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Abstract

‘We present methods and explicit formulas for describing simple weight modules over twisted generalized
Weyl algebras. When a certain commutative subalgebra is finitely generated over an algebraically closed
field we obtain a classification of a class of locally finite simple weight modules as those induced from
simple modules over a subalgebra isomorphic to a tensor product of noncommutative tori. As an application
we describe simple weight modules over the quantized Weyl algebra.
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1. Introduction

Bavula defined in [2], [1] the notion of a generalized Weyl algebra (GWA) which is a class of
algebras which include U (s1(2)), U, (s1(2)), the algebras in [9], down-up algebras, and the Weyl
algebra, as examples. In addition to various ring theoretic properties, the simple modules were
also described for some GWAs in [2]. In [5] all simple and indecomposable weight modules of
GWA:s of rank (or degree) one were classified.

So-called higher rank GWAs were defined in [2] and in [3] the authors studied indecomposable
weight modules over certain higher rank GWAs.

In [7], with the goal to enrich the representation theory in the higher rank case, the authors
defined the twisted generalized Weyl algebras (TGWA). This is a class of algebras which include
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all higher rank GWAs (if a certain subring R is commutative and has no zero divisors) and also
many algebras which can be viewed as twisted tensor products of rank one GWAs, for example
certain Mickelsson step algebras and extended Orthogonal Gelfand—Zetlin algebras [6]. Under a
technical assumption on the algebra formulated using a biserial graph, some torsion-free simple
weight modules were described in [7]. Simple graded weight modules were studied in [6] using
an analogue of the Shapovalov form.

In this paper we describe a more general class of locally finite simple weight modules over
TGWAs using the well-known technique of considering the maximal graded subalgebra which
preserves the weight spaces. It is known that under quite general assumptions (see Theorem 18 in
[4]) any simple weight module over a TGWA is a unique quotient of a module which is induced
from a simple module over this subalgebra. Our main results are the description of this subalgebra
under various assumptions (Theorems 4.5 and 4.8) and the explicit formulas (Theorem 5.4) of
the associated module of the TGWA. In contrast to [7], we do not assume that the orbits are
torsion-free and we allow the modules to have some inner breaks, as long as they do not have
any so-called proper inner breaks (see Definition 3.8). The weight spaces will not in general be
one-dimensional in our case, which was the case in [6,7].

Moreover, as an application we classify the simple weight modules without proper inner
breaks over a quantized Weyl algebra of rank two (Theorem 6.14).

The paper is organized as follows. In Section 2 the definitions of twisted generalized Weyl
constructions and algebras are given together with some examples. Weight modules and the
subalgebra B(w) are defined.

In Section 3 we first prove some simple facts and then define the class of simple weight
modules with no proper inner breaks. We also show that this class properly contains all the
modules studied in [7].

Section 4 is devoted to the description of the subalgebra B(w). When the ground field is alge-
braically closed and a certain subalgebra R is finitely generated, we show that it is isomorphic to
a tensor product of noncommutative tori for which the finite-dimensional irreducible representa-
tions are easy to describe.

In Section 5 we specify a basis and give explicit formulas for the irreducible quotient of the
induced module.

Finally, in Section 6 we consider as an example the quantized Weyl algebra and determine
certain important subsets of Z" related to B(w) and the support of modules as solutions to some
systems of equations. In the rank two case we describe all simple weight modules with finite-
dimensional weight spaces and no proper inner breaks.

2. Definitions
2.1. The TGWC and TGWA

Fix a positive integer n and setn = {1, 2, ..., n}. Let K be a field, and let R be a commutative
unital K -algebra, ¢ = (071, ..., 0,) be an n-tuple of pairwise commuting K -automorphisms of R,
= (1ij)i, jen be a matrix with entries from K* := K\{0} and ¢ = (¢1, ..., #,) be an n-tuple of

nonzero elements from R. The twisted generalized Weyl construction (TGWC) A’ obtained from
the data (R, g, £, ) is the unital K -algebra generated over R by X;, Y; (i € n) with the relations

Xir =0 (r)Xi, Yir =0, '(r)Y;, forreR,iecn, (2.1)
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Vi Xi=¢, XY =o0i(t), fOI‘iEQ, 2.2)
XiYj=wijY;jX;, fori,jen, i#]. (2.3)
From the relations (2.1)—(2.3) follows that A’ carries a Z"-gradation { A:g,} gezn Which is uniquely
defined by requiring
deg X; =e;, degY; = —e;, degr =0, forien, reR,
where ¢; = (0, ..., ll, ..., 0). The twisted generalized Weyl algebra (TGWA) A = A(R,0,t, 1)
of rank n is defined to be A’/I, where [ is the sum of all graded two-sided ideals of A’ intersect-

ing R trivially. Since / is graded, A inherits a Z"-gradation {A,},c7» from A’.
Note that from relations (2.1)—(2.3) follows the identity

XiXjti =X Xipjio; ' (4) (2.4)
which holds for 7, j € n, i # j. Multiplying (2.4) from the left by u;;Y; we obtain
X (it} —Mijujidfl(tj)fffl(l‘i))=0 (2.5)

for i, j € n,i # j. One can show that the algebra A’, hence A, is nontrivial if one assumes that
tit; = M,-jujl-afl(tj)ofl(ti) for i, j € n,i # j. Analogous identities exist for ;.

2.2. Examples

Some of the first motivating examples of a generalized Weyl algebra (GWA), i.e. a TGWC of
rank 1, are U (s[(2)), U, (s[(2)) and of course the Weyl algebra A;. We refer to [2] for details.
We give some examples of TGWAs of higher rank.

2.2.1. Quantized Weyl algebras
Let A = (4;;) be an n x n matrix with nonzero complex entries such that A;; = k;il. Let

q=1(q1,--.,qn) be an n-tuple of elements of C\{0, 1}. The nth quantized Wey] algebra A?{A is
the C-algebra with generators x;, y;, | <i < n, and relations

XiXj = qiAijXjX;, YiYji=Xij¥yjVis (2.6)
Xiyj=AjiyjXi, XjYi =qihijYiXj, 2.7
i—1
xiyi — qiyixi =1+ Y _(q — Dyixi, (2.8)
k=1
for 1 <i < j<n Let R=C[f,...,1,] be the polynomial algebra in n variables and o; the

(C-algebra automorphisms defined by
tjs j < i’
oi(tj) =1 1+qiti + X (qx — Dix,  j =i, 2.9)
qil‘j, J > 1.
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One can check that the o; commute. Let g = (14);, jen be defined by w;; = Aj; and pj; = giA;j
fori < j.Letalsoo = (01,...,0,) and £ = (1, ..., t;). One can show that the maximal graded
ideal of the TGWC A'(R, 0, t, ) is generated by the elements

XiXj—qirij XX, YiY; — XYY, 1<i<j<n.
Thus AZ’A is isomorphic to the TGWA A(R,o,t, p) viax; —= X;, yi — Y.

2.2.2. Q;j-CCR
Let (Qij)?,j:1 be an d x d matrix with complex entries such that Q;; = ijil ifi # j and Ay
be the algebra generated by elements a;, al?*, 1 <i <d, and relations

* * * *
a; ai — Qiiaiai = 1, a;aj = Qijajal- s

aiaj = Qjaja;, aiaj—Q,jajai,

where 1 <i,j<dandi# j.Let R=Clt,...,1t7] and define the automorphisms o; of R by
oi(tj)=t;ifi # jand 0;(t;) =1+ Q;;t;. Let u;; = Qj; for all i, j. Then Ay is isomorphic to
the TGWA A(R, (01,...,03), (t1,..., 1), )L).

2.2.3. Mickelsson and OGZ algebras

In both of the above examples the generators X; and X; commute up to a multiple of the
ground field. This need not be the case as shown in [6], where it was shown that Mickelsson step
algebras and extended orthogonal Gelfand—Zetlin algebras are TGWAs.

2.3. Weight modules

Let A be a TGWC or a TGWA. Let Max(R) denote the set of all maximal ideals in R. A mod-
ule M over A is called a weight module if

M= EB M,

meMax(R)

where
My ={veM|mv=0}

The support, supp(M), of M is the set of all m € Max(R) such that M, # 0. A weight module is
locally finite if all the weight spaces My,, m € supp(M), are finite-dimensional over the ground
field K.

