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THE NUMERICAL SOLUTION OF STIFF DIFFERENTIAL EQUATIONS 

G. J. COOPER 
Edinburgh, Scotland 

This paper fust discusses the conditions in which a set of differential equations should give stable solutions, 

starting with linear systems assuming that these do not differ greatly in this respect from non-linear systems. Meth- 
ods of investigating the stability of particular systems are briefly discussed. Most real biochemical systems are known 

from observation to be stable, but little is known of the regions over which stability persists; moreover, models of 
biochemical systems may not be stable, because of inaccurate choice of parameter values. 

The separate problem of stability and accuracy in numerical methods of approximating the solution of systems 
of non-linear equations is then treated. Stress is laid on the consistently unsatisfactory results given by explicit 
methods for systems containing “stiff equations, and implicit multistep methods are particularly recommended for 
this class of problem, which is likely to include many biochemical model systems. Finally, an iteration procedure 
likely to give convergence both in multistep methods and in the steady-state approach is recommended, and areas in 
which improvement in methods is likely to occur are outlined. 

1. Introduction 

A model of a biochemical system may be con- 
structed from assumptions concerning the interaction 
and behaviour of the components of the system. The 
usual basic assumptions are that the system is ade- 
quately represented by an interdependent set of sim- 
ple chemical equations, and that these equations obey 
rate laws of reaction kinetics. Suppose the system has 
n components, with concentrations at time c denoted 

byyi =ri(t), i= 1, 2, ...) n, and denote the derivative 

of yi with respect to t by JJ~. Then such a model leads 
to a set of differential equations, typically of the form 

r; =fiCJ$ Y29 -*.I Y,) 2 i = 1, 2, . . . . n , (1-l) 

each derivative being defined as a known function of 
the concentrations. Here the functions also depend 
on parameters (rate constants) which are assumed 
known. To complete the model, conditions are im- 

posed at some fixed time tO, 

YIXtO) = Yio t i = 1) 2, . . . . n ) (l-2) 

defining an initial value problem. 
Some models may give a set of differential equa- 
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tions of order greater than unity. However, such a set 
of equations may be reduced to another (larger) set 
of equations of the form (1.1) with appropriate initial 
conditions (1.2) [ 1, p. 121 *. Again, the independent 
variable, t, may occur explicitly, but can be removed 
by the addition of an extra differential equation, 
ub = 1, with yoo = to, so that y. = t. 

The validity of such a model may be tested by ob- 
taining a solution of (1.1) which satisfies (1.2). Such 
a solution gives concentration values for a range of 
values oft, which may be compared with experimental 
observations. Similarly, a model may be used to pre- 
dict the behaviour of a system. Of particular interest 
is the determination of steady states. Here typical 
numerical methods of solution are examined, with 
consideration given to the special form of the func- 
tions in (1 .l), and to difficulties that arise. Indeed, 
the natural time constants of biochemical systems 
vary so considerably that the differential equations 
that arise are often stiff. Then the usual numerical 
methods fail and recourse must be made to special 
techniques. 

It is thought that the behaviour of stiff non-linear 

* References to equations are in parentheses ( ). 
References to the literature are in brackets [ ] . 
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systems is similar to that of stiff linear systems. In this 
paper, properties of stiff linear systems are examined 
prior to a treatment of non-linear equations. Then a 
few numerical methods are considered. The failure of 
the usual methods is explained and other methods are 
described which may be useful. 

independent linear differential equations, 

YI=~a&.Yi-~) Y i= 1, 2, . . . . n , 
j=l 

where 9, aip i, j = 1,2, . . . . n, are given constants. This 
system may be written in matrix form as 

2. Linear differential equations 

y’=A(y-a), 
It is appropriate to start by considering the behav- 

iour of systems of linear differential equations and, in 
particular, the single differential equation, 

v’=W-4, (Y, X given constants. (2.1) 

where y, y’, a are n dimensional column vectors and 
A a square n X n non-singular matrix. This system has 
a solution y=a and it remains to consider the general 
solution of the homogeneous equation y’ = Ay. 

