1 receptor activation is seen as a gating of

LTP. Interestingly, the same is true when LTP is induced by

patterns of activity believed to occur in vivo during exploration

(Isaac et al., 2009). Therefore, the regulation of SK channel

function by M1 receptor activation may be a critical step in the

induction of hippocampal LTP in vivo.

EXPERIMENTAL PROCEDURES

Slice Preparation

Brain slices were prepared from P13-15 male Wistar rats or P60-70 male

C57BL/6J mice lacking M1 receptors (M1�/� kindly provided by Dr. J. Wess

[Miyakawa et al., 2001]) or age matched wild-type mice (M1+/+). Following

a lethal dose of anesthetic (isoflurane inhalation), brains were removed and

dissected in ice-cold aCSF (in mM, 119 NaCl, 2.5 KCl, 1 NaH2PO4.H2O,

26.2 NaHCO3, 10 glucose, 2.5 CaCl2, and 1.3 MgSO4) saturated with 95%

O2 and 5% CO2. Parasagittal hippocampal slices 300–400 mm thick were

cut with a vibratome (DTK-1000, DSK, Japan, or VT1200, Leica, Germany)

and slices were incubated in aCSF at 36�C for 30 min and then stored at

room temperature until use. Before being transferred to the submerged

recording chamber, the connections between CA3 and CA1 were cut. All

experiments were performed in accordance with Home Office guidelines as

directed by the Home Office Licensing Team at the University of Bristol.

Whole-Cell Patch Clamp Recording

Slices were placed in a submerged recording chamber perfused with aCSF

(as above) at room temperature with the addition of 50 mM picrotoxin. CA1

pyramidal cells were visualized with infrared DIC optics on an Olympus

BX-50 microscope. Patch electrodes with a resistance of 4–5MUwere pulled-

from borosillicate filamented glass capillaries (Harvard Apparatus) with a

vertical puller (PC-10, Narashige, Japan). Pipettes were filled with intracellular

solution containing (in mM) 120 KMeSO3, 10 HEPES, 0.2 EGTA, 4 Mg-ATP,

0.3 Na-GTP, 8 NaCl, and 10 KCl and set to pH 7.4, 280–285 mOsm.

Recordings fromCA1 pyramidal neuronsweremadewith amulticlamp 700A

amplifier (Molecular Devices, USA), filtered at 4 kHz and digitized at 10 kHz

with a data acquisition board and Signal acquisition software (CED,

Cambridge, UK). Cells were voltage clamped at �75 or �80 mV (after junction

potential correction of �9.1 mV). Series resistance was monitored throughout

the experiments and cells that showed >20% change were discarded from

subsequent analysis. Recordings were also rejected from analysis if the series

resistance was greater than 30 MU. Bridge balance was employed for all

current clamp recordings.

Perforated-patch recordings were performed with patch pipettes of 4–5 MU

resistance tip filled with the same intracellular solution to whole-cell

recordings. Pipettes were then backfilled with the same intracellular solution

supplemented with gramicidin (80 mg/ml). Gramicidin was prepared as a stock

solution in DMSO (20 mg/ml). After formation of a gigaohm seal, the series

resistance was monitored and recordings were commenced once stable.

Series resistances averaged 36.1 ± 1.7 MU (n = 28), and recordings were

not used if the series resistance changed by >20% during data collection.

Spontaneous rupture of the patched membrane was checked by continuous

monitoring of series resistance. Tetrodotoxin (TTX; 1 mM) was continuously

present in the aCSF. No leak subtraction was employed and the com-

ponents of the IAHP mediated by KCNQ or SK channels were assessed

pharmacologically.
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Extracellular field potential recordings were made from hippocampal slices

bathed in aCSF containing picrotoxin with a patch pipette filled with aCSF. The

initial slope of evoked synaptic responses was measured to calculate the

amplitude of responses.

Synaptic responses were evoked in control and test pathways with 100 ms

square voltage steps applied at 0.1 Hz through two bipolar stimulating

electrodes (FHC) located in stratum radiatum with the test pathway proximal

and the control pathway distal to the pyramidal cell layer. Average baseline

EPSC amplitudes in control and test pathways were similar for all LTP

experiments. Postsynaptic action potentials were initiated through somatic

current injections (2 nA, 2 ms) that reliably induced action potentials in all

conditions.

The resting membrane potential and input resistance of the cell were

monitored in current clamp for a stable baseline period of 10–20 min before

cholinergic agonists were washed into the recording chamber. The membrane

potential and input resistance were monitored for a further 10–20 min.

Input resistances were measured after the membrane voltage reached steady

state.

Focal application of 1 mM NMDA was performed through a glass electrode

with a resistance of 3–4 MU placed in stratum radiatum close to the cell-body

layer. A 1 mM NMDA solution in aCSF was pressure ejected (150 ms,

30–90 kPa) under the control of a spritzer (made in house). For the application

of NMDA, 1 mM TTX was added to the aCSF and the intracellular solution con-

tained (in mM) 117 CsMeSO3, 10 HEPES, 5 QX314-Cl, 0.2 EGTA, 4 Mg-ATP,

0.3 Na-GTP, and 8 NaCl and set to pH 7.4, 280–285 mOsm.

CGP55845, D-AP5, LY341495, NBQX, picrotoxin, pirenzepine, oxotremor-

ine-m, TBB, (Glu27)PKC 19-36, and Go6976 were purchased from Tocris.

Apamin, TTX, TMCB, and XE-991 were purchased from Ascent Scientific.

PKC 19-36 was purchased from Sigma. 77-LH-28-1 was a gift from GlaxoS-

mithKline. PKC 19-36 and (Glu27)PKC 19-36 were infused for at least 30 min

before application of 77-LH-28-1. Slices were incubated in TBB and TMCB

for at least 1 hr before application of 77-LH-28-1.
Induction of Synaptic Plasticity

EPSCs were recorded in voltage clamp from two independent pathways. TBP

was applied after the neurons were switched into current clamp mode within

10 min of reaching the whole-cell configuration to prevent wash-out of

plasticity. The TBP protocol consisted of a train of ten bursts where each burst

consisted of five stimulations at 100 Hzwith the frequency of bursts set at 5 Hz.

Three trains were given separated by 10 s intervals. Where plasticity experi-

ments were carried out in the presence of 77-LH-28-1, apamin, or XE-991,

the drugs were washed into the bath before the whole-cell configuration

was achieved and perfused throughout the experiment.
Muscarinic EPSP

Experiments involving stimulation of the muscarinic EPSP were carried out in

horizontal slices as this maximized the density and connectivity of cholinergic

fibers in the stratum oriens. The effects of 77-LH-28-1 on LTP induction were

qualitatively similar in horizontal versus parasagittal slices. The muscarinic

EPSP was elicited by a high-frequency burst of stimulation (4 stimuli at

100 Hz) delivered to a bipolar stimulating electrode placed in stratum oriens.

The stratum oriens stimulation was delivered 2 s before the TBP protocol to

ensure the peak of the muscarinic EPSP coincided with the start of the TBP

protocol.
Data Analysis

Sweeps from the test and control pathways were separated and six consecu-

tive traces were averaged together to produce amean response every minute.

EPSC amplitude measurements were taken from the mean traces and normal-

ized to the mean baseline EPSC amplitude. Data are plotted as the mean ±

standard error of the mean (SEM).

Statistical tests were performed with paired or unpaired Student’s t tests as

appropriate. LTP was assessed by comparing the mean normalized EPSC

amplitudes (or fEPSP slopes) in control and test pathways 25–30 min after

induction.
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