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Abstract

We present methods and explicit formulas for describing simple weight modules over twisted generalized
Weyl algebras. When a certain commutative subalgebra is finitely generated over an algebraically closed
field we obtain a classification of a class of locally finite simple weight modules as those induced from
simple modules over a subalgebra isomorphic to a tensor product of noncommutative tori. As an application
we describe simple weight modules over the quantized Weyl algebra.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Bavula defined in [2], [1] the notion of a generalized Weyl algebra (GWA) which is a class of
algebras which include U(sl(2)), Uq(sl(2)), the algebras in [9], down-up algebras, and the Weyl
algebra, as examples. In addition to various ring theoretic properties, the simple modules were
also described for some GWAs in [2]. In [5] all simple and indecomposable weight modules of
GWAs of rank (or degree) one were classified.

So-called higher rank GWAs were defined in [2] and in [3] the authors studied indecomposable
weight modules over certain higher rank GWAs.

In [7], with the goal to enrich the representation theory in the higher rank case, the authors
defined the twisted generalized Weyl algebras (TGWA). This is a class of algebras which include
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all higher rank GWAs (if a certain subring R is commutative and has no zero divisors) and also
many algebras which can be viewed as twisted tensor products of rank one GWAs, for example
certain Mickelsson step algebras and extended Orthogonal Gelfand–Zetlin algebras [6]. Under a
technical assumption on the algebra formulated using a biserial graph, some torsion-free simple
weight modules were described in [7]. Simple graded weight modules were studied in [6] using
an analogue of the Shapovalov form.

In this paper we describe a more general class of locally finite simple weight modules over
TGWAs using the well-known technique of considering the maximal graded subalgebra which
preserves the weight spaces. It is known that under quite general assumptions (see Theorem 18 in
[4]) any simple weight module over a TGWA is a unique quotient of a module which is induced
from a simple module over this subalgebra. Our main results are the description of this subalgebra
under various assumptions (Theorems 4.5 and 4.8) and the explicit formulas (Theorem 5.4) of
the associated module of the TGWA. In contrast to [7], we do not assume that the orbits are
torsion-free and we allow the modules to have some inner breaks, as long as they do not have
any so-called proper inner breaks (see Definition 3.8). The weight spaces will not in general be
one-dimensional in our case, which was the case in [6,7].

Moreover, as an application we classify the simple weight modules without proper inner
breaks over a quantized Weyl algebra of rank two (Theorem 6.14).

The paper is organized as follows. In Section 2 the definitions of twisted generalized Weyl
constructions and algebras are given together with some examples. Weight modules and the
subalgebra B(ω) are defined.

In Section 3 we first prove some simple facts and then define the class of simple weight
modules with no proper inner breaks. We also show that this class properly contains all the
modules studied in [7].

Section 4 is devoted to the description of the subalgebra B(ω). When the ground field is alge-
braically closed and a certain subalgebra R is finitely generated, we show that it is isomorphic to
a tensor product of noncommutative tori for which the finite-dimensional irreducible representa-
tions are easy to describe.

In Section 5 we specify a basis and give explicit formulas for the irreducible quotient of the
induced module.

Finally, in Section 6 we consider as an example the quantized Weyl algebra and determine
certain important subsets of Zn related to B(ω) and the support of modules as solutions to some
systems of equations. In the rank two case we describe all simple weight modules with finite-
dimensional weight spaces and no proper inner breaks.

2. Definitions

2.1. The TGWC and TGWA

Fix a positive integer n and set n = {1,2, . . . , n}. Let K be a field, and let R be a commutative
unital K-algebra, σ = (σ1, . . . , σn) be an n-tuple of pairwise commuting K-automorphisms of R,
μ = (μij )i,j∈n be a matrix with entries from K∗ := K\{0} and t = (t1, . . . , tn) be an n-tuple of
nonzero elements from R. The twisted generalized Weyl construction (TGWC) A′ obtained from
the data (R,σ , t,μ) is the unital K-algebra generated over R by Xi,Yi (i ∈ n) with the relations

Xir = σi(r)Xi, Yir = σ−1(r)Yi, for r ∈ R, i ∈ n, (2.1)
i
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YiXi = ti , XiYi = σi(ti), for i ∈ n, (2.2)

XiYj = μijYjXi, for i, j ∈ n, i �= j. (2.3)

From the relations (2.1)–(2.3) follows that A′ carries a Zn-gradation {A′
g}g∈Zn which is uniquely

defined by requiring

degXi = ei, degYi = −ei, deg r = 0, for i ∈ n, r ∈ R,

where ei = (0, . . . ,
i

1, . . . ,0). The twisted generalized Weyl algebra (TGWA) A = A(R,σ , t,μ)

of rank n is defined to be A′/I , where I is the sum of all graded two-sided ideals of A′ intersect-
ing R trivially. Since I is graded, A inherits a Zn-gradation {Ag}g∈Zn from A′.

Note that from relations (2.1)–(2.3) follows the identity

XiXj ti = XjXiμjiσ
−1
j (ti) (2.4)

which holds for i, j ∈ n, i �= j . Multiplying (2.4) from the left by μijYj we obtain

Xi

(
ti tj − μijμjiσ

−1
i (tj )σ

−1
j (ti)

) = 0 (2.5)

for i, j ∈ n, i �= j . One can show that the algebra A′, hence A, is nontrivial if one assumes that
ti tj = μijμjiσ

−1
i (tj )σ

−1
j (ti) for i, j ∈ n, i �= j . Analogous identities exist for Yi .

2.2. Examples

Some of the first motivating examples of a generalized Weyl algebra (GWA), i.e. a TGWC of
rank 1, are U(sl(2)), Uq(sl(2)) and of course the Weyl algebra A1. We refer to [2] for details.

We give some examples of TGWAs of higher rank.

2.2.1. Quantized Weyl algebras
Let Λ = (λij ) be an n × n matrix with nonzero complex entries such that λij = λ−1

ji . Let

q̄ = (q1, . . . , qn) be an n-tuple of elements of C\{0,1}. The nth quantized Weyl algebra A
q̄,Λ
n is

the C-algebra with generators xi, yi , 1 � i � n, and relations

xixj = qiλij xj xi, yiyj = λij yj yi, (2.6)

xiyj = λjiyj xi, xj yi = qiλij yixj , (2.7)

xiyi − qiyixi = 1 +
i−1∑
k=1

(qk − 1)yixi, (2.8)

for 1 � i < j � n. Let R = C[t1, . . . , tn] be the polynomial algebra in n variables and σi the
C-algebra automorphisms defined by

σi(tj ) =
⎧⎨
⎩

tj , j < i,

1 + qiti + ∑i−1
k=1(qk − 1)tk, j = i,

q t , j > i.

(2.9)
i j
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One can check that the σi commute. Let μ = (μij )i,j∈n be defined by μij = λji and μji = qiλij

for i < j . Let also σ = (σ1, . . . , σn) and t = (t1, . . . , tn). One can show that the maximal graded
ideal of the TGWC A′(R,σ , t,μ) is generated by the elements

XiXj − qiλijXjXi, YiYj − λijYjYi, 1 � i < j � n.

Thus A
q̄,Λ
n is isomorphic to the TGWA A(R,σ , t,μ) via xi �→ Xi , yi �→ Yi .