This equation has a solution y = 01, while the home 
geneous equation, y’ = Xy, has the general solution 

It is known [ 1,6], that there exist n fundamental 
solutions @t(f), Q2(r), . . . . G’,(t), each an n dimensional 
column vector, such that 

y = M(f), ql(t) = eht , 0 any constant. 

The general solution of (2.1) is thus y = 01+ M(t) and a 
given initial condition defines /3, 

y = 5 Pi*i(t) , Pl,P2, -, lo,, my constants, 
i=l 

Consider the initial value problem defined by (2.1) 
and y(0) = OL, the solution being required for t > 0. Let 
the initial condition be perturbed by an amount E, 
such that y. = a! + E. The solution of this new initial 
value problem is y = 01+ @(t) whereas the solution 
required is y = cr. There are two cases: 

is the general solution of the homogeneous equation. 
The simplest case occurs when A has n distinct eigen- 
values, X1,X2, . . . . X,,, and this restriction does not alter 
the present arguments appreciably. Here 

Wt> = Ceil e 
hit 

vci2 e 
hit , . . . . Gin ekit) , 

(i) Instability. If h. > 0 the exponential term domi- 
nates the solution for sufficiently large I, irrespective 
of the magnitude of E. This behaviour becomes more 
marked as X increases. The initial value problem is 
unstable. That is, a small perturbation of the initial 
condition alters the solution drastically. 

i=1,2 ,..., n, 

where ci 1, ci2, . . . , Cip, are the components of the eigen- 
vector associated with the eigenvalue Xi. The general 
solution of (2.2) may now be expressed as 

(ii) Stability. For A < 0 the exponential term de- 
creases in magnitude as t increases. A amall perturba- 
tion of the initial condition has little effect on the 
solution. Nevertheless, this case presents formidable 
numerical problems when h < 0. 

The numerical problems that arise for both cases 
will be examined in more detail later. However, little 
can be achieved for the unstable case unless a detailed 
analysis of the particular problem is made, when it 
may become possible to reformulate the problem in 
a stable form. 

n 

Yj=ilj+CfliCijehi', j = 1,2, . . . . n , (2.3) 
i=l 

the constants p1,f12, . . . . & being determined by an 
initial condition y(@. 

The values of the eigenvalues are crucial in assess- 
ing the behaviour of the linear system. If * Re(Xi)< 0, 
i= 1,2, . . . , n, then perturbations are damped out. If 

The situation is much the same for the system of * Re(hi) E real parts of (hi). 

(2.2) 
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not, then perturbations may be magnified. Both cases 
may cause numerical difficulties if 1 Re(Xr) 13 0 for 
some i= 1,2, . . . . n. Further, the imaginary parts of the 
eigenvalues introduce oscillations. The magnitudes of 

IX,I, Ih,l, . . . . 1 h, I give a measure of the stiffness of 
the system. 

The case Re&)> 0 is relatively stable if the re- 
quired solution is itself increasing exponentially. 
Here, although perturbations are magnified, the solu- 
tion is also increasing in magnitude and the relative 
accuracy may be tolerable. The initial value problem 
may be (relatively) stable for Re(Xi) > 0. 

The usual numerical methods become inadequate 
when they fail to approximate exponential functions 
(accurately) over a sufficiently large range of the 
argument. 

It is worth noting that for linear systems it is pos- 
sible to solve the eigenvector problem AC= hc, and 
then use the initial conditions to determine the con- 
stants /3rrP2, . ...& in (2.3). For large systems this 
requires considerable computation. 

3. Non-linear differential equations 

For systems of non-linear differential equations, 
much the same difficulties occur as for linear systems. 
In addition, problems of an entirely different charac- 
ter occur due to the non-linearity [S] . These prob- 
lems are not considered here. 