Since the o; are pairwise commuting, the free abelian group Z" acts on R as a group of
K -algebra automorphisms by

g(r) = Gfloégz o (r) (2.10)

for g =(g1,...,8n) € Z" and r € R. Then Z" also acts naturally on Max(R) by g(m) = {g(r) |
r € m}. Note that
XiMyw € Mo;m)y and YiMy S M,

~lm)

@2.11)
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for any m € Max(R). If a € A is homogeneous of degree g € Z", then by using (2.1) and (2.11)
repeatedly one obtains the very useful identities

a-r=g(r)-a, r-a=a-(—g)(r), (2.12)
forr € R and
aMy € Mg (2.13)
for m € Max(R).
2.4. Subalgebras leaving the weight spaces invariant
Let w € Max(R) be an orbit under the action of Z" on Max(R) defined in (2.10). Let
T =Ty ={g€Z"| g(m)=m}, (2.14)

where m is some point in w. Since Z" is abelian, Z does not depend on the choice of m from w.
Define

Bw) = P A, (2.15)

8E€Ly,

Since A is Z"-graded and since Z], is a subgroup of Z", B(w) is a subalgebra of A and, by
Corollary 3.4, R = A C B(w). Let m € w and suppose that M is a simple weight A-module with
m € supp(M). Since M is simple we have supp(M) C w. Using (2.13) it follows that B(w) M, C
My, and by definition M, is annihilated by m hence also by the two-sided ideal (m) in B(w)
generated by m. Thus My, is naturally a module over the algebra

B = B(w)/(m). (2.16)

By Proposition 7.2 in [6] (see also Theorem 18 in [4] for a general result), My, is a simple By -
module, and any simple By-module occurs as a weight space in a simple weight A-module.
Moreover, two simple weight A-modules M, N are isomorphic if and only if My, and Ny, are
isomorphic as By,-modules. Therefore we are led to study the algebra By, and simple modules
over it.

3. Preliminaries
3.1. Reduced words

Let L = {X;}ien U {Yi}ien- By aword (a; Z1, ..., Zy) in A we will mean an element a in
A which is a product of elements from the set L, together with a fixed tuple (Zy, ..., Z;) of
elements from L such that a = Z; - ... - Z;. When referring to a word we will often write
a=2Z2Zy...Zx € Atodenote the word (a; Z1, ..., Z) or just write a € A, suppressing the fixed
representation of a as a product of elements from L.
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Set X! =Y; and Y = X;. Foraword a = Z ... Z; € A we define
A =75 Z5 ... ZE

In the special case when (;; = uj; for all i, j then by (2.1)—(2.3) there is an anti-involution *
on A’,i.e.a K-linear map from A’ to itself such that (¢*)* = a and (ab)* = b*a* foralla,b e A'.
It is defined by X l* =Y;,and r* =r forr € R. Since [* = I this anti-involution carries over to A.

Definition 3.1. A word Z; ... Z; will be called reduced if
Zi#Z; fori,jek
and
ZieXhen = Zj€Xihren ViZi

For example Y1 Y>Y] X3 is reduced whereas Y Y> X and Y| X» Y3 are not. The following lemma
and corollary explains the importance of the reduced words.

Lemma 3.2. Any word b in A can be written b=a -r =r' - a, where a is a reduced word, and
!/
r,r' € R.

Proof. All the Y’s can be moved to the left while simultaneously moving cancellations like X;Y;,
if any, to the right with possible twisting by an automorphism. O

Corollary 3.3. Each Ay, g € W, is generated as a right (and also as a left) R-module by the
reduced words of degree g.

Corollary 3.4. The degree zero subspace Ag of A is equal to R.
Proof. The empty word 1 is the only reduced word of degree 0. O

Lemma 3.5. Suppose * defines an anti-involution on A. Let p be a prime ideal of R. Let g € 7
andlet a € Ag. If ba & p for some b € A_, then a*a ¢ y.

Proof. Since p is prime, and ba € R we have
p # (ba)? = (ba)*ba = a*b*ba = a*a - (— dega)(b*b)
so in particular a*a ¢ p. O

Remark 3.6. If we assume a and b to be words in the formulation of Lemma 3.5, one can easily
show that the statement remains true without the restriction on * to be an anti-involution.
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3.2. Inner breaks and canonical modules

Let A be a TGWC or a TGWA and let M be a simple weight module over A. In [7] Remark 1
it was noted that the problem of describing simple weight modules over a TGWC is wild in
general. This is a motivation for restricting attention to some subclass which has nice properties.
In [7] the following definition was made.

Definition 3.7. The support of M has no inner breaks if for all m € supp(M),
tiem = o;j(m)é¢supp(M), and
oit)em = o '(m)¢supp(M).

We introduce the following property.

Definition 3.8. We say that M has no proper inner breaks if for any m € supp(M) and any word
a with aMy, # 0 we have a*a ¢ m.

Observe that whether or not a*a € m for a word a does not depend on the particular repre-
sentation of a as a product of generators. Note also that to prove that a simple weight module
M has no proper inner breaks, it is sufficient to find for any m € supp(M) and any word a with
aMy, #0aword b € A of degree — dega such that ba ¢ m because then a*a ¢ m automatically
by Remark 3.6. In fact one can show that a simple weight module M has no proper inner breaks
if (and only if) there exists an m € supp(M) such that for any reduced word a € A with aMy, # 0
and aM, € M, there is a word b of degree —dega such that ba ¢ m. However we will not use
this result.

The choice of terminology in Definition 3.8 is motivated by the following proposition.

Proposition 3.9. If M has no inner breaks, then M has no proper inner breaks either.

Proof. Let m € supp(M) and @ = Z;...Z; € A be a word such that aMy, # 0. Thus
Zi...ZxMy #0fori=1,...,k+ 1so0(2.13) implies that

(degZ; ... Zy)(m) € supp(M).

If M has no inner breaks, it follows that Z;"Zi ¢ (degZit1...Zy)(m) fori =1,..., k. Now
using (2.12),

a*a=Z;:...ZTZ1 ...Zk=Z;;...Z;ZQ...Zk(—degzz...Zk)(Zik21)

k
:~--:l_[(—degZi+1...Zk)(Z;‘Zi)¢m. (3.1)
i=1

Thus M has no proper inner breaks. O
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In [7], a simple weight module M was defined to be canonical if for any m, n € supp(M)
there is an automorphism o of R of the form

o=of'-....olf, ej==+land 1 <ij<n, forj=1,... .k,
such that o (m) = n and such that foreach j =1,...,k,
iy g0, ..ot (m) ife;=1, and (32)
o,»j(t,-_,.)¢al.€jf:1‘...oiik(m) ife; =—1. (3.3)

This definition can be reformulated as follows.

Proposition 3.10. M is canonical iff for any m, n € supp(M) there is a word a € A such that
aMy C My and a*a ¢ m.

Proof. Suppose M is canonical, and let m, n € supp(M). Let o be as in the definition of canoni-
cal module. Definea = Z; ... Zy where Z; = Xi; ife;j=1and Z; = Y, otherwise. Using (2.13)
we see that aM, € M,,. Also, (3.2) and (3.3) translates into

Z3Z; ¢ (degZji1 ... Zp)(m)

for j =1, ..., k. Using the calculation (3.1) and that m is prime we deduce that a*a ¢ m.
Conversely, givenaworda = Z; ... Z; € A with aM, C My, and a*a ¢ m, we define g; = 1
if Z; = X; and &; = —1 otherwise. Then from a*a ¢ m follows that o := ali' o oii" satisfies

(3.2) and (3.3) by the same reasoning as above. O
Corollary 3.11. If M has no proper inner breaks, then M is canonical.

Proof. We only need to note that since M is a simple weight module there is for each m,n €
supp(M) a word a such that 0 #aMyn S M,. O

Under the assumptions in [7] any canonical module has no inner breaks (see [7, Proposi-
tion 1]). However we have the following example of a TGWA A and a simple weight module M
over A which has no proper inner breaks, and thus is canonical by Corollary 3.11, but nonetheless
has an inner break.

Example 3.12. Let R = CJ[zq, 2] and define the C-algebra automorphisms o7 and o, of R by
oi(tj)y=—tj fori,j=12 Let p = [?(1)] Let A’ = A'(R,t,0, ) be the associated TGWC,
where t = (t1, 1), 0 = (01, 02). Then one can check that / = (X1 X7 + X2 X1, Y1 Yo+ YoY;). Let
M be a vector space over C with basis {v, w} and define an A’-module structure on M by letting

XM=Y M=0and

Xov=w, Xow =,

Yov=w, Yow = —v.
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It is easy to check that the required relations are satisfied and that / M = 0, hence M becomes an
A-module. Let m = (t1,, + 1) and n = (¢1, 1, — 1). Then

M=My,®M,, where M, =Cv, My=Cw

so M is a weight module. Any proper nonzero submodule of M would also be a weight module
by standard results. That no such submodule can exist is easy to check, so M is simple. One
checks that M has no proper inner breaks. But #{ € m and o1(m) = n € supp(M) so m is an inner
break.