2.2.2. Qij -CCR
Let (Qij )

d
i,j=1 be an d × d matrix with complex entries such that Qij = Q−1

ji if i �= j and Ad

be the algebra generated by elements ai, a
∗
i , 1 � i � d , and relations

a∗
i ai − Qiiaia

∗
i = 1, a∗

i aj = Qijaja
∗
i ,

aiaj = Qjiaj ai, a∗
i a∗

j = Qija
∗
j a∗

i ,

where 1 � i, j � d and i �= j . Let R = C[t1, . . . , td ] and define the automorphisms σi of R by
σi(tj ) = tj if i �= j and σi(ti) = 1 + Qiiti . Let μij = Qji for all i, j . Then Ad is isomorphic to
the TGWA A(R, (σ1, . . . , σn), (t1, . . . , tn),μ).

2.2.3. Mickelsson and OGZ algebras
In both of the above examples the generators Xi and Xj commute up to a multiple of the

ground field. This need not be the case as shown in [6], where it was shown that Mickelsson step
algebras and extended orthogonal Gelfand–Zetlin algebras are TGWAs.

2.3. Weight modules

Let A be a TGWC or a TGWA. Let Max(R) denote the set of all maximal ideals in R. A mod-
ule M over A is called a weight module if

M =
⊕

m∈Max(R)

Mm,

where

Mm = {v ∈ M | mv = 0}.
The support, supp(M), of M is the set of all m ∈ Max(R) such that Mm �= 0. A weight module is
locally finite if all the weight spaces Mm, m ∈ supp(M), are finite-dimensional over the ground
field K .

Since the σi are pairwise commuting, the free abelian group Zn acts on R as a group of
K-algebra automorphisms by

g(r) = σ
g1
1 σ

g2
2 . . . σ

gn
n (r) (2.10)

for g = (g1, . . . , gn) ∈ Zn and r ∈ R. Then Zn also acts naturally on Max(R) by g(m) = {g(r) |
r ∈ m}. Note that

XiMm ⊆ Mσi(m) and YiMm ⊆ M −1 (2.11)

σi (m)
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for any m ∈ Max(R). If a ∈ A is homogeneous of degree g ∈ Zn, then by using (2.1) and (2.11)
repeatedly one obtains the very useful identities

a · r = g(r) · a, r · a = a · (−g)(r), (2.12)

for r ∈ R and

aMm ⊆ Mg(m) (2.13)

for m ∈ Max(R).

2.4. Subalgebras leaving the weight spaces invariant

Let ω ⊆ Max(R) be an orbit under the action of Zn on Max(R) defined in (2.10). Let

Zn
ω = Zn

m = {
g ∈ Zn | g(m) = m

}
, (2.14)

where m is some point in ω. Since Zn is abelian, Zn
ω does not depend on the choice of m from ω.

Define

B(ω) =
⊕
g∈Zn

ω

Ag. (2.15)

Since A is Zn-graded and since Zn
ω is a subgroup of Zn, B(ω) is a subalgebra of A and, by

Corollary 3.4, R = A0 ⊆ B(ω). Let m ∈ ω and suppose that M is a simple weight A-module with
m ∈ supp(M). Since M is simple we have supp(M) ⊆ ω. Using (2.13) it follows that B(ω)Mm ⊆
Mm and by definition Mm is annihilated by m hence also by the two-sided ideal (m) in B(ω)

generated by m. Thus Mm is naturally a module over the algebra

Bm := B(ω)/(m). (2.16)

By Proposition 7.2 in [6] (see also Theorem 18 in [4] for a general result), Mm is a simple Bm-
module, and any simple Bm-module occurs as a weight space in a simple weight A-module.
Moreover, two simple weight A-modules M,N are isomorphic if and only if Mm and Nm are
isomorphic as Bm-modules. Therefore we are led to study the algebra Bm and simple modules
over it.

3. Preliminaries

3.1. Reduced words

Let L = {Xi}i∈n ∪ {Yi}i∈n. By a word (a;Z1, . . . ,Zk) in A we will mean an element a in
A which is a product of elements from the set L, together with a fixed tuple (Z1, . . . ,Zk) of
elements from L such that a = Z1 · . . . · Zk . When referring to a word we will often write
a = Z1 . . .Zk ∈ A to denote the word (a;Z1, . . . ,Zk) or just write a ∈ A, suppressing the fixed
representation of a as a product of elements from L.
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Set X∗
i = Yi and Y ∗

i = Xi . For a word a = Z1 . . .Zk ∈ A we define

a∗ := Z∗
k · Z∗

k−1 · . . . · Z∗
1 .

In the special case when μij = μji for all i, j then by (2.1)–(2.3) there is an anti-involution ∗
on A′, i.e. a K-linear map from A′ to itself such that (a∗)∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A′.
It is defined by X∗

i = Yi , and r∗ = r for r ∈ R. Since I ∗ = I this anti-involution carries over to A.

Definition 3.1. A word Z1 . . .Zk will be called reduced if

Zi �= Z∗
j for i, j ∈ k

and

Zi ∈ {Xr}r∈n ⇒ Zj ∈ {Xr}r∈n, ∀j � i.

For example Y1Y2Y1X3 is reduced whereas Y1Y2X1 and Y1X2Y3 are not. The following lemma
and corollary explains the importance of the reduced words.

Lemma 3.2. Any word b in A can be written b = a · r = r ′ · a, where a is a reduced word, and
r, r ′ ∈ R.

Proof. All the Y ’s can be moved to the left while simultaneously moving cancellations like XiYi ,
if any, to the right with possible twisting by an automorphism. �
Corollary 3.3. Each Ag , g ∈ W , is generated as a right (and also as a left) R-module by the
reduced words of degree g.

Corollary 3.4. The degree zero subspace A0 of A is equal to R.

Proof. The empty word 1 is the only reduced word of degree 0. �
Lemma 3.5. Suppose ∗ defines an anti-involution on A. Let p be a prime ideal of R. Let g ∈ Zn

and let a ∈ Ag . If ba /∈ p for some b ∈ A−g then a∗a /∈ p.

Proof. Since p is prime, and ba ∈ R we have

p �� (ba)2 = (ba)∗ba = a∗b∗ba = a∗a · (−dega)
(
b∗b

)
so in particular a∗a /∈ p. �
Remark 3.6. If we assume a and b to be words in the formulation of Lemma 3.5, one can easily
show that the statement remains true without the restriction on ∗ to be an anti-involution.
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3.2. Inner breaks and canonical modules

Let A be a TGWC or a TGWA and let M be a simple weight module over A. In [7] Remark 1
it was noted that the problem of describing simple weight modules over a TGWC is wild in
general. This is a motivation for restricting attention to some subclass which has nice properties.
In [7] the following definition was made.

Definition 3.7. The support of M has no inner breaks if for all m ∈ supp(M),

ti ∈ m ⇒ σi(m) /∈ supp(M), and

σi(ti) ∈ m ⇒ σ−1
i (m) /∈ supp(M).

We introduce the following property.

Definition 3.8. We say that M has no proper inner breaks if for any m ∈ supp(M) and any word
a with aMm �= 0 we have a∗a /∈ m.

Observe that whether or not a∗a ∈ m for a word a does not depend on the particular repre-
sentation of a as a product of generators. Note also that to prove that a simple weight module
M has no proper inner breaks, it is sufficient to find for any m ∈ supp(M) and any word a with
aMm �= 0 a word b ∈ A of degree −dega such that ba /∈ m because then a∗a /∈ m automatically
by Remark 3.6. In fact one can show that a simple weight module M has no proper inner breaks
if (and only if) there exists an m ∈ supp(M) such that for any reduced word a ∈ A with aMm �= 0
and aMm ⊆ Mm there is a word b of degree −dega such that ba /∈ m. However we will not use
this result.

The choice of terminology in Definition 3.8 is motivated by the following proposition.

Proposition 3.9. If M has no inner breaks, then M has no proper inner breaks either.