A rigorous analysis of non-linear systems is compli- 
cated. However, some progress may be made by re- 
placing 

v: = fi(Y) = fi(Yl.Y2,...9Yn) 9 i= 1, 2, . . . . n, 

by the (identical) system 

y’ = f(y*) + J(Y*)(Y - Y *) + WY 3 Y *) 9 

where y* = y(t*), and the Jacobian matrix J(y*) is 

The behaviour of the new linear system 

Y’ = f(Y*) + J(Y*)(Y - Y*) 
s24 

(3.1) 

depends on the eigenvalues of J(y*). This lineariza- 
tion is justified, at least for an investigation of the 
stability of the original system, if 

I@(y, y*)l < ~1.~1 = c ma { IY1 I, lY21, . . . . ly,l) , 

for some sufficiently small c [ 5, 0 7.11. 
Many biochemical processes give models of partic- 

ularly simple form 

Yi=E [g ki~/y~](.Y-~) 9 i= 1, -,n?; 

where the kiit, i, j, 1= 1, . . . . n, are essentially rate con- 
stants. Since the solutions are functions of t, for- 
mally : 

YI = 5 @t) (Yj - 9) 9 i= 1,2 ,..., n, (3.3) 
j=l 

where the coefficients are unknown functions oft, 
depending on the solution. Again, if these coefficients 
can be represented as constant terms plus non-linear 
terms appropriately bounded by 1.~1, then the behav- 
iour of (3.2) depends on the eigenvalues of a constant 
matrix A(t*). 

This suggests a possible numerical scheme. At time 

to compute the eigenvalues and vectors of A(to). 
Assume that A(t) remains constant over a (small) 
interval to < t < to+ h and compute the solution of 
(3.3) at to+ h from (2.3). The process is then repeated 
and this provides a check on the assumption. Alter- 
natively, the Jacobian matrix could be used to solve 
the linearized system. Iterative methods are available 
for improving the approximations [7]. For large sys- 
terns of equations such schemes appear to demand too 
much computing time to be feasible. 

There remains the possibility of evaluating the 
eigenvalues of A(t*) or J(y*) to examine the stiffness 
of the system. This may be done for a few values of 
t*, irrespective of the numerical method used. Indeed, 
eigenvalue bounds are of grincipal concern, and there 
are methods of use here [8, pp. 285-2861. 

A detailed analysis of systems of the form (3.2) 
appears worthwhile. In particular such an analysis 
might indicate the stability properties of the system 
as a function of the rate constants. It certainly appears 
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that biochemical systems give rise to stiff differential 
equations requiring special numerical methods. 

4. Stability of numerical methods 

Consider the differential equations (1 .l), 

Y’ = f(Y) = f(_,YLP Y2, . . ..Y.) , (4.1) 

expressed in vector form. Assume h > 0 throughout. 
Let 

rm =t,+mh, m=O, I,..., N, 

be a sequence of (equally) spaced points. Let y, be 
an approximation to y(t,), m = 0, 1, . . . . N . 

Ym =YCrm) + &m = IYLm,YZm, *.*,Ynml’ 9 

where y. is the given (perturbed) initial condition. In 
the following sections numerical methods are discussed 
which provide the sequence yo,yl, . . . . These methods 
determine ym using previous members of the sequence. 

It is convenient to distinguish (local) accuracy and 
stability. Assume that &o = a1 = . . . = E,_L = 0. Then 
the accuracy of a method is a measure of E, (the dis 
cretization error), and a method is of order p if + 

&rn = O(W’) , &0=&L= ...=Em_l=O. 

The stability concept is more difficult. Indeed, there 
are a number of definitions. Of main concern here, is 
the propagation of discretization errors. Assume that 

a@ EL, ... are not zero. A method is (absolutely) stable 
if the components of z,,, are bounded for all m. 

Accurate methods are required so that the solutions 
of a system of differential equations are adequately 
represented locally. Stable methods are required so 
that local discretization errors do not accumulate. 
Unfortunately, it is difficult to obtain stability condi- 
tions for fmite h, and is usual to consider instead 
asymptotic stability conditions, h + 0, Nh constant. 
Asymptotically stable methods are often not satisfac- 
tory for stiff systems, as will be seen. 

Asymptotic stability of a method, and stability of 

t The notation E = O(h) means E is of the order of h. 

the initial value problem, are separate concepts and 
should be treated as such. Consider an unstable initial 
value problem. Here, no numerical method (stable or 
unstable) can be expected to give satisfactory results. 
On the other hand, consider a differential equation 
with one increasing solution. If the initial condition is 
such that this is the required solution, then a stable 
numerical method may give satisfactory results. (Rela- 
tive stability may be more appropriate here.) 