4. The weight space preserving subalgebra and its irreducible representations

In this section, let A be a TGWC, m € Max(R) and let w be the Z"-orbit of m. Recall the
definition (2.14) of the set Z . Define the following subsets of Z":

Gm={g€Z" |a*a¢ mforsomeworda € Ay} and Gun=GmNZ.. 4.1

Let also ¢ : A — A/(m) denote the canonical projection, where (m) is the two-sided ideal in
A generated by m, and let R, = R/m be the residue field of R at m.

Lemma 4.1. Let g € G, Then
(Pm(Ag) = R - ¢m(a) = pm(a) - R 4.2)
foranyword a € Ag with a*a ¢ m.

Proof. Letb € A, be any elementand a € A, a word such that a*a ¢ m. We must show that there
is an r € R such that ¢y, (b) = @m (r)pm(a). Since a*a ¢ m and m is maximal, 1 — rja*a e m
for some r; € R. Set r = bria™. Then r € R and

b—ra= b(l - rla*a) € (m).
The last equality in (4.2) is immediate using (2.12). O

The following result was proved in [7, Lemma 8] for simple weight modules with so-called
regular support which in particular means that they have no inner breaks. It is still true in the
more general situation when M has no proper inner breaks. Recall the ideal / from the definition
of a TGWA.

Proposition 4.2. Suppose A is a TGWC. If M is a simple weight A-module with no proper inner
breaks, then IM = 0. Hence M is naturally a module over the associated TGWA A/I.

Proof. Since I is graded and M is a weight module, it is enough to show that (/ N Ag)My =0
for any g € Z" and any m € supp(M). Assume that a € I N A, and av # 0 for some v € My,.
Then ajv # 0 for some word a; in a. Since M has no proper inner breaks, aja; ¢ m so by
Lemma 4.1 there is an r € R such that av = ayrv. Thus 0 # afalrv = ai‘av which implies that
afa € R\m. In particular aja # 0 which contradicts thata € I. O
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We fix now for each g € G, a word ag € Ag such that a;ag ¢ m. For g =0 we choose a; = 1.

Lemma 4.3. For any g € G, h € G we have

(@) (agaj)*agay ¢ m so in particular g —h € Gm and G, is a subgroup of Z}},
(0) Pm(Ag)Pm(An) = Pm(AgAp) = Pm(Ag+n),

(©) AgipMy =AMy,

Proof. (a) We have

*
(aga;:) agay = ahaz,‘aga;f = aha;fh(a;ag). 4.3)

Now a;,"ag ¢ m so h(az,‘ag) ¢ h(m) =m. And

mF (a;:ah)z = aj(ana})an = ajap - (—h)(anay)

so ajay ¢ h(m) =m. Since m is maximal the right-hand side of (4.3) does not belong to m. Since
deg(agay) =g —h we obtain g —h € Gum. If in addition g € Gy, then g — h € 77, also since Z!
is a group. Thus g —h € G, 50 Gy, is a subgroup of Z.

(b) Since ¢, is a homomorphism, the first equality holds. By part (a), —h € G, so by part (a)
again, (agaih)*agafh ¢ m. Hence by Lemma 4.1, we have

Ym(Agin) = Rm - ¢m (agaih) C om(AgAp).

The reverse inclusion holds since {Ag}gezn is a gradation of A.
(¢) By part (a), g + h = g — (—h) € G. Thus by part (b),

AginMm = o (Agin)Mm = pm(Ag Ap) My = Ag Ay My S AgMpmy = AgMu.

By part (a), the same calculation holds if we replace g by g + & and & by —h, which gives the
opposite inclusion. O

Lemma 4.4. Let g € 7'\G . Then AgMy =0 for any simple weight module M over A with no
proper inner breaks.

Proof. Let a € A, be any word. Then a*a € m and hence if M is a simple weight module over
A with no proper inner breaks, aMy, = 0. Since the words generate A as a left R-module, it
follows that A;Mym =0. O

4.1. General case

Recall that (m) denotes the two-sided ideal in A generated by m. Since (m) is a graded ideal
in A, there is an induced Z"-gradation of the quotient A/(m) and ¢m(Ag) = (A/(m)),. Corre-
sponding to the decomposition Z! into the subset G, and its complement are two K -subspaces
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of the algebra By, = B(w)/(B(w) N (m)) which will be denoted by B,(nl) and B,(S), respectively.
In other words, By, = B‘(]p (&> Bﬁ?, where

BY = @ (A/m), and B = B (A/w),.

8€Gm 8€Zy\Gm
By Lemma 4.3(a), G, is a subgroup of the free abelian group Z", hence is free abelian itself
of rank k < n. Let sy, ..., s; denote a basis for G, over Z and let b; = ¢ (ay;) fori =1, ... k.
Note also that Ry, is an extension field of K and that Z acts naturally on Ry, as a group of
K -automorphisms. Let {p;} ;e be a basis for Ry, over K.

Theorem 4.5.

(a) Bé?’ My, = 0 for any simple weight module M over A with no proper inner breaks, and
(b) the b; are invertible and as a K -linear space, BQ) has a basis

{pib" .. b1 j e andl; € Zfor 1 <i <k} (4.4)
and the following commutation relations hold

bix=s;i(Mb;, i=1,...,k, A€ Rm, “4.5)
bibj = Xijbjb;, i,j=1,...,k, 4.6)
for some nonzero 1;j € Ry,.
Proof. (a) Let g € Z)\G,. By Lemma 4.4, Ag M, =0 and thus ¢y (Ag) My =0.
(b) Since s; € G, gom(a;‘[)bi € Ry \{0} and by Lemma 4.3(a) with g =0 and & = 5; we have
bigom(a;‘[) € Rm\{0}. So the b; are invertible. The relation (4.5) follows from (2.12). Next we

prove (4.6). From Lemma 4.3(a) and Lemma 4.1 we have ¢(Aj; +x_,~) = Ry b;b;. Switching i and
J it follows that (4.6) must hold for some nonzero A;; € Ry.

Finally we prove that (4.4) is a basis for Br(,i) over K. Linear independence is clear. Let
g € Gy, and write g = Zi l;s;. By repeated use of Lemma 4.3(b) we obtain that

Pm (Ag) = @m (Asgn(ll)sl)ull <o Pm (Asgn(lk)sk)ukl'
For I; = 0 the factor should be interpreted as Ry,. By Lemma 4.1,
Pm(Axs)! = Runb™!
for I > 0 so using (4.5) we get
I !
Pm(Ag) = Rub| ...b}.

The proof is finished. O
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4.2. Restricted case

In this subsection we will assume that K is algebraically closed. Moreover, we will assume
that the K -algebra inclusion K < Ry, is onto which is the case when R is finitely generated as
a K-algebra by the (weak) Nullstellensatz. Then Z acts trivially on Ry,. The structure of Bg)
given in Theorem 4.5 is then simplified in the following way.

Corollary 4.6. Let k =rank G, and let b; = o (ay;) fori =1,..., k where {s1, ..., s} is a Z-
basis for G . Then Bg) is the K -algebra with invertible generators by, ..., by and the relation

b,'bj =)»,'jbjb,', 1<i,j<k.

Using the normal form of a skew-symmetric integral matrix we will now show that B,(,{)
can be expressed as a tensor product of noncommutative tori. Consider the matrix (A;;)1<;, j<k
from (4.6).

Claim 4.7. If B‘(;) has a nontrivial irreducible finite-dimensional representation, then all the A;;
are roots of unity.

Proof. Indeed, let N be a finite-dimensional simple module over BQ) and leti € {1,...,k}.
Since K is algebraically closed, b; has an eigenvector 0 # v € N with eigenvalue ., say. Since
b; is invertible,  # 0. Let j # i and consider the vector b;v. It is also nonzero, since b; is
invertible, and it is an eigenvector of b; with eigenvalue A;; 1. Repeating the process, we obtain
a sequence

2
Wy AijlL, )»ij,bL,

of eigenvalues of b;. Since N is finite-dimensional, they cannot all be pairwise distinct, and thus
Aij is aroot of unity. O

For A € K, let T, denote the K-algebra with two invertible generators a and b satisfying
ab = Aba. T, (or its C*-analogue) is sometimes referred to as a noncommutative torus.

Theorem 4.8. Let k = rank G,. If all the ;; in (4.6) are roots of unity, then there is a root
of unity A, an integer r with 0 < r < |k/2] and positive integers p;, i = 1,...,r, with 1 =
p1lp2l...|pr such that

Bl(;) T @D ® - QT L,
where L is a Laurent polynomial algebra over K in k — 2r variables.