Proof. Let m ∈ supp(M) and a = Z1 . . .Zk ∈ A be a word such that aMm �= 0. Thus
Zi . . .ZkMm �= 0 for i = 1, . . . , k + 1 so (2.13) implies that

(degZi . . .Zk)(m) ∈ supp(M).

If M has no inner breaks, it follows that Z∗
i Zi /∈ (degZi+1 . . .Zk)(m) for i = 1, . . . , k. Now

using (2.12),

a∗a = Z∗
k . . .Z∗

1Z1 . . .Zk = Z∗
k . . .Z∗

2Z2 . . .Zk(−degZ2 . . .Zk)
(
Z∗

1Z1
)

= · · · =
k∏

i=1

(−degZi+1 . . .Zk)
(
Z∗

i Zi

)
/∈ m. (3.1)

Thus M has no proper inner breaks. �
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In [7], a simple weight module M was defined to be canonical if for any m,n ∈ supp(M)

there is an automorphism σ of R of the form

σ = σ
ε1
i1

· . . . · σεk

ik
, εj = ±1 and 1 � ij � n, for j = 1, . . . , k,

such that σ(m) = n and such that for each j = 1, . . . , k,

tij /∈ σ
εj+1
ij+1

. . . σ
εk

ik
(m) if εj = 1, and (3.2)

σij (tij ) /∈ σ
εj+1
ij+1

. . . σ
εk

ik
(m) if εj = −1. (3.3)

This definition can be reformulated as follows.

Proposition 3.10. M is canonical iff for any m,n ∈ supp(M) there is a word a ∈ A such that
aMm ⊆ Mn and a∗a /∈ m.

Proof. Suppose M is canonical, and let m,n ∈ supp(M). Let σ be as in the definition of canoni-
cal module. Define a = Z1 . . .Zk where Zj = Xij if εj = 1 and Zj = Yij otherwise. Using (2.13)
we see that aMm ⊆ Mn. Also, (3.2) and (3.3) translates into

Z∗
j Zj /∈ (degZj+1 . . .Zk)(m)

for j = 1, . . . , k. Using the calculation (3.1) and that m is prime we deduce that a∗a /∈ m.
Conversely, given a word a = Z1 . . .Zk ∈ A with aMm ⊆ Mn and a∗a /∈ m, we define εi = 1

if Zi = Xi and εi = −1 otherwise. Then from a∗a /∈ m follows that σ := σ
ε1
i1

· . . . · σεk

ik
satisfies

(3.2) and (3.3) by the same reasoning as above. �
Corollary 3.11. If M has no proper inner breaks, then M is canonical.

Proof. We only need to note that since M is a simple weight module there is for each m,n ∈
supp(M) a word a such that 0 �= aMm ⊆ Mn. �

Under the assumptions in [7] any canonical module has no inner breaks (see [7, Proposi-
tion 1]). However we have the following example of a TGWA A and a simple weight module M

over A which has no proper inner breaks, and thus is canonical by Corollary 3.11, but nonetheless
has an inner break.

Example 3.12. Let R = C[t1, t2] and define the C-algebra automorphisms σ1 and σ2 of R by
σi(tj ) = −tj for i, j = 1,2. Let μ = [ 0 1

1 0

]
. Let A′ = A′(R, t,σ ,μ) be the associated TGWC,

where t = (t1, t2),σ = (σ1, σ2). Then one can check that I = 〈X1X2 +X2X1, Y1Y2 +Y2Y1〉. Let
M be a vector space over C with basis {v,w} and define an A′-module structure on M by letting
X1M = Y1M = 0 and

X2v = w, X2w = v,

Y2v = w, Y2w = −v.
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It is easy to check that the required relations are satisfied and that IM = 0, hence M becomes an
A-module. Let m = (t1, t2 + 1) and n = (t1, t2 − 1). Then

M = Mm ⊕ Mn, where Mm = Cv, Mn = Cw

so M is a weight module. Any proper nonzero submodule of M would also be a weight module
by standard results. That no such submodule can exist is easy to check, so M is simple. One
checks that M has no proper inner breaks. But t1 ∈ m and σ1(m) = n ∈ supp(M) so m is an inner
break.

4. The weight space preserving subalgebra and its irreducible representations

In this section, let A be a TGWC, m ∈ Max(R) and let ω be the Zn-orbit of m. Recall the
definition (2.14) of the set Zn

ω. Define the following subsets of Zn:

G̃m = {
g ∈ Zn | a∗a /∈ m for some word a ∈ Ag

}
and Gm = G̃m ∩ Zn

ω. (4.1)

Let also ϕm : A → A/(m) denote the canonical projection, where (m) is the two-sided ideal in
A generated by m, and let Rm = R/m be the residue field of R at m.

Lemma 4.1. Let g ∈ G̃m. Then

ϕm(Ag) = Rm · ϕm(a) = ϕm(a) · Rm (4.2)

for any word a ∈ Ag with a∗a /∈ m.

Proof. Let b ∈ Ag be any element and a ∈ Ag a word such that a∗a /∈ m. We must show that there
is an r ∈ R such that ϕm(b) = ϕm(r)ϕm(a). Since a∗a /∈ m and m is maximal, 1 − r1a

∗a ∈ m

for some r1 ∈ R. Set r = br1a
∗. Then r ∈ R and

b − ra = b
(
1 − r1a

∗a
) ∈ (m).

The last equality in (4.2) is immediate using (2.12). �
The following result was proved in [7, Lemma 8] for simple weight modules with so-called

regular support which in particular means that they have no inner breaks. It is still true in the
more general situation when M has no proper inner breaks. Recall the ideal I from the definition
of a TGWA.

Proposition 4.2. Suppose A is a TGWC. If M is a simple weight A-module with no proper inner
breaks, then IM = 0. Hence M is naturally a module over the associated TGWA A/I .

Proof. Since I is graded and M is a weight module, it is enough to show that (I ∩ Ag)Mm = 0
for any g ∈ Zn and any m ∈ supp(M). Assume that a ∈ I ∩ Ag and av �= 0 for some v ∈ Mm.
Then a1v �= 0 for some word a1 in a. Since M has no proper inner breaks, a∗

1a1 /∈ m so by
Lemma 4.1 there is an r ∈ R such that av = a1rv. Thus 0 �= a∗

1a1rv = a∗
1av which implies that

a∗a ∈ R\m. In particular a∗a �= 0 which contradicts that a ∈ I . �
1 1
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We fix now for each g ∈ G̃m a word ag ∈ Ag such that a∗
gag /∈ m. For g = 0 we choose ag = 1.

Lemma 4.3. For any g ∈ G̃m, h ∈ Gm we have

(a) (aga
∗
h)∗aga

∗
h /∈ m so in particular g − h ∈ G̃m and Gm is a subgroup of Zn

ω,
(b) ϕm(Ag)ϕm(Ah) = ϕm(AgAh) = ϕm(Ag+h),
(c) Ag+hMm = AgMm.

Proof. (a) We have

(
aga

∗
h

)∗
aga

∗
h = aha

∗
gaga

∗
h = aha

∗
hh

(
a∗
gag

)
. (4.3)

Now a∗
gag /∈ m so h(a∗

gag) /∈ h(m) = m. And

m �� (
a∗
hah

)2 = a∗
h

(
aha

∗
h

)
ah = a∗

hah · (−h)
(
aha

∗
h

)
so aha

∗
h /∈ h(m) = m. Since m is maximal the right-hand side of (4.3) does not belong to m. Since

deg(aga
∗
h) = g − h we obtain g − h ∈ G̃m. If in addition g ∈ Gm then g − h ∈ Zn

ω also since Zn
ω

is a group. Thus g − h ∈ Gm so Gm is a subgroup of Zn
ω.