For stability with h finite, conditions can be ob- 
tained at least for simple cases. These conditions re- 
late the step length to some property of the differen- 
tial equations, usually the eigenvalues of an associated 
matrix or a Lipschitz constant. 

A more detailed discussion is given by Henrici [6] 
who also discusses stability with respect to rounding 
errors. 

5. Single step methods 

Single step methods compute ym from section 
(4.1) using only the approximation y,,, _ L determined 
at the previous step of the calculation. In particular, 
these methods are suitable for commencing calcula- 
tion. 

5.1. Explicit methods 
At each stage of an explicit method the argument 

z of f(z) is known in advance. All that is required is 
the direct calculation of values 

fr(z) = fi(ZLJ2, . . ..z.) , i= 1,2, . . . . n. 

The Euler method is the simplest of this type. It is 
defined by 

Y, = y,,r-r+ h f(y,_l) 2 m= 1,2 ,..., N, 

and is of order one. That is, if a,_L = 0, 

ym =Y(&-1) +h y'(t,-1) =Y&) + W2). 

Higher order (more accurate) methods are available, 
but all methods of this type are inadequate for stiff 
systems. 

This failure is exhibited by an examination of 
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Euler’s method applied to 

y’=h(y-4, y(O)=o, tg = 0. G-1) 

Again, let y,,, = y(t,J + E,, m = 0, 1, . . . . N, with yu 
the perturbed initial condition. Euler’s method gives 

Ym =Y,-l+ WY,-1 - 4 ? m= 1,2 ,..., N. 

By repeated application, since yu = cr + eu, 

y,=a+(l+hh)%(), m = 0,l , . . . . N. (5.2) 

Now y(t) is the solution of the differential equation 
with initial condition y(0) = cr. Thus y(t)=a, 

ym - y(tJ = E, = (1+ hh)” Eu . 

This identity describes the behaviour of the error 
E,, propagated through the method. There are three 
possibilities: 

(9 

(ii) 

(iii) 

5.2. Implicit methods 
If h > 0, e, increases with m and for large m If the argument, Z, of f(z) is not known in advance, 

dominates the required solution 0~. This occurs then a set of (non-linear) equations must be solved at 

irrespective of the magnitude of hX (finite), each step of the calculation. Despite this complication 

though it may not be serious if h is small. The such implicit methods have considerable advantages. 

method reflects the behaviour of the differen- The simplest method of this type (of order one) is 

tial equation. defined by 

If X < 0 and hh < -2, E, increases with m (even 
though the differential equation is stable). Large 
negative values of hh must be avoided. 
If h< 0 and hX > -2, em decreases, giving a (non- 
asymptotic) stability condition. If the differen- 
tial equation is stiff, i.e., h Q 0, then an extreme- 
ly small value for h must be chosen. 

ym = ym-1 + h f(ym) > m= 1,2 ,..., N. 

Again consider equation (5.1). Since this is linear, the 

method gives a linear algebraic equation for ym, and 
proceeding as before 

The cause of this behaviour is shown by (5.2). The 
Euler method represents exponential terms by poly- 
nomials: 

ehh = (1 t hA) + 0(hh)2 

This is satisfactory if I hX I is small or if (1 + hh) is 
small when the exponential term is small. 

A similar analysis may be given for higher order 
explicit methods and for (general) systems of differ- 
ential equations. The non-asymptotic stability condi- 
tion takes the form 

-cl <h Re(hi) < ~2 (= 0) , i = 1, 2, . . . . n, 
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where h,, h2, . . . . X, are the eigenvalues of a matrix 
associated with the differential equations, and cI, c2 
(small) non negative constants associated with the 
method. Conditions should also be imposed on the 
imaginary parts of the eigenvalues since these parts 
introduce oscillating components into the solution. 

Even if the eigenvahres are known, for stiff sys- 
terns h must be chosen so small that computation is 
often impractical. If the eigenvalues are not known, 
and the system may be stiff, other methods should be 
used. It is not sufficient to compare results for differ- 
ent values of h. 

The analysis applies even if the initial conditions 
are exact, for computation introduces rounding errors 
and thus a perturbed initial value problem. Thus 
explicit single step methods (and the Taylor series 
method), although asymptotically stable, fail for stiff 
systems unless h is so small that computation becomes 
excessive. 

Ym =Ym-l+ WY,-1-o) 3 

em = ~~(1 - hh)-m . 

The errors decrease provided that I 1 - hh I > 1. Thus 
any value of hX in the complex plane, exterior to the 
unit circle with centre unity, gives a stable method. 
The magnitude of h is dictated primarily by accuracy 
requirements. For explicit methods the magnitude of 
h is dictated by accuracy and stability requirements. 

However, accuracy considerations may require h 
so small that this advantage is lost. This is the case for 
example if X % 0. Then higher order methods must be 
used. Such methods have been developed recently by 
Butcher [2] and some seem appropriate for stiff 
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differential equations. In particular consider the fol- 
lowing method (of order four) 

k, = f’(~,_~ + fhk, + &h(3-2d3k2), 

k2=f(ym_1 +)hk2+ ,L,h(3+2d%kI), 

The vectors kl, k2 are defined implicitly and have to 
be determined iteratively. As in the previous method 
it is important to choose a suitable iteration. This will 
be considered later. 

For equation (5.1) this method gives linear equa- 
tions for k,, k,, and 

hX m 
Em=EQ 1+ 

1 - ;hX + &(hA)2 
= 1 cp(Wm . 

Thus the errors decrease for all hh< 0 and the error 
growth is well controlled for hX B 0. A more detailed 
examination requires the determination of the curves 
I q(hA) I = c, in the complex hh plane. 

An analysis has only been given for equation (5.1) 
but this suggests that implicit methods are of some 
use for stiff systems and merit further investigation. 

6. Multistep methods 

A linear k step method for solving (4.1) is defmed 
by the vector equations 

fi ‘yk-i ym-i + h 5 ok-i f(ym_i) = 0 2 

i=O i=O 

m>k, 

and k starting conditions yW yl, ...,yk_l and required. 
A method is defined by a choice of the parameters ai, 
pi, i=O, 1, . . . . k, and methods are available which are 
(asymptotically) stable and of high order (accurate). 

If ok = 0 the method is explicit, and implidit if 
ok # 0. Explicit methods are not suitable for stiff sys 
terns, for reasons similar to those given in section 5. 
Some recent investigations have been concerned with 
the development of implicit methods that are ap 
propriate for such systems. 

An examination of stability is more complicated 
than for single step methods. Again consider equation 
(5.1). Then a k step method gives a non-homogeneous 
linear difference equation 

k k 

2 ‘yk-i Ym-i ’ hh g ok-i Ym-i 
i=O 

=hXakB, s 
i=O 

(6-l) 

Let Z,, m=O, 1, . . . . N, be a solution of (6.1). To Z, 
may be added any linear combination of solutions of 
the homogeneous equation (ol = 0). If 5 1, {2, . . . . Sk are 
distinct zeros of the polynomial 

then {y, c, . . . . $ satisfy the homogeneous equation, 
and the general solution of (6.1) is 

m=O,l , . . . . N, (6.3) 

where ~1~~2, . . . . ym are arbitrary constants. 
Before proceeding with the examination of stabil- 

ity a consistency condition must be imposed. If eO= 0 
the solution of the differential equation is y(t) = CC 
For the difference equation (6.1) to be consistent, it 
is required that ym =a! if ym_1=ym_2= . . . =yti_k’ti, 
and this implies the consistency condition a0 t a1 t . . . 
‘Yk = 0. Thus exact starting conditions yo= yl = . . . = 
yk_l = (Y give the solution ym = Z, = Q of (6.1). 

Now the substitutions 

ym_i = y(tm_i) + Em-i = OL + E m 1’ _’ 

i= 0, 1, . . . . k, 

in (6.1) show that the errors satisfy the homogeneous 
linear difference equation. Thus 

i=l - s27 
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the constants y1,y2, . . . . rk being determined by the 
starting conditions eu, el, . . . . ek_1. For stability 
(asymptotic or otherwise), 

KjlGl f i = 1, 2, . . . . k . (6.4) 

If the zeros of (6.2) are not all distinct, the analysis 
requires modification. It turns out that multiple zeros 
should have moduli strictly less than unity. 

For general systems of differential equations, a 
similar analysis (not rigorous) may be given. Here, the 
zeros of a set of polynomial equations 

P(S) + &o(U = 0 9 i=1,2 ,..., n, 

are required, where h,, h,, . . . . X, are the eigenvalues of 
the Jacobian matrix of the differential equations. 
These eigenvalues are functions of the required solu- 
tion so that stability conditions are required for all hh 
in some region of the complex plane. 

In the case of asymptotic stability, however, only 
the zeros of p(r) are of interest. The coefficients “0, 

o1, a**, ok are chosen to ensure (6.4) while PO, or, . . . . & 
are chosen to give methods of high order. Asymptotic 
stability is not alone sufficient for stiff systems, for 
then, if lhhr 1, i = 1,2, . . . . n, are small, h must be so 
small that computation is impractical. 

Implicit multistep methods have been developed 
recently which are suitable for stiff systems. Non- 
asymptotic stability is established for all values of hh 
in a restricted region of the complex plane. Dahlquist 
[3] considered all hX with negative real parts (the left 
half complex plane). He showed that the maximum 
order of such methods is p = 2. By further restricting 
the region of the complex plane considered, Widlund 
[9 ] has obtained methods of order p > 4. More 
recently, Gear [4] has obtained methods of order 
p G 6, stable for various regions, and these methods 
seem particularly useful. 

7. Computation 

It is desirable to have a number of methods avail- 
able for solving a given system of differential equations, 
and to have some knowledge of the stiffness of the sys- 
tern together with estimates of the local discretization 
errors of the methods. Then it may be possible to 
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select a method of appropriate order p and a suitable 
h, and to vary these choices during computation. 
Many difficulties arise and no entirely satisfactory 
procedures are available. Henrici [6] and Gear [4] 
consider some of these points. 

A single step method may be used to start com- 
putation before progressing to the use of a multistep 
method. For stiff systems all methods used must be 
implicit. Thus, at each stage of the computation a set 
of non-linear equations has to be solved if the differ- 
ential equations are non-linear. The techniques used 
are generally simple iterative methods. Difficulties 
occur for stiff systems because some iterative methods 
fail to converge, and even if convergence takes place a 
large number of iterations may be required to give 
adequately accurate solutions. 

Consider the general k step method of section 6, 
and assume o. # 0. This may be expressed as 

y,=hPf(y,)+% S=-PoloufO, 

where @ is a known vector function of y,,, _ I, y,,, _2, 
. . . ..ym_k. This is a set of n non-linear equations in n 
unknowns. In the present context, the usual iterative 
method is defined by 

y(‘+‘) = hflf(y$)) + Cp, m r=O, 1 ? *.f , 

where y$? is an initial approximation to the required 
solution. It may be shown that this iteration con- 

verges if all lhhi I are small, where Xl, X2, . . . . A,r are the 
eigenvahtes of J(y). For stiff systems, however, this 
implies that h must be chosen extremely small. 

However, an appropriate method is the Newton- 
Raphson iteration defined by 

y$+l) =y&{I-hflJ(y$))}-1 

X Iy$+P- hPf(y$))), 

where I is the identity matrix. This scheme converges 
if all eigenvalues of the inverse matrix are of moduli 
less than unity. If A,, h,, . . . . X, are the eigenvalues of 
J then 

1 

l-/@hi’ 
i = 1, 2, . . . . n , 
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are the eigenvalues of (I - h/3J)-l, and the method is 
satisfactory for stiff systems. Such a scheme requires 
considerable computation at each step, but some 
reduction is possible [4] . 

Further investigation should lead to considerably 
superior algorithms for solving systems of the form 
(3.2). The Jacobian may be evaluated easily and there 
should be many refinements possible. In addition new 
types of method may become available. Hybrid meth- 
ods (combined multistep and single step methods) 
hold promise. 

In conclusion it is noted that the steady state equa- 
tions derived from (1. l), ,f(y) = 0, may also be diffi- 
cult to solve if the differential equations are stiff. 
Again an appropriate iterative method should be used. 
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