Proof. If k =1, then BQ) ~ K|[by, bl_l] andr =0.If k > 1, let p be the smallest positive integer
such that )Lf} =1 for all 7, j. Using that K is algebraically closed, we fix a primitive pth root of
unity ¢ € K. Then there are integers 6;; such that

hij =
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and
0ji = —0;j. 4.7

Equation (4.7) means that ® = (6;;) is a k x k skew-symmetric integer matrix. Next, consider a
(ON
change of generators of the algebra By,”:

bi > b} = Dbl .. plik (4.8)

Such a change of generators can be done if we are given an invertible k x k integer matrix
U = (u;j). The new commutation relations are

/1 Uil Uik 1.4j1 Ujk
b, = by bbby

ujUkj

o ujugy Ukjuj UkiUkj 5777
A A ""')‘lk ...)\kk ~bjbl~

=M1 Mk
= gzp.q Opqttpittqj b;'bz/"
Hence ® =UTOU. By Theorem I'V.1 in [8] there is a U such that ®' has the skew normal form

0 6
-6 0

where r < |k/2] is the rank of @, the 6; are nonzero integers, 6;|6;+1 and 0 is a k — 2r by k — 2r
zero matrix. Set A = ¢ and pi =0;/61 fori =1,...,r. The claim follows. O

The following result, describing simple modules over the tensor product of noncommutative
tori, is well known.

Proposition 4.9. Let M be a finite-dimensional simple module over
T=T7,®% --QT,,

where the A; are roots of unity in K. Then there are simple modules M; over Ty, such that, as
T -modules,

M=M Q- - -QM,.
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5. Explicit formulas for the induced modules

In this section we show explicitly how one can obtain simple weight modules with no proper
inner breaks over a TGWA (equivalently over a TGWC by Proposition 4.2) from the structure of
its weight spaces as B(w)-modules.

Since the B(w)-modules were described in the restricted case in Section 4.2, we obtain in
particular a description of all simple weight modules over A with no proper inner breaks and
finite-dimensional weight spaces if R is finitely generated over an algebraically closed field K.

5.1. A basis for M

Let M be a simple weight module over A with no proper inner breaks. Let {v;};c; be a basis
for My, over K. By Lemma 4.3(a), Gy, is the union of some cosets in Z"/Gy,. Let S C Z" be a
set of representatives of these cosets. For g € G, choose r; € R such that a[:, = rga; satisfies

(Pm(aé)ﬁ‘)m(ag) =1
Theorem 5.1. The set C = {agv; | g € S, i € I} is a basis for M over K.

Proof. First we show that C is linearly independent over K. Assume that
Z Agiagv; =0.
g.i

Then ), Agiagv; = 0 for each g since the elements belong to different weight spaces. Hence
0= ag, D i hgiagvi =) ; Agiv; for each g. Since v; is a basis over K, all the A,; must be zero.
Next we prove that C spans M over K. Since M is simple and My, # 0,

M:AMm=ZAng= Z Angzz Z Ang=ZAhMm

gezn ¢€Gm heS geh+Gum hes
by Lemmas 4.4 and 4.3(c). O
Corollary 5.2. supp(M) ={g(m) | g € S} and g(m) #h(m) ifg,.h € S, g #h.
Corollary 5.3. dim M = |S| - dim My, with natural interpretation of oo.
5.2. The action of A

Our next step is to describe the action of the X;, ¥; on the basis C for M. Let ¢ : Gm — S be
the function defined by requiring g — £(g) € Gm.

Theorem 5.4. Let M be a simple weight module over A with no proper inner breaks. Let g € S
and let v € My,. Then

Xiagv = {ah “bgiv ifg+ei€Gn,
0 otherwise,
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where h =¢(g + ;) and

bgi= (_h)(Xiagag/q+e,'—ha;l) “Agtei—h
and

ar-coiv ifg—ei€G ,
Yiagvz{ k*Cg,i if g 1 m
otherwise,

where k = (g — e;) and
Cgi = (_k)(Yiaga;}fe,-fkali) “dg—e;—k-
Remark 5.5. Note that

/!
g+te—

/

/ /
deg X;aza pap =degYiaga, , ja; =0

so the action of Z" on these elements is well defined. Thus we see that degb,; € G, and
degcgi € G, i.e. that by ; and ¢z ; belong to B(w). Therefore the action of these elements
on a basis element v; of M, can be determined if we know the structure of My, as an B(w)-
module. In the restricted case this was described in Section 4.2. Expanding the result in the basis
{v;} again and acting by a;, or a; we obtain a linear combination of basis elements from the set C.

Proof. Assume g+ ¢; € Gm. Let h = £(g + ¢;). Then
/
Xiagv = Xiagangeifhag-‘rei —hV
/ /
= (Xiagag+ei—hah)ahag-i-ei—hv
/ /
=an- (_h)(Xiagag-i-e,-—hah) “dgtei—hV.

Ifg+e ¢ G, then Xiagv =0by Lemma 4.4.
Assume g —¢; € G Let k = £(g — e;). Then

Yiagv =Yiagay , 1ag—e;—kv
= (Yiagaig—e,- k) Ak —;—kV
= Ak (_k)(yiagag/;—e,v—kal/c) tQg—ei—kV-
Ifg—e ¢ G, then Yiagv=0by Lemma4.4. O

Note that we do not need the technical assumptions in the proof of Theorem 1 in [7] under
which the exact formulas for simple weight modules were obtained.
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6. Application to quantized Weyl algebras

In this final part we will apply the methods developed in the previous sections to the problem
of describing representations of the quantized Weyl algebra, defined in Section 2.2. As mentioned
there, it is naturally a TGWA.

First we find the isotropy group and the set G, expressed as solution of systems of linear
equations (see Propositions 6.3 and 6.4). These sets are directly related to the structure of the
subalgebra B(w) (Theorem 4.5) and the support of a module (Corollary 5.2).

Then in Section 6.2 we give a complete classification of all locally finite simple weight mod-
ules with no proper inner breaks over a quantized Weyl algebra of rank two. The parameters ¢
and g, are allowed to be any numbers from C\{0, 1}. Example 6.7 shows that the assumption
that the modules have no proper inner breaks is not superfluous.

6.1. The isotropy group and Gm

Let R=C[t,...,ty] and fix m = (t; —«ay, ... s In — o) € Max(R). Let w be the orbit of m
under the action (2.10) of Z". Set [k]; = Zl;;éq’ for k € Z and g € C. Recall the definition
(2.9) of the automorphisms o; of R.

Proposition 6.1. Let (g1, ..., g,) € Z". Then

g g
op' .. oy (m)

= ([gllql +qi't —ai, [821g (14 (@1 — Dar) + 455t —an, ...,

j—1
[gilg; (1 —i—Z(qr - l)ar) —l—qlg‘ ...qf’tj —j,...,

r=1

n—1
[gnlg, (1 + Z(qr — 1)a,> +qf' . qat, — an>.

r=I1
Proof. Induction. O
For notational brevity we set §; = (¢i — 1)o; and y; =1 + B1 + B2 + -+ - + Bi. We also set
yo = 1. The numbers y; will play an important role in the next statements. By a j-break we mean
an ideal n € Max(R) such that 7; € n.
Corollary 6.2. For j =1, ...,n we have
tj eofl...ong"(m) < )/qufj)/j_l.
Thus w contains a j-break iff y; = q;? vj—1for some integer k.

Proof. By Proposition 6.1,

tieof' . . o8 (m)
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iff

-1
[gj]qj <1 + Z(qr - 1)0[,«) =Qj.

r=1

Multiply both sides with g; — 1 to get
(@7 —D)A+pi++pi_)=p;. O
The next proposition describes the isotropy subgroup Z, defined in (2.14).
Proposition 6.3. We have
Zy={geZ"|(qf"...q{' =1)y; =0, Vj=1,....n}. (6.1)
Proof. From Proposition 6.1, o' ... 05" (m) = m iff

g
a1 =[gi1ly +4q7 a1,
81l &

o = [82]q2(1 +(q1 — 1)051) +4q7 95" a2,
an =1Ignlg, (14 (@1 — Doty + -+ (gn—1 — Datn—1) + ¢ ... g5 ot

Multiply the ith equation by ¢; — 1. Then the system can be written

Bi=qi" —1+4qi B,
Br= (g5 = 1)A + B1) + 47" a5 Ba.

Bn=(qs" — 1)L+ B1+ -+ Bu—1) +q{" ..q%" Bn

or equivalently

1+ B =qf"(1+B),
L+ B+ B=q3 A+ B1) +4'q5 B,

L+ B4+ Bi=qgiA+Bi++Bu1)+q;" ...q5" B

Now for i from 1 to n — 1, replace the expression 1 + 81 + - -+ + §; in the right-hand side of
the (i 4+ 1)th equation by the right-hand side of the ith equation. After simplification, the claim
follows. O
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Note that it follows from (6.1) that the subgroup
Q={geZ"|q} =1forj=1,....,n} 6.2)
of Z" is always contained in Z] for any orbit w. Moreover, Z], = Q if o (viewed as a
subset of C") does not intersect the union of the hyperplanes in C" defined by the equations
I+(q—Dxi+---+(gj—Dx; =00 <j<n).
Another case of interest is when for any j, qf’ ...qff =1 implies g = --- = g; = 0. If for

instance the ¢; are pairwise distinct prime numbers this holds. Then Z = {0} unless 1 + 8; +
---+ B; =0forall j, ie. unless w contains the point

ng = (tl - (1 - ql)ilv t27 ey tn)
So in this very special case we have w = {no} and Z!! = Z".
‘We now turn to the set Gm defined in (4.1) which can here be described explicitly in terms of

m in the following way.

Proposition 6.4.

where
G ={k>01y;#4qlyj1, Yi=0,1,....k—1]
U{k<O0lyj #qiyj1, Vi=—1,-2,...k}.

Proof. From the relations of the algebra follows that the subspace spanned by the words in A,
is one-dimensional. Thus g € G, iff

Z, 8 Z B ZP Lz ¢, (6.3)

where ZF = X¥ if k > 0 and ZF = ¥;% if k < 0. Since 0;(r;) =1 for j < i, (6.3) is equivalent
to

Z, 5z .z 8z ¢ m.
Since m is prime, this holds iff Zj_gj Zf.j ¢ m foreach j. If g; =0 this is true. If g; > 0 we have
-8 8 s i—1,gi—1 —gj+1 - —gj+1
z, gfzﬁf - Yffxff :Y;’f Xff o) 8 (t) = =1;0; ‘(tj)...oj B,

while if g; <0

~8j 8 _ v 8iy8i _ vy 8i~ly—&-1 —g . ~8j ;.
Zj Zj —Xj Yj —Xj Yj o; (tj) = —aj(tj)...aj ().
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Since m is prime, g € Gm iffforall j=1,...,n
tj¢oi(m), i=0,...,g —1lifg;>0,
and
tjg¢oi(m), i=—1,-2...¢;ifg;<O0.
The claim now follows from Corollary 6.2. O
Corollary 6.5. If {1, a1, a2, ..., a,} is linearly independent over Q(qy, ..., qn), then Gm =7".
6.2. Description of simple weight modules over rank two algebras
Assume from now on that A is a quantized Weyl algebra of rank two. In this section we will

obtain a list of all locally finite simple weight A-modules with no proper inner breaks.
We consider first some families of ideals in Max(R). Define for A € C,

V= (-1 =00—g) L n-r1-g)7"),
n? = -1-q) " n-1),

1 _

and set ng =ny (2) . The following lemma will be useful.

Lemma 6.6. For A € C and integers k,l we have

ofoy(w”) =nl) 1. 6.4)
ofoy () =nis o ©.5)

Proof. Follows from Proposition 6.1 or by direct calculation using the definition (2.9) of
theo;. O

The following example shows the existence of locally finite simple weight modules M over
A which have some proper inner breaks.

Example 6.7. Assume that gjAi2 is a root of unity of order r. Let M be a vector space of

dimension r and let {vg, vy, ..., v,_1} be a basis for M. Define an action of A on M as follows.
Ve, k<r—1, _
Xive = Xovg = (q1212) Fuk
Vo, k=r— 1,

-1
Ylvkz{(l q) o1, k>0, Youe 0.

(1—g) w1, k=0,

It is easy to check that (2.6)—(2.8) hold so this defines a module over A. It is immediate that
M=My wherem=ng=(t — (1 —q1)"',n)soMisa weight module and M is simple by



J.T. Hartwig / Journal of Algebra 303 (2006) 42—-76 61

standard arguments. However, recalling Definition 3.8, M has some proper inner breaks in the
sense that m € supp(M), XoMm # 0 but Yo Xo My =0.

We will describe the isotropy groups of the different ideals in Max(R). Let K1 and K3 denote
the kernels of the group homomorphisms from Z x Z to the multiplicative group C\{0} which
map (k,l) to q]f and q{‘qé, respectively. Then Q = K| N K, where Q was defined in (6.2).
For m € Max(R), recall that Z%n = {g € Z* | g(m) = m}. The following corollary describes the
isotropy group Z% of any m € Max(R).

Corollary 6.8. Let A € C\{0} and n € Max(R)\{n\\ | x € C, i = 1,2}. Then we have the fol-
lowing equalities in the lattice of subgroups of 7.*:

Zy, =177
2 2
Zn(kl) =K Zn(z) =Ks.
=0

A
Z3

Proof. The family of ideals {ngl) | » € C} are precisely those for which y» = 0. And {n
A € C} are exactly those such that y; = 0. Thus the claim follows from Proposition 6.3. O

2 |
A

Let M be a simple weight A-module with no proper inner breaks and finite-dimensional
weight spaces, m = (f] — a1, — a2) € suppM and let w be the orbit of m. We consider
four main cases separately: m = ng, m = nfxl) for some A £ 0, m = nl(\z) for some A # 0 and
mé¢ {ng) | w e C, i =1,2}. Some of these cases will contain subcases. In each case we will
proceed along the following steps, which also illustrate the procedure for a general TGWA.

(1) Find the sets Z7, and Gm using Corollary 6.8 and Proposition 6.4. Write down G, = ZJ, N
G, and choos~e a basis {s1, ..., sg} for G, over Z.
(2) For each g € Gy, choose a word a, of degree g such that a;ag ¢ m.

(3) Using Corollary 4.6, describe Br(rl) and the finite-dimensional simple Br(,l)-module M.

(4) Choose a set of representatives S for Gm /Gm. By Theorem 5.1 we know then a basis C
for M.

(5) Calculate the action of X;, Y; on the basis using either relations (2.6)—(2.8) or Theorem 5.4.

We will use the following notation: Z§ = X% if k >0 and Z} =¥ j—k if k < 0. Note that the k

in Zf. should only be regarded as an upper index, not as a power. The choice of a; in step two
above is more or less irrelevant for a quantized Weyl algebra because each A, is one-dimensional.
Therefore we will always choose a, = Z‘f ! Z§2 where g = (g1, g2).
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6.3. The case m = ny

Here o1 = (1 — ql)_l, oy = 0 so that y; = y» = 0. By Corollary 6.8 we have Z,z.n =72
and from Proposition 6.4 one obtains that G = Z x {0}. Thus G = Z x {0} = Z - 51 with
s1 = (1, 0). Since G, has rank one, Corollary 4.6 implies that B,(é) is isomorphic to the Laurent
polynomial algebra C[T, T~'] in one variable. Therefore My, is one-dimensional, say My, =
Cvg and b1 = ¢ (le) = ¢m(X1), hence X, acts in M, as some nonzero scalar p. And

Yivo=p"'Y1X1v0=p" (1 —q1) " v.

Here S = {(0,0)} and C = {vg} is a basis for M with the following action:

X1vo = pvo, Xovg =0,

Yivo=p"'(1—qn) 'vo.  Yaup=0. (6.6)
That Z2il vg = 0 follows from Theorem 5.4 since (0, 1) ¢ Gm.
6.4. The case m = n&l), )

Here oy = (1—A)(1—¢1) " and ar = A(1 —g1) "' soy; = A and y» = 0. By Proposition 6.4,
(;Sﬁ) =Z and

GV =1k>0rs#q, Vi=0,1,....k—1}U{k<0|r#q], Vi=—1,-2,... k}.

We consider four subcases according to whether @ contains a 1-break or not and whether g
is a root of unity or not.

6.4.1. The case m = ng\l), A # 0, w contains a 1-break and q, is a root of unity

By Corollary 6.2 A = q{‘ for some k € Z. Let 01 be the order of g;. Then Zrzn =K =
(01Z) x Z. We can further assume that k € {0, 1,...,01 — 1}.

Note that XII‘Mm # 0 because deg X]f = (k,0) € Gy 50 YlkX”f ¢ m. Hence alk(m) € supp(M).

By Lemma 6.6, alk (m) = n(lk) = nil). We can thus change notation and let m = n(ll). Then by
q14,

Proposition 6.4 we have
Gm=10,-1,-2,...,—01 + 1} x Z.

And G =Gy N Z% = {0} x Z. By Corollary 4.6, BT(IP is a Laurent polynomial algebra in one
variable. Thus My, is one-dimensional with a basis vector, say vg. X» acts by some nonzero scalar
ponvgand Y, Xovg=(1— qz)_1 vo. X1 and Ylo' act as zero on My, by Lemma 4.4 because their
degrees (1, 0) and (—o1, 0) does not belong to Gm.

As a set of representatives for Gm /Gm we choose

§=1{(0,0),(—1,0), (=2,0),..., (—o1 + 1,0)}.
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By Corollary 5.2 we obtain that

1 1 1
supp(M) = {n", n;_)] e n;_)01+1 ).
1

By 5.1, the set
C={vj:=Y/vlj=0,1,....01 — 1}

is a basis for M. The following picture shows the support of the module and how the X; act on
it. Since the Y; just act in the opposite direction of the X; we do not draw their arrows:

X, X, X, X> X,
OO O O O
° T . Tl> o ° T ° -
Using Lemma 6.6,
Xyv; = X1¥{vo =] "of (t1)v0 = [jlg, )1
and from relations (2.6)—(2.8) follow that
Xovj = q{A{ZYi/szo = Pk'{qujl’js

Yavj =24, ¥/ Yovo = (1 — )~ p 7124 v;.

Thus the action on the basis {vg, ..., vy, -1} 18
0, j=0,
Xivj= . .
15 {[]]qlvjl, O0<j<o—1,

vit];, 0<j<o1—1,
Y]Uj: j+1 \] !
07 ]=01_1,

Xovj = pAiyqi v,

Yavj = (1 — g2~ p '35, 6.7)

6.4.2. The case m = n&l), A # 0, w contains a 1-break and q, is not a root of unity

Now there is a unique integer k € Z such that A = q{‘ .If k£ >0, then éﬂ) is the set of all
integers < k while if k < 0, then Gg) is all integers > k + 1.

If k >0, X¥ My, # 0 because (k,0) € G s0 YA XY ¢ m. Therefore o (m) = n!" € supp(M).
We change notation and let m = nil). Then (N}](%) ={..,—2,—-1,0} and G, = {0} x Z. We
choose § = {(i,0) | i <0}. Y2X> = (1 —q2)~! on My so My, = Cuyp, for a basis vector v, and
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Xovg = pvg for some p € C*. The set C = {v; := Yljvo | 7 <0} is abasis for M and we have the
following picture of supp(M):

X> X2 X>
) )0 O)

..... e — 0 — o -
One easily obtains the following action on the basis {v; | j < 0}:

0, j=0,

Xivj=1,. .
/ {[]]q] vji_1, Jj=1,

Yivj =vj41,

Xavj = prip4ivj,

Yavj =(1—g2) ' p7'a5,v;. (6.8)
The case k < 0 is analogous and yields a lowest weight representation with m = ﬂéljl as its
1

lowest weight. A basis for M is then
C={v;:=X{w|j>0},

where M, = Cvg and the action is given by

X1vj = vjt1,
09 ,]=()5
Yivy= . .
! {[_J]qlvj—l, j >0,

Xovj = (q172) "~ pvj,
Yavj = Al (1 —g2) o~ Mu;. (6.9)
6.4.3. The case m = nil), X # 0, w contains no 1-break and q is a root of unity
By Corollary 6.2, A # qll‘ for all k € Z. So by Proposition 6.4, Gy = Z%. Gy = (01Z) X Z
and we can choose S ={0, 1, ...,0; — 1} x {0}. From

X' X0 = (qir2) " Xo X' = A75 Xo X |

and Corollary 4.6 follows that B](,P 2 T,o;. It can only have finite-dimensional irreducible rep-
12

resentations if k?ﬁ is a root of unity. Assuming this, any such representation is r-dimensional,
where r is the order of )ffé, and is parametrized by C* x C* 3 (p, u) with basis

Mm:Span{vj :=Xév()|j=0,1,..-,r—1},

where X 101 vg = pvg and relations
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01 o1j
X vj= Ay pvj,
virl, 0<j<r—1,

Xov; =
20 {,uvg, j=r—1.

Therefore by Theorem 5.1,
M = Span{w;; = X{v; |0<i <o, 0<j<r}.

Using the commutation relations and the formulas in Lemma 6.6 we can write down the action
as follows:

Wit1,)s 0<i<or—1,
Xlw, { o1j .
12 ,Ow()], l=0]_17
_a=mna-an™hy; ””p YWoy—1,j, i=0,
(1—)»611 Y1 —q) " wizy 0<i<o—1,
wij+1, 0<j<r—1,
szl] _ 21 i,j+1 . X J
21/“1)1 0, j=r—1,

Ao (1 —g2) w1, j=0,
Y2wij={ 121 ( q2) ir—1, ] (6.10)

Mo —g2)twi o, 0<j<r—1.

The action can be illustrated in the following way:

@xlﬂxlﬁ @X.O

o — >0 — >0 - o ——> o

e

6.4.4. The case m = n&l), A # 0, o contains no 1-break and q is not a root of unity

By Corollary 6.2, A # qi‘ for all k € Z. Now Z%n ={0} x Z so Gy = {0} X Z. My, is one-
dimensional with basis v, say, and X, = p on My, while Y, X, = A(1 — qz)’1 #0on My,. We
choose S = 7Z x {0}. Then a basis for M is

C:{vj::X{v0|j>O} {]—§] U()|j<0}
where we determine ¢; by requiring that X v; = v;4 for all j. Explicitly we have for j <0,

(1—qn)/
A =rg; A =2g7 ™ (1= 2q1)

gi=

Using the commutation relations and the formulas in Lemma 6.6 we get the action on M =
Span{v; | j € Z}:
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Xiv: =v; Xov: = _jA_j .
1V =Vj+1, 2Vj =gy " Aqp PVj,

vior,  Ywj=ahad —g) Ny, (6.11)

6.5. The case m = niz), L#£0
_ Here y1 =0 while y, = 1(gq2> — 1). By Corollary 6.2, » does not contain any breaks. We have
Gwm=7%and Gy =72, = K>.
We will need some lemmas in order to proceed.
Lemma 6.9. For k,l € Z we have
k1 Ky kl 71 7k

Z1Zy=qy My ZyZy, (6.12)

where | = max{0, [}.

Proof. Relations (2.6)—(2.8) can be rewritten in the more compact form

Z8Zh =g K ZL ZE k=1,
where §; ;1 is the Kronecker symbol. After repeated application of this, (6.12) follows. 0O

By Lemma 6.6 we have for &, € Z,

ofost)=10—-¢g)~" modm, (6.13)

okol(ts) = rgFgh modm. (6.14)

Lemma 6.10. Let k, [ € 7Z and let m = min{|k|, |{|}. Then, as operators on M,, we have

wo |z, kl >0,

AVARS il (6.15)
(I—q)™2zy™, k<0,

757, = z", k=0 6.16

272 )Lmqél—2]+(sgnl)m)m/2z,’2<+l’ Kl <0. (6.16)

Proof. Direct calculation using (6.13) and (6.14). For example if k > 0 and / < 0 we have
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VAVAED (O ORIED I (-)) S
= XAy e () = X5y gy =
—lq —I-1 —l—(m—1) »k+1
=Aq, Aqy ...Aq, m )Zer

_ —Im—m(m—1)/2 k+I
_Aqu 22 . O

Lemma 6.11. Let k, ] € 7Z and let m = min{|k|, |{|}. Then, as operators on My,

VAVARSWAVAS (6.17)
and
Z87) = c(k, 1) Z} 75, (6.18)
where
1, kl >0,
clk,l) = {qék—l)m—(sgnk—sgnl)mz/Z’ 4l <0 (6.19)

Proof. Follows directly from Lemma 6.10. O

Lemma 6.12. Let g = (g1, g2) € Z? = G, and set rg = @m (a;,“ag)*1 where @y, is the projection
R — R/m =K. Then

_ —-1)/2
rg — (1 _q1)|g1|()\l 1q582 )/ )‘gZ‘ (620)
and (ag)~' = redy = reZ5 82 Z %" as operators on My,.
Proof. We have
— 81 782\* 781 782 _ 7=827—81 781782 __ 781 781 78282
agag=(Z{'23") 2\' 2" = 2, 2, 2} 23 = 2, " 2{' 2, 73,

by Lemma 6.9. Thus by Lemma 6.10,
_ 1-2 2
§0m(a;ag) =1-q1) |81|)L|g2|q£ g2+g2)lg2l/
which proves the formula. The last statement is immediate. O

We consider the three subcases corresponding to the rank of the free abelian group K».

6.5.1. The case m=n\", A #0, rank K» = 0

Gm = K> ={0} so BY — R which is commutative, hence M, = Cvgy for some vg, and
S =72 Thus C = {agvo | g € 72} is a basis for M and using Lemmas 6.10 and 6.9 we obtain
that the action of X; is given by
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Ag+e; V0, 8120,

X =
14510 {(l—ql)_lag+elvo, g1 <0,

(q1212) 8 agie,vo, 8220,

Xpa,v9 = _
¢ { (q1712) 7810, Pagqe,v0, 2 <O.
The action of Y; on the basis is deduced uniquely from

Y1 X1agvo = (1 —q1)~ agvo,

Y2 Xoagvo = Aqy ¢'q, *agvo,
which hold by (6.13) and (6.14).

6.5.2. The case m = niz), A#0, rank Ky =1

6.21)

(6.22)

Let (a, b) be a basis element. Since G, = K> which is of rank one, B ~ C[T, T by
Corollary 4.6 so My, is one-dimensional. As before we let My, = Cvg. Then Z‘l’ Zé’ vg = pvg for

some p € C*.

We assume a # 0. The case b # 0 can be treated similarly. By changing basis, we can assume

that @ > 0. Choose S ={0, 1, ...,a — 1} x Z. The corresponding basis for M is

C={wj=XZjvw|0<i<a—1, jeZ}.

We now aim to apply Theorem 5.4. If 0 <7 < a — 1 then clearly X w;; = w;11,;. And

' i—b
Xiwg_1,j = X?Z%Uo € (CZ% vo = Cwo, j_p.

We want to compute the coefficient of wog_j_p. Similarly to the proof of Theorem 5.4 we have,

using Lemma 6.12, Lemma 6.9 and (6.16),

Xiwa—1,j = Z§Z3v0 = (Z§ Z3 1y 25" 27 ) Z§ Zhvo
=ran (@) q A 23250 28 27 pug

—1_(b=1)/2\|b j+—b j—b
(A lqé )/ )I qu(1+ )k‘féj ),0C0w0,j—b,

where

1, b <0,
Co= Amin{j’b}q§1+2b—min{j,b}) min(ibl/2 g

Using Lemma 6.9 one easily get the action of X» on the basis. We conclude that

Wit1,j, 0<i<a-—1,
Xiwij = b—1)/2 j+=b) y a(j—b .
(qué )/ )‘blqla(] )x‘féf )pCOwo,j—h, i=a—1,
71 l .
gy Ay Wi, j =0,
Xowij = { Lo .
41 AMAqywij+1, Jj<O0.

(6.23)
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Fig. 1. Example of a weight diagram for M when m = n&z), A #0 and rank K» = 1. Here a =4, b = —2. The action of
X is indicated by — arrows, while = arrows are used for X».

The action of the Y; is uniquely determined by

YiXvij = (1—q) vy,

Y2Xovij = hay ' q; ' vij, (6.24)
which hold by (6.13)—(6.14). See Fig. 1 for a visual representation.

6.5.3. The case m = 11;2), A#£ O, rank K» =2
Let sy =a=(ay,ay), S2 = (b1, bp) be a basis for G, = K over Z. We can assume that
ai, by >0and thatd := |9 ' | > 0.

By Corollary 4.6, B,(n) ~ T, for some v which we will now determine. Using Lemmas 6.9
and 6.11 we have, as operators on My,

abz

ay 7a3 7by by _ —bjay, —bjay by 7ay by ~ax
VANV ARV ASE XD Ay c(az,bz)Z] VARV AV

— qflbz_b'a_z)nllllzbz_blazc(az, b2)Zf1 ZSZZT Z;z.
We conclude that Br(&) ~ T, where

V= qualbz P (az, b). (6.25)

The function ¢ was defined in (6.19), d = a1b> — bjaz and k := max{0, k} for k € Z. For My,
to be finite-dimensional it is thus necessary that this v is a root of unity. Assume this and let r
denote its order. Then dim M, = r. Let

{v()?vla"'avr—]} (6.26)

be a basis such that
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Z‘lll Zgzvj = vjpvj, 6.27)

vir1, O0<j<r—1,
z’l’lzgzvjz{ s / (6.28)

nvg, j=r—1,

where p, u € C*.

The next step is to determine a set § C Gm =77% of representatives for the set of cosets
Gm /Gw = Z*/K> which makes it possible to write down the action of the algebra later. We
proceed as follows.

Recall that Ko =Z - (a1, a2) ® Z - (b1, by). Let d; be the smallest positive integer such that
(d1,0) € K». We claim that d] = d/GCD(a3, b). Indeed di must be of the form kaj + /b1 where
k,l € Z and ka + b, = 0 with GCD(k, ) = 1. For such k, [, k|b>, l|ay and by / k = —ar /1 =:
p > 0. Then GCD(ay/ p, b2/ p) = 1 which implies that GCD (a3, b») = p. Thus dy = ka1 +1b1 =
(baay — axb1)/ p = d/GCD(ay, b>) as claimed.

Next, let d> denote the smallest positive integer such that some Kj-translation of (0, d>) lies
on the x-axis, i.e. such that

((0, dy) + Kz) NZ x {0} #0.
Such an integer exists because if we write GCD(ay, by) = kay + by, then
0, kaz +1by) — k(ay, a2) — 1(by, b2) = (—kay —1by,0).
On the other hand, if (0, d,) + ka+ [b € Z x {0}, i.e. if d» = kar + [b;, then GCD(a», by)|d>.
Therefore d, = GCD(ay, b>).
We also see that for any point in 72 of the form (x, d») thereis a g € K» such that (x, d>) + g €
Z x {0}. Also, (d1,0) € K, so for any point of the form (dj, y) there is a g € K> (namely

(—d1, 0)) such that (dq, y) + g € {0} x Z.
Suppose now that for some k,! € Z,

k(ai,ap) +1(b1,by) e KrN{0,1,...,d — 1} x{0,1,...,dp — 1}.
Then we would have (0, kay + 1by) — (ka+ [b) € Z x {0} and kaz + (b € {0, 1,...,dy — 1}
which contradicts the minimality of d> unless kay 4 (b, = 0. But in this case (ka; + (b1, 0) € K»
which contradicts the minimality of d; unless ka; + Ib; = 0. Hence K, N {0, 1,...,d; — 1} x
{0,1,...,dr, — 1} ={(0,0)}. We have shown that
S:={0,1,...,di — 1} x{0,1,...,dr — 1}

is a set of representatives for Z>/K». In particular we get from Corollary 5.3 that dim M is finite
and

dimM/dim My, = |S| =d1dr = a1by — bias.
We fix now integers a}, b, such that

dy = GCD(ay, by) = dhay + bby (6.29)
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SIS

Fig. 2. An example of the action on supp(M) when m = niz), A # 0 and rank Kp = 2. Here a = (2, —2), b= (3,2),
dy =5,dr, =2 and s = 2. The = arrows indicate the action of X| and the — arrows show the action of X».

and such that —aéal — b’2b1 €{0,1,...,d; — 1}. This can be done because for any p € Z,
(a5, by) := (ah + pby/da, b, — paz/d>) also satisfies ajas + bbby = d> but now

—ayay — byby = —(ay + pba/da)a; — (b — paz/dr)by = —aha, — byby — pd.
We set
s = —aéal — b’2b1. (6.30)
Let (7, j) € S. We have the following reductions in Z? modulo K»:

i +1,7), 0<i<d —1,
(1,0>+(i,j)={(’ 2 P=a

(05j)7 l=d1_17
@ j+1), 0<j<dr—1,
O,D+G =14 (i+s,0), j=da—1,i+s<d —1,

i+s—d,0), j=dr—1, j+s>d;—1.

From this we can understand how the X; act on the support of M, see Fig. 2 for an example. By
Theorem 5.1 the set

C={wijr =X\ XJu [0<i <di, 0< j <dy, 0<k <r}

is a basis for M where vy is the basis (6.26) for M.
If 0 <i < d; —1 weclearly have X w;jx = w;y1, k. Suppose i =d; — 1. Thenby Lemma 6.9,

ooy dijydij ] ydi
Xiwijk =X X5 =q Ay X5 X[ vk

Thus we must express X‘li1 in terms of Z{' Z5* and Zi" Zé’z. Since (d1, 0) = by /dra — ay /dob we
have

by /d. by »by\—az/d —1yd
(Z(llIZgZ) 2/ 2(211222) az/d — C] 1X11 (631)
as operators on My, for some constant C 1_1 which we must calculate.

Lemma 6.13. The constant C1 defined in (6.31) is given by
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Ta

-1 _ —by/d
¢ = ? 2(‘11

_ by b _ —
_alazk—alaz)ﬁ(é—n/z _ rsz/dz (qrb]hzkrzb]bz) F(F+D/2

bla bz/d2 1

blazazbz/d2
91 Y0, -braz/dn)

P c}, (6.32)

where the rg, g € Zz, are given by (6.20),

o - { (1 — gy)~minllarb2/d2l.1braz/dal} - gy by > 0,
: 1, axby <0,

k = max{0, k} for k € Z and dy = GCD(ay, b).
Proof. If b, > 0 for example, we have by Lemma 6.9

(Z]alzgz)bZ/dz _ ql—tlltﬁ)\—alaz . (qra]@k_a]az)z
lazk—alaz)bz/dz IZi”bz/dz Zflzbz/lh

ey

(‘11 1azk—alaz)d2(d2 1)/2Za|b2/dzza2b2/dz

When by < 0 we get a similar calculation where r, bafdy appears by Lemma 6.12. (Z, bigz bz)_‘u/ d

can analogously be expressed as a multiple of Z, b/ d2Z T02@2/% e then commute ZazbZ/ B

and Z, ~b1az/d using Lemma 6.9. As a last step we use Lemma 6.10 and obtain two more fac-
tors. O

We conclude that

Wit1, ks i <dp—1,

Xiwiji = q]dl)“]dzc pb2/dak] pbz/dzu twg j g i=d;—1.

Here
k—ay/dy=rk] + k] withO<k{ <r. (6.33)
Next we turn to the description of how X» acts on the basis C. If 0 < j < dy — 1 we have
Xowijk =q; )‘12 w;, j+1,k by Lemma 6.9. Suppose j =d, — 1. Then, as in the first step of the
proof of Theorem 5.4,
—iy —iyi ydo —i dy —dy s —5 dp
Xowije =q; A X1 X5 v =q; A X (X3 rsan Zy P Z)(Z27° 252 ) vk (6.34)
By (6.16) and (6.20),
d. —d —
X1 (s Zy P2y = (5.0 — a2
—(1—q)° ( -1 (dz 1)/2)‘12()»_16]( dr— 1)/2)dzz]

=(1- ql)s(kzqzz)_d2 z3. (6.35)
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We must express Z Zgz in the generators of the algebra B,(nl) in order to calculate its action
on v,

(z'z3) (2 23)" = ¢y ' 2 232, (636)

for some C, € C* since the degree on both sides are equal by (6.29) and (6.30). Similarly to the
proof of Lemma 6.13,

1@ @, —ajay\ah@y—1)/2 =By —biby, —biby\by(Bs—1)/2
C, =ra (‘11 Ao ) Ty (‘11 Ao )

—bybhardh ! axd,
a, 1 2“2“2);171172@!12(;&6‘&’, (6.37)
and
Y ayby >0,
=V (- g mintanl b gy <o

azaébzb/z >0,

Cy= : (1=2bb!, +(sgn bablyym'ym’ /2
A" g, 26y (sgnbaby)mym’/ ., aabbrbl, <0,

where m’ = min{|axaj|, |b2b}|}. Furthermore, letting

by+k=rkh+ki, where0<k)<r (6.38)
we have by (6.27)—(6.28),
(Zill Z;Z)aé (lejl Zgz)b/z Vg = vaékgpaéuké vké/ (6.39)

If i +s < d; — 1 we can now write down the action of X» on w;j; by combining (6.34)—(6.37),
(6.39) to get a multiple of w; o K- Howeverifi +s > d; — 1, we must reduce further because
then (i +s,0) ¢ S. Let

Ky —ax/dy =rky+ ki, where 0<kf <r. (6.40)
Then by the calculations for the action of X ‘ll‘ on My,
X' oy = XX g = oo R b o
Summing up, M has a basis
{wijk |10<i<d, 0<j<dy, 0<k <7}

and X, X» act on this basis as follows:
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Fig. 3. Weight diagram when m = n&z), A #0, rank Ky =2 and g1 = ¢q».

Wi41,j,ks i<d —1,

Xwijx = idi . id " /
J Jay, Jjaz by /dok by/d> , k s
q; A Crv 2/d 1p 2/ 21 W, j ks i=d —1,

Xowijk = (qih12) ™
Wi j+1k, 0K j<dy—1,
(1= q1)* A2q2)~Covk2 p2 ko, g 4
if j=dy—1landi+s<d—1, 6.41)
(1 —q1)* (A2qr)~® Cov®ka thsba/dz par+ba/dy | Kotk o) w,
ifj=drb—1landi+s>d; —1,

+s—d, ,O,kg’

where C is given by (6.32), C; by (6.37) and v by (6.25). The parameters p and © comes from
the action (6.27), (6.28) of B,(nl) on My, and &/, k! are defined in (6.33), (6.38) and (6.40).
The action of the Y; is uniquely determined by

YiXiwijx = (1 —q1)  wij,
YaXowijk = Aq; " g5 wijk. (6.42)
We remark that the case g; = ¢ corresponds to a = (a1, a2) = (1, —1). Then d, =1, d| =
d =|b; + by] and s = 1. X and X, will act on the support in the same direction, cyclically as

in Fig. 3. The explicit action can be deduced from the above more general case noting that here
Ky =k, kj =0 and

0, k<r—1,
1, k=r—-1,

k, k<r—1,

k/zk/z k/lzk/lz
b= { b= {0, k=r—1.

6.6. The case m ¢ {ng) lueC, i=1,2}

This is the generic case. We have Z%n = Q by Corollary 6.8. Our statements here generalize
without any problem to the case of arbitrary rank.

Assume first that the g; are roots of unity of orders o; (i = 1, 2) and that @ does not contain
any 1-breaks or 2-breaks. Then by Corollary 6.2 and Proposition 6.4 we have G, = Z2. Thus
G = (017) x (027). Moreover,

0] y02 __ 10102 v02 Ol
Xl XZ _)“12 X2 X]

SO B,(rll) o~ TAB o by Corollary 4.6. This algebra has only finite-dimensional representations if

1757 is a root of unity. Assuming this, let r be the order of A{}”?. Then there are p, u € C* and

M, has a basis vg, v1, ..., v,— such that
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01 10102
X vi =X, “pv;,
{v,~+1, 0<i<p-—-1,

X' = .
puvo, i=p-—1L

2

Choose S = {(_), 1,...,01 — 1} x {0, 1,...,00 — 1}. The corresponding basis for M is C =
{wijk == X’iXévk |0<i <oy, 0<j <02, 0<k <r}. The following formulas are easily de-
duced using (2.6)—(2.8):

¥ {wi+1,j,k, k<o —1,
1Wijk = . o1 (02k+))
Ala PWO ks k=o1—1,

[ i <oy —1,
Xowijk = (q1r12)"" -y wio41, l=02—1,i<r—1, (6.43)
[T l=0y—1,i=r—1.

The action of Y7, > is determined by
YiXiwijk =qp " (a1 = [ilg, wiji,
VaXowiji = g1 gy (2 — [lg, (1 + (g1 — D) wiji. (6.44)
In all other cases one can show using the same argument that dim M, = 1 for all n € supp(M)

and that M can be realized in a vector space with basis {w;;}, j)es, where I = I; x I is one of
the following sets:

Ng, xNg,, Ny xZ%, 75 xNg, Zx1Z,
ZEx7Z, ZxZ* 7FrxZF, 7T xZF,

where N; = {0, 1,...,d — 1}, Z* = {k € Z | &k > 0} and d; is the order of g; if finite. The action
of the generators is given by the following formulas:

Wit1,j, @i+1,)el,
dij . . :
Xiwij = pA{ywo j, (+1,/)¢1, I} =Ng and oy #[ilg,
0, otherwise,

wij+1, G J+1el,
uwio, (@, j+1) ¢l h=Ng

and a2 # [jlg, (1 + (g1 — D),
0, otherwise,

Yiwij =q; ™ (o = [ = 1y)
Wi—1,j, (i—1,j)el,

dij\— . . .
(A M wa g, =1, )¢ 1, T =Ng and oy # [i — 1y,

0, otherwise,

Xowij = (q1r2) " - (6.45)
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Yowij =277 q; (@2 = [ — g (14 (g1 — Dar))
Wi j+1, (G, j+1Del,
pwwig 1, G j+1)¢ 1, I =Ng,
and ay # [j — 113, (1 + (g1 — Dery),
0, otherwise.

(6.46)

Thus we have proved the following result.

Theorem 6.14. Let A be a quantized Weyl algebra of rank two with arbitrary parameters q1, q2 €
C\{0, 1}. Then any simple weight A-module with no proper inner breaks is isomorphic to one
of the modules defined by formulas (6.6), (6.7), (6.8), (6.9), (6.10), (6.11), (6.21)—(6.22), (6.23)—
(6.24), (6.41)-(6.42), (6.43)—(6.44) or (6.45)—(6.46).
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