(b) Since ϕm is a homomorphism, the first equality holds. By part (a), −h ∈ Gm so by part (a)
again, (aga

∗−h)
∗aga

∗−h /∈ m. Hence by Lemma 4.1, we have

ϕm(Ag+h) = Rm · ϕm

(
aga

∗−h

) ⊆ ϕm(AgAh).

The reverse inclusion holds since {Ag}g∈Zn is a gradation of A.
(c) By part (a), g + h = g − (−h) ∈ G̃m. Thus by part (b),

Ag+hMm = ϕm(Ag+h)Mm = ϕm(AgAh)Mm = AgAhMm ⊆ AgMh(m) = AgMm.

By part (a), the same calculation holds if we replace g by g + h and h by −h, which gives the
opposite inclusion. �
Lemma 4.4. Let g ∈ Zn\G̃m. Then AgMm = 0 for any simple weight module M over A with no
proper inner breaks.

Proof. Let a ∈ Ag be any word. Then a∗a ∈ m and hence if M is a simple weight module over
A with no proper inner breaks, aMm = 0. Since the words generate Ag as a left R-module, it
follows that AgMm = 0. �
4.1. General case

Recall that (m) denotes the two-sided ideal in A generated by m. Since (m) is a graded ideal
in A, there is an induced Zn-gradation of the quotient A/(m) and ϕm(Ag) = (A/(m))g . Corre-
sponding to the decomposition Zn

ω into the subset Gm and its complement are two K-subspaces
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of the algebra Bm = B(ω)/(B(ω) ∩ (m)) which will be denoted by B
(1)
m and B

(0)
m , respectively.

In other words, Bm = B
(1)
m ⊕ B

(0)
m , where

B(1)
m =

⊕
g∈Gm

(
A/(m)

)
g

and B(0)
m =

⊕
g∈Zn

ω\Gm

(
A/(m)

)
g
.

By Lemma 4.3(a), Gm is a subgroup of the free abelian group Zn, hence is free abelian itself
of rank k � n. Let s1, . . . , sk denote a basis for Gm over Z and let bi = ϕm(asi ) for i = 1, . . . , k.
Note also that Rm is an extension field of K and that Zn

ω acts naturally on Rm as a group of
K-automorphisms. Let {ρj }j∈J be a basis for Rm over K .

Theorem 4.5.

(a) B
(0)
m Mm = 0 for any simple weight module M over A with no proper inner breaks, and

(b) the bi are invertible and as a K-linear space, B
(1)
m has a basis

{
ρjb

l1
1 . . . b

lk
k | j ∈ J and li ∈ Z for 1 � i � k

}
(4.4)

and the following commutation relations hold

biλ = si(λ)bi, i = 1, . . . , k, λ ∈ Rm, (4.5)

bibj = λij bj bi, i, j = 1, . . . , k, (4.6)

for some nonzero λij ∈ Rm.

Proof. (a) Let g ∈ Zn
ω\Gm. By Lemma 4.4, AgMm = 0 and thus ϕm(Ag)Mm = 0.

(b) Since si ∈ Gm, ϕm(a∗
si
)bi ∈ Rm\{0} and by Lemma 4.3(a) with g = 0 and h = si we have

biϕm(a∗
si
) ∈ Rm\{0}. So the bi are invertible. The relation (4.5) follows from (2.12). Next we

prove (4.6). From Lemma 4.3(a) and Lemma 4.1 we have ϕ(Asi+sj ) = Rmbibj . Switching i and
j it follows that (4.6) must hold for some nonzero λij ∈ Rm.

Finally we prove that (4.4) is a basis for B
(1)
m over K . Linear independence is clear. Let

g ∈ Gm and write g = ∑
i lisi . By repeated use of Lemma 4.3(b) we obtain that

ϕm(Ag) = ϕm(Asgn(l1)s1)
|l1| . . . ϕm(Asgn(lk)sk )

|lk |.

For li = 0 the factor should be interpreted as Rm. By Lemma 4.1,

ϕm(A±si )
l = Rmb±l

i

for l > 0 so using (4.5) we get

ϕm(Ag) = Rmb
l1
1 . . . b

lk
k .

The proof is finished. �
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4.2. Restricted case

In this subsection we will assume that K is algebraically closed. Moreover, we will assume
that the K-algebra inclusion K ↪→ Rm is onto which is the case when R is finitely generated as
a K-algebra by the (weak) Nullstellensatz. Then Zn

ω acts trivially on Rm. The structure of B
(1)
m

given in Theorem 4.5 is then simplified in the following way.

Corollary 4.6. Let k = rankGm and let bi = ϕm(asi ) for i = 1, . . . , k where {s1, . . . , sk} is a Z-

basis for Gm. Then B
(1)
m is the K-algebra with invertible generators b1, . . . , bk and the relation

bibj = λij bj bi, 1 � i, j � k.

Using the normal form of a skew-symmetric integral matrix we will now show that B
(1)
m

can be expressed as a tensor product of noncommutative tori. Consider the matrix (λij )1�i,j�k

from (4.6).

Claim 4.7. If B
(1)
m has a nontrivial irreducible finite-dimensional representation, then all the λij

are roots of unity.

Proof. Indeed, let N be a finite-dimensional simple module over B
(1)
m and let i ∈ {1, . . . , k}.

Since K is algebraically closed, bi has an eigenvector 0 �= v ∈ N with eigenvalue μ, say. Since
bi is invertible, μ �= 0. Let j �= i and consider the vector bjv. It is also nonzero, since bj is
invertible, and it is an eigenvector of bi with eigenvalue λijμ. Repeating the process, we obtain
a sequence

μ, λijμ, λ2
ijμ, . . .

of eigenvalues of bi . Since N is finite-dimensional, they cannot all be pairwise distinct, and thus
λij is a root of unity. �

For λ ∈ K , let Tλ denote the K-algebra with two invertible generators a and b satisfying
ab = λba. Tλ (or its C∗-analogue) is sometimes referred to as a noncommutative torus.

Theorem 4.8. Let k = rankGm. If all the λij in (4.6) are roots of unity, then there is a root
of unity λ, an integer r with 0 � r � �k/2� and positive integers pi , i = 1, . . . , r , with 1 =
p1|p2| . . . |pr such that

B(1)
m � Tλp1 ⊗ Tλp2 ⊗ · · · ⊗ Tλpr ⊗ L,

where L is a Laurent polynomial algebra over K in k − 2r variables.

Proof. If k = 1, then B
(1)
m � K[b1, b

−1
1 ] and r = 0. If k > 1, let p be the smallest positive integer

such that λ
p
ij = 1 for all i, j . Using that K is algebraically closed, we fix a primitive pth root of

unity ε ∈ K . Then there are integers θij such that

λij = εθij
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and

θji = −θij . (4.7)

Equation (4.7) means that Θ = (θij ) is a k × k skew-symmetric integer matrix. Next, consider a

change of generators of the algebra B
(1)
m :

bi �→ b′
i = b

ui1
1 · · ·buik

k (4.8)

Such a change of generators can be done if we are given an invertible k × k integer matrix
U = (uij ). The new commutation relations are

b′
ib

′
j = b

ui1
1 · · ·buik

k b
uj1
1 · · ·bujk

k

= λ
u1iu1j

11 . . . λ
ukiu1j

k1 · . . . · λu1iukj

1k . . . λ
ukiukj

kk · b′
j b

′
i

= ε
∑

p,q θpqupiuqj b′
j b

′
i .

Hence Θ ′ = UT ΘU . By Theorem IV.1 in [8] there is a U such that Θ ′ has the skew normal form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 θ1
−θ1 0

0 θ2
−θ2 0

. . .

0 θr

−θr 0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where r � �k/2� is the rank of Θ , the θi are nonzero integers, θi |θi+1 and 0 is a k − 2r by k − 2r

zero matrix. Set λ = εθ1 and pi = θi/θ1 for i = 1, . . . , r . The claim follows. �
The following result, describing simple modules over the tensor product of noncommutative

tori, is well known.

Proposition 4.9. Let M be a finite-dimensional simple module over

T := Tλ1 ⊗ · · · ⊗ Tλr ,

where the λi are roots of unity in K . Then there are simple modules Mi over Tλi
such that, as

T -modules,

M � M1 ⊗ · · · ⊗ Mr.
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5. Explicit formulas for the induced modules

In this section we show explicitly how one can obtain simple weight modules with no proper
inner breaks over a TGWA (equivalently over a TGWC by Proposition 4.2) from the structure of
its weight spaces as B(ω)-modules.

Since the B(ω)-modules were described in the restricted case in Section 4.2, we obtain in
particular a description of all simple weight modules over A with no proper inner breaks and
finite-dimensional weight spaces if R is finitely generated over an algebraically closed field K .

5.1. A basis for M

Let M be a simple weight module over A with no proper inner breaks. Let {vi}i∈I be a basis
for Mm over K . By Lemma 4.3(a), G̃m is the union of some cosets in Zn/Gm. Let S ⊆ Zn be a
set of representatives of these cosets. For g ∈ G̃m, choose rg ∈ R such that a′

g := rga
∗
g satisfies

ϕm(a′
g)ϕm(ag) = 1.

Theorem 5.1. The set C = {agvi | g ∈ S, i ∈ I } is a basis for M over K .

Proof. First we show that C is linearly independent over K . Assume that

∑
g,i

λgiagvi = 0.

Then
∑

i λgiagvi = 0 for each g since the elements belong to different weight spaces. Hence
0 = a′

g

∑
i λgiagvi = ∑

i λgivi for each g. Since vi is a basis over K , all the λgi must be zero.
Next we prove that C spans M over K . Since M is simple and Mm �= 0,

M = AMm =
∑
g∈Zn

AgMm =
∑

g∈G̃m

AgMm =
∑
h∈S

∑
g∈h+Gm

AgMm =
∑
h∈S

AhMm

by Lemmas 4.4 and 4.3(c). �
Corollary 5.2. supp(M) = {g(m) | g ∈ S} and g(m) �= h(m) if g,h ∈ S, g �= h.

Corollary 5.3. dimM = |S| · dimMm with natural interpretation of ∞.

5.2. The action of A

Our next step is to describe the action of the Xi,Yi on the basis C for M . Let ζ : G̃m → S be
the function defined by requiring g − ζ(g) ∈ Gm.

Theorem 5.4. Let M be a simple weight module over A with no proper inner breaks. Let g ∈ S

and let v ∈ Mm. Then

Xiagv =
{

ah · bg,iv if g + ei ∈ G̃m,
0 otherwise,
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where h = ζ(g + ei) and

bg,i = (−h)
(
Xiaga

′
g+ei−ha

′
h

) · ag+ei−h

and

Yiagv =
{

ak · cg,iv if g − ei ∈ G̃m,

0 otherwise,

where k = ζ(g − ei) and

cg,i = (−k)
(
Yiaga

′
g−ei−ka

′
k

) · ag−ei−k.

Remark 5.5. Note that

degXiaga
′
g+ei−ha

′
h = degYiaga

′
g−ei−ka

′
k = 0

so the action of Zn on these elements is well defined. Thus we see that degbg,i ∈ Gm and
deg cg,i ∈ Gm, i.e. that bg,i and cg,i belong to B(ω). Therefore the action of these elements
on a basis element vi of Mm can be determined if we know the structure of Mm as an B(ω)-
module. In the restricted case this was described in Section 4.2. Expanding the result in the basis
{vi} again and acting by ah or ak we obtain a linear combination of basis elements from the set C.

Proof. Assume g + ei ∈ G̃m. Let h = ζ(g + ei). Then

Xiagv = Xiaga
′
g+ei−hag+ei−hv

= (
Xiaga

′
g+ei−ha

′
h

)
ahag+ei−hv

= ah · (−h)
(
Xiaga

′
g+ei−ha

′
h

) · ag+ei−hv.

If g + ei /∈ G̃m, then Xiagv = 0 by Lemma 4.4.
Assume g − ei ∈ G̃m. Let k = ζ(g − ei). Then

Yiagv = Yiaga
′
g−ei−kag−ei−kv

= (
Yiaga

′
g−ei−ka

′
k

)
akag−ei−kv

= ak · (−k)
(
Yiaga

′
g−ei−ka

′
k

) · ag−ei−kv.

If g − ei /∈ G̃m, then Yiagv = 0 by Lemma 4.4. �
Note that we do not need the technical assumptions in the proof of Theorem 1 in [7] under

which the exact formulas for simple weight modules were obtained.
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6. Application to quantized Weyl algebras

In this final part we will apply the methods developed in the previous sections to the problem
of describing representations of the quantized Weyl algebra, defined in Section 2.2. As mentioned
there, it is naturally a TGWA.

First we find the isotropy group and the set G̃m expressed as solution of systems of linear
equations (see Propositions 6.3 and 6.4). These sets are directly related to the structure of the
subalgebra B(ω) (Theorem 4.5) and the support of a module (Corollary 5.2).

Then in Section 6.2 we give a complete classification of all locally finite simple weight mod-
ules with no proper inner breaks over a quantized Weyl algebra of rank two. The parameters q1
and q2 are allowed to be any numbers from C\{0,1}. Example 6.7 shows that the assumption
that the modules have no proper inner breaks is not superfluous.

6.1. The isotropy group and G̃m

Let R = C[t1, . . . , tn] and fix m = (t1 − α1, . . . , tn − αn) ∈ Max(R). Let ω be the orbit of m

under the action (2.10) of Zn. Set [k]q = ∑k−1
j=0 qi for k ∈ Z and q ∈ C. Recall the definition

(2.9) of the automorphisms σi of R.

Proposition 6.1. Let (g1, . . . , gn) ∈ Zn. Then

σ
g1
1 . . . σ

gn
n (m)

=
(

[g1]q1 + q
g1
1 t1 − α1, [g2]q2

(
1 + (q1 − 1)α1

) + q
g1
1 q

g2
2 t2 − α2, . . . ,

[gj ]qj

(
1 +

j−1∑
r=1

(qr − 1)αr

)
+ q

g1
1 . . . q

gj

j tj − αj , . . . ,

[gn]qn

(
1 +

n−1∑
r=1

(qr − 1)αr

)
+ q

g1
1 . . . q

gn
n tn − αn

)
.

Proof. Induction. �
For notational brevity we set βi = (qi − 1)αi and γi = 1 + β1 + β2 + · · · + βi . We also set

γ0 = 1. The numbers γi will play an important role in the next statements. By a j -break we mean
an ideal n ∈ Max(R) such that tj ∈ n.

Corollary 6.2. For j = 1, . . . , n we have

tj ∈ σ
g1
1 . . . σ

gn
n (m) ⇔ γj = q

gj

j γj−1.

Thus ω contains a j -break iff γj = qk
j γj−1 for some integer k.

Proof. By Proposition 6.1,

tj ∈ σ
g1 . . . σ

gn
n (m)
1
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iff

[gj ]qj

(
1 +

j−1∑
r=1

(qr − 1)αr

)
= αj .

Multiply both sides with qj − 1 to get

(
q

gj

j − 1
)
(1 + β1 + · · · + βj−1) = βj . �

The next proposition describes the isotropy subgroup Zn
ω defined in (2.14).

Proposition 6.3. We have

Zn
ω = {

g ∈ Zn | (qg1
1 . . . q

gj

j − 1
)
γj = 0, ∀j = 1, . . . , n

}
. (6.1)

Proof. From Proposition 6.1, σ
g1
1 . . . σ

gn
n (m) = m iff

α1 = [g1]q1 + q
g1
1 α1,

α2 = [g2]q2

(
1 + (q1 − 1)α1

) + q
g1
1 q

g2
2 α2,

...

αn = [gn]qn

(
1 + (q1 − 1)α1 + · · · + (qn−1 − 1)αn−1

) + q
g1
1 . . . q

gn
n αn.

Multiply the ith equation by qi − 1. Then the system can be written

β1 = q
g1
1 − 1 + q

g1
1 β1,

β2 = (
q

g2
2 − 1

)
(1 + β1) + q

g1
1 q

g2
2 β2,

...

βn = (
q

gn
n − 1

)
(1 + β1 + · · · + βn−1) + q

g1
1 . . . q

gn
n βn

or equivalently

1 + β1 = q
g1
1 (1 + β1),

1 + β1 + β2 = q
g2
2 (1 + β1) + q

g1
1 q

g2
2 β2,

...

1 + β1 + · · · + βn = q
gn
n (1 + β1 + · · · + βn−1) + q

g1
1 . . . q

gn
n βn.

Now for i from 1 to n − 1, replace the expression 1 + β1 + · · · + βi in the right-hand side of
the (i + 1)th equation by the right-hand side of the ith equation. After simplification, the claim
follows. �
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Note that it follows from (6.1) that the subgroup

Q = {
g ∈ Zn | qgj

j = 1 for j = 1, . . . , n
}

(6.2)

of Zn is always contained in Zn
ω for any orbit ω. Moreover, Zn

ω = Q if ω (viewed as a
subset of Cn) does not intersect the union of the hyperplanes in Cn defined by the equations
1 + (q1 − 1)x1 + · · · + (qj − 1)xj = 0 (1 � j � n).

Another case of interest is when for any j , q
g1
1 . . . q

gj

j = 1 implies g1 = · · · = gj = 0. If for
instance the qj are pairwise distinct prime numbers this holds. Then Zn

ω = {0} unless 1 + β1 +
· · · + βj = 0 for all j , i.e. unless ω contains the point

n0 = (
t1 − (1 − q1)

−1, t2, . . . , tn
)
.

So in this very special case we have ω = {n0} and Zn
ω = Zn.

We now turn to the set G̃m defined in (4.1) which can here be described explicitly in terms of
m in the following way.

Proposition 6.4.

G̃m = G̃(1)
m × · · · × G̃(n)

m ,

where

G̃
(j)
m = {

k � 0 | γj �= qi
j γj−1, ∀i = 0,1, . . . , k − 1

}
∪ {

k < 0 | γj �= qi
j γj−1, ∀i = −1,−2, . . . , k

}
.

Proof. From the relations of the algebra follows that the subspace spanned by the words in Ag

is one-dimensional. Thus g ∈ G̃m iff

Z
−gn
n . . .Z

−g1
1 Z

g1
1 . . .Z

gn
n /∈ m, (6.3)

where Zk
i = Xk

i if k � 0 and Zk
i = Y−k

i if k < 0. Since σi(tj ) = tj for j < i, (6.3) is equivalent
to

Z
−gn
n Z

gn
n . . .Z

−g1
1 Z

g1
1 /∈ m.

Since m is prime, this holds iff Z
−gj

j Z
gj

j /∈ m for each j . If gj = 0 this is true. If gj > 0 we have

Z
−gj

j Z
gj

j = Y
gj

j X
gj

j = Y
gj −1
j X

gj −1
j σ

−gj +1
j (tj ) = · · · = tj σ

−1
j (tj ) . . . σ

−gj +1
j (tj ),

while if gj < 0

Z
−gj

Z
gj = X

−gj
Y

−gj = X
−gj −1

Y
−gj −1

σ
−gj

(tj ) = · · · = σj (tj ) . . . σ
−gj

(tj ).
j j j j j j j j



60 J.T. Hartwig / Journal of Algebra 303 (2006) 42–76
Since m is prime, g ∈ G̃m iff for all j = 1, . . . , n

tj /∈ σ i
j (m), i = 0, . . . , gj − 1 if gj � 0,

and

tj /∈ σ i
j (m), i = −1,−2 . . . , gj if gj < 0.

The claim now follows from Corollary 6.2. �
Corollary 6.5. If {1, α1, α2, . . . , αn} is linearly independent over Q(q1, . . . , qn), then G̃m = Zn.

6.2. Description of simple weight modules over rank two algebras

Assume from now on that A is a quantized Weyl algebra of rank two. In this section we will
obtain a list of all locally finite simple weight A-modules with no proper inner breaks.

We consider first some families of ideals in Max(R). Define for λ ∈ C,

n
(1)
λ = (

t1 − (1 − λ)(1 − q1)
−1, t2 − λ(1 − q2)

−1),
n

(2)
λ = (

t1 − (1 − q1)
−1, t2 − λ

)
,

and set n0 = n
(1)
0 = n

(2)
0 . The following lemma will be useful.

Lemma 6.6. For λ ∈ C and integers k, l we have

σk
1 σ l

2

(
n

(1)
λ

) = n
(1)

λq−k
1

, (6.4)

σk
1 σ l

2

(
n

(2)
λ

) = n
(2)

λq−k
1 q−l

2
. (6.5)

Proof. Follows from Proposition 6.1 or by direct calculation using the definition (2.9) of
the σi . �

The following example shows the existence of locally finite simple weight modules M over
A which have some proper inner breaks.

Example 6.7. Assume that q1λ12 is a root of unity of order r . Let M be a vector space of
dimension r and let {v0, v1, . . . , vr−1} be a basis for M . Define an action of A on M as follows.

X1vk =
{

vk+1, k < r − 1,

v0, k = r − 1,
X2vk = (q1λ12)

−kvk,

Y1vk =
{

(1 − q1)
−1vk−1, k > 0,

(1 − q1)
−1vr−1, k = 0,

Y2vk = 0.

It is easy to check that (2.6)–(2.8) hold so this defines a module over A. It is immediate that
M = Mm where m = n0 = (t1 − (1 − q1)

−1, t2) so M is a weight module and M is simple by
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standard arguments. However, recalling Definition 3.8, M has some proper inner breaks in the
sense that m ∈ supp(M), X2Mm �= 0 but Y2X2Mm = 0.

We will describe the isotropy groups of the different ideals in Max(R). Let K1 and K2 denote
the kernels of the group homomorphisms from Z × Z to the multiplicative group C\{0} which
map (k, l) to qk

1 and qk
1ql

2, respectively. Then Q = K1 ∩ K2 where Q was defined in (6.2).
For m ∈ Max(R), recall that Z2

m = {g ∈ Z2 | g(m) = m}. The following corollary describes the
isotropy group Z2

m of any m ∈ Max(R).

Corollary 6.8. Let λ ∈ C\{0} and n ∈ Max(R)\{n(i)
μ | μ ∈ C, i = 1,2}. Then we have the fol-

lowing equalities in the lattice of subgroups of Z2:

Z2
n0

= Z2

Z2
n

(1)
λ

= K1 Z2
n

(2)
λ

= K2.

Z2
n = Q

Proof. The family of ideals {n(1)
λ | λ ∈ C} are precisely those for which γ2 = 0. And {n(2)

λ |
λ ∈ C} are exactly those such that γ1 = 0. Thus the claim follows from Proposition 6.3. �

Let M be a simple weight A-module with no proper inner breaks and finite-dimensional
weight spaces, m = (t1 − α1, t2 − α2) ∈ suppM and let ω be the orbit of m. We consider
four main cases separately: m = n0, m = n

(1)
λ for some λ �= 0, m = n

(2)
λ for some λ �= 0 and

m /∈ {n(i)
μ | μ ∈ C, i = 1,2}. Some of these cases will contain subcases. In each case we will

proceed along the following steps, which also illustrate the procedure for a general TGWA.

(1) Find the sets Zn
m and G̃m using Corollary 6.8 and Proposition 6.4. Write down Gm = Zn

m ∩
G̃m and choose a basis {s1, . . . , sk} for Gm over Z.

(2) For each g ∈ G̃m, choose a word ag of degree g such that a∗
gag /∈ m.

(3) Using Corollary 4.6, describe B
(1)
m and the finite-dimensional simple B

(1)
m -module Mm.

(4) Choose a set of representatives S for G̃m/Gm. By Theorem 5.1 we know then a basis C

for M .
(5) Calculate the action of Xi , Yi on the basis using either relations (2.6)–(2.8) or Theorem 5.4.

We will use the following notation: Zk
j = Xk

j if k � 0 and Zk
j = Y−k

j if k < 0. Note that the k

in Zk
j should only be regarded as an upper index, not as a power. The choice of ag in step two

above is more or less irrelevant for a quantized Weyl algebra because each Ag is one-dimensional.
Therefore we will always choose ag = Z

g1Z
g2 where g = (g1, g2).
1 2
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6.3. The case m = n0

Here α1 = (1 − q1)
−1, α2 = 0 so that γ1 = γ2 = 0. By Corollary 6.8 we have Z2

m = Z2

and from Proposition 6.4 one obtains that G̃m = Z × {0}. Thus Gm = Z × {0} = Z · s1 with
s1 = (1,0). Since Gm has rank one, Corollary 4.6 implies that B

(1)
m is isomorphic to the Laurent

polynomial algebra C[T ,T −1] in one variable. Therefore Mm is one-dimensional, say Mm =
Cv0 and b1 = ϕm(Z1

1) = ϕm(X1), hence X1, acts in Mm as some nonzero scalar ρ. And

Y1v0 = ρ−1Y1X1v0 = ρ−1(1 − q1)
−1v0.

Here S = {(0,0)} and C = {v0} is a basis for M with the following action:

X1v0 = ρv0, X2v0 = 0,

Y1v0 = ρ−1(1 − q1)
−1v0, Y2v0 = 0. (6.6)

That Z±1
2 v0 = 0 follows from Theorem 5.4 since (0,±1) /∈ G̃m.

6.4. The case m = n
(1)
λ , λ �= 0

Here α1 = (1−λ)(1−q1)
−1 and α2 = λ(1−q1)

−1 so γ1 = λ and γ2 = 0. By Proposition 6.4,
G̃

(2)
m = Z and

G̃(1)
m = {

k � 0 | λ �= qi
1, ∀i = 0,1, . . . , k − 1

} ∪ {
k < 0 | λ �= qi

1, ∀i = −1,−2, . . . , k
}
.

We consider four subcases according to whether ω contains a 1-break or not and whether q1
is a root of unity or not.

6.4.1. The case m = n
(1)
λ , λ �= 0, ω contains a 1-break and q1 is a root of unity

By Corollary 6.2 λ = qk
1 for some k ∈ Z. Let o1 be the order of q1. Then Z2

m = K1 =
(o1Z) × Z. We can further assume that k ∈ {0,1, . . . , o1 − 1}.

Note that Xk
1Mm �= 0 because degXk

1 = (k,0) ∈ G̃m so Y k
1 Xk

1 /∈ m. Hence σk
1 (m) ∈ supp(M).

By Lemma 6.6, σk
1 (m) = n

(1)

qk
1 q−k

1
= n

(1)
1 . We can thus change notation and let m = n

(1)
1 . Then by

Proposition 6.4 we have

G̃m = {0,−1,−2, . . . ,−o1 + 1} × Z.

And Gm = G̃m ∩ Z2
m = {0} × Z. By Corollary 4.6, B

(1)
m is a Laurent polynomial algebra in one

variable. Thus Mm is one-dimensional with a basis vector, say v0. X2 acts by some nonzero scalar
ρ on v0 and Y2X2v0 = (1 −q2)

−1v0. X1 and Y
o1
1 act as zero on Mm by Lemma 4.4 because their

degrees (1,0) and (−o1,0) does not belong to G̃m.
As a set of representatives for G̃m/Gm we choose

S = {
(0,0), (−1,0), (−2,0), . . . , (−o1 + 1,0)

}
.
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By Corollary 5.2 we obtain that

supp(M) = {
n

(1)
1 ,n

(1)

q−1
1

, . . . ,n
(1)

q
−o1+1
1

}
.

By 5.1, the set

C = {
vj := Y

j

1 v0 | j = 0,1, . . . , o1 − 1
}

is a basis for M . The following picture shows the support of the module and how the Xi act on
it. Since the Yi just act in the opposite direction of the Xi we do not draw their arrows:

•
X1

X2

•
X1

X2

• ······

X2

•
X1

X2

•

X2

.

Using Lemma 6.6,

X1vj = X1Y
j

1 v0 = Y
j−1
1 σ

j

1 (t1)v0 = [j ]q1vj−1

and from relations (2.6)–(2.8) follow that

X2vj = q
j

1 λ
j

12Y
j

1 X2v0 = ρλ
j

12q
j

1 vj ,

Y2vj = λ
j

21Y
jY2v0 = (1 − q2)

−1ρ−1λ
j

21vj .

Thus the action on the basis {v0, . . . , vo1−1} is

X1vj =
{

0, j = 0,

[j ]q1vj−1, 0 < j � o1 − 1,

Y1vj =
{

vj+1, 0 � j < o1 − 1,

0, j = o1 − 1,

X2vj = ρλ
j

12q
j

1 vj ,

Y2vj = (1 − q2)
−1ρ−1λ

j

21vj . (6.7)

6.4.2. The case m = n
(1)
λ , λ �= 0, ω contains a 1-break and q1 is not a root of unity

Now there is a unique integer k ∈ Z such that λ = qk
1 . If k � 0, then G̃

(1)
m is the set of all

integers � k while if k < 0, then G̃
(1)
m is all integers � k + 1.

If k � 0, Xk
1Mm �= 0 because (k,0) ∈ G̃m so Y k

1 Xk
1 /∈ m. Therefore σk

1 (m) = n
(1)
1 ∈ supp(M).

We change notation and let m = n
(1)
1 . Then G̃

(1)
m = {. . . ,−2,−1,0} and Gm = {0} × Z. We

choose S = {(i,0) | i � 0}. Y2X2 = (1 − q2)
−1 on Mm so Mm = Cv0, for a basis vector v0, and
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X2v0 = ρv0 for some ρ ∈ C∗. The set C = {vj := Y
j

1 v0 | j � 0} is a basis for M and we have the
following picture of supp(M):

······ • X1

X2

• X1

X2

•

X2

.

One easily obtains the following action on the basis {vj | j � 0}:

X1vj =
{

0, j = 0,

[j ]q1vj−1, j � 1,

Y1vj = vj+1,

X2vj = ρλ
j

12q
j

1 vj ,

Y2vj = (1 − q2)
−1ρ−1λ

j

21vj . (6.8)

The case k < 0 is analogous and yields a lowest weight representation with m = n
(1)

q−1
1

as its

lowest weight. A basis for M is then

C = {
vj := X

j

1v0 | j � 0
}
,

where Mm = Cv0 and the action is given by

X1vj = vj+1,

Y1vj =
{

0, j = 0,

[−j ]q1vj−1, j > 0,

X2vj = (q1λ12)
−j ρvj ,

Y2vj = λ
j

12(1 − q2)
−1ρ−1vj . (6.9)

6.4.3. The case m = n
(1)
λ , λ �= 0, ω contains no 1-break and q1 is a root of unity

By Corollary 6.2, λ �= qk
1 for all k ∈ Z. So by Proposition 6.4, G̃m = Z2. Gm = (o1Z) × Z

and we can choose S = {0,1, . . . , o1 − 1} × {0}. From

X
o1
1 X2 = (q1λ12)

o1X2X
o1
1 = λ

o1
12X2X

o1
1

and Corollary 4.6 follows that B
(1)
m � T

λ
o1
12

. It can only have finite-dimensional irreducible rep-

resentations if λ
o1
12 is a root of unity. Assuming this, any such representation is r-dimensional,

where r is the order of λ
o1
12, and is parametrized by C∗ × C∗ � (ρ,μ) with basis

Mm = Span
{
vj := X

j

2v0 | j = 0,1, . . . , r − 1
}
,

where X
o1v0 = ρv0 and relations
1
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X
o1
1 vj = λ

o1j

12 ρvj ,

X2vj =
{

vj+1, 0 � j < r − 1,

μv0, j = r − 1.

Therefore by Theorem 5.1,

M = Span
{
wij = Xi

1vj | 0 � i < o1, 0 � j < r
}
.

Using the commutation relations and the formulas in Lemma 6.6 we can write down the action
as follows:

X1wij =
{

wi+1,j , 0 � i < o1 − 1,

λ
o1j

12 ρw0,j , i = o1 − 1,

Y1wij =
{

(1 − λ)(1 − q1)
−1λ

−o1j

12 ρ−1wo1−1,j , i = 0,

(1 − λq−i
1 )(1 − q1)

−1wi−1,j , 0 < i � o1 − 1,

X2wij =
{

q−i
1 λi

21wi,j+1, 0 � j < r − 1,

q−i
1 λi

21μwi,0, j = r − 1,

Y2wij =
{

λi
12μ

−1λ(1 − q2)
−1wi,r−1, j = 0,

λi
12λ(1 − q2)

−1wi,j−1, 0 < j � r − 1.
(6.10)

The action can be illustrated in the following way:

• X1

X2

• X1

X2

• ······

X2

• X1

X2

•

X2

X1

.

6.4.4. The case m = n
(1)
λ , λ �= 0, ω contains no 1-break and q1 is not a root of unity

By Corollary 6.2, λ �= qk
1 for all k ∈ Z. Now Z2

m = {0} × Z so Gm = {0} × Z. Mm is one-
dimensional with basis v0, say, and X2 = ρ on Mm while Y2X2 = λ(1 − q2)

−1 �= 0 on Mm. We
choose S = Z × {0}. Then a basis for M is

C = {
vj := X

j

1v0 | j � 0
} ∪ {

vj := ζjY
−j

1 v0 | j < 0
}
,

where we determine ζj by requiring that X1vj = vj+1 for all j . Explicitly we have for j < 0,

ζj = (1 − q1)
−j

(1 − λq
−j

1 )(1 − λq
−j−1
1 ) · · · (1 − λq1)

.

Using the commutation relations and the formulas in Lemma 6.6 we get the action on M =
Span{vj | j ∈ Z}:



66 J.T. Hartwig / Journal of Algebra 303 (2006) 42–76
X1vj = vj+1, X2vj = q
−j

1 λ
−j

12 ρvj ,

Y1vj = 1 − λq
−j+1
1

1 − q1
vj−1, Y2vj = λ

j

12λ(1 − q2)
−1ρ−1vj , (6.11)

and a corresponding diagram

······ • X1

X2

• X1

X2

• ······

X2

.

6.5. The case m = n
(2)
λ , λ �= 0

Here γ1 = 0 while γ2 = λ(q2 − 1). By Corollary 6.2, ω does not contain any breaks. We have
G̃m = Z2 and Gm = Z2

m = K2.
We will need some lemmas in order to proceed.

Lemma 6.9. For k, l ∈ Z we have

Zk
1Zl

2 = qkl̄
1 λkl

12Z
l
2Z

k
1, (6.12)

where l̄ = max{0, l}.

Proof. Relations (2.6)–(2.8) can be rewritten in the more compact form

Zk
1Zl

2 = q
kδl,1
1 λkl

12Z
l
2Z

k
1, k, l = ±1,

where δl,1 is the Kronecker symbol. After repeated application of this, (6.12) follows. �
By Lemma 6.6 we have for k, l ∈ Z,

σk
1 σ l

2(t1) = (1 − q1)
−1 mod m, (6.13)

σk
1 σ l

2(t2) = λqk
1ql

2 mod m. (6.14)

Lemma 6.10. Let k, l ∈ Z and let m = min{|k|, |l|}. Then, as operators on Mm, we have

Zk
1Zl

1 =
{

Zk+l
1 , kl � 0,

(1 − q1)
−mZk+l

1 , kl < 0,
(6.15)

Zk
2Zl

2 =
{

Zk+l
2 , kl � 0,

λmq
(1−2l+(sgn l)m)m/2
2 Zk+l

2 , kl < 0.
(6.16)

Proof. Direct calculation using (6.13) and (6.14). For example if k > 0 and l < 0 we have
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Zk
2Zl

2 = Xk
2Y

−l
2 = Xk−1

2 σ2(t2)Y
−l−1
2

= Xk−1
2 Y−l−1

2 σ−l
2 (t2) = Xk−1

2 Y−l−1
2 λq−l

2 = · · ·
= λq−l

2 λq−l−1
2 . . . λq

−l−(m−1)
2 Zk+l

2

= λmq
−lm−m(m−1)/2
2 Zk+l

2 . �
Lemma 6.11. Let k, l ∈ Z and let m = min{|k|, |l|}. Then, as operators on Mm,

Zk
1Zl

1 = Zl
1Z

k
1, (6.17)

and

Zk
2Zl

2 = c(k, l)Zl
2Z

k
2, (6.18)

where

c(k, l) =
{

1, kl � 0,

q
(k−l)m−(sgnk−sgn l)m2/2
2 , kl < 0.

(6.19)

Proof. Follows directly from Lemma 6.10. �
Lemma 6.12. Let g = (g1, g2) ∈ Z2 = G̃m and set rg = ϕm(a∗

gag)
−1 where ϕm is the projection

R → R/m = K . Then

rg = (1 − q1)
|g1|(λ−1q

(g2−1)/2
2

)|g2| (6.20)

and (ag)
−1 = rga

∗
g = rgZ

−g2
2 Z

−g1
1 as operators on Mm.

Proof. We have

a∗
gag = (

Z
g1
1 Z

g2
2

)∗
Z

g1
1 Z

g2
2 = Z

−g2
2 Z

−g1
1 Z

g1
1 Z

g2
2 = Z

−g1
1 Z

g1
1 Z

−g2
2 Z

g2
2 ,

by Lemma 6.9. Thus by Lemma 6.10,

ϕm

(
a∗
gag

) = (1 − q1)
−|g1|λ|g2|q(1−2g2+g2)|g2|/2

2

which proves the formula. The last statement is immediate. �
We consider the three subcases corresponding to the rank of the free abelian group K2.

6.5.1. The case m = n
(2)
λ , λ �= 0, rankK2 = 0

Gm = K2 = {0} so B
(1)
m = R which is commutative, hence Mm = Cv0 for some v0, and

S = Z2. Thus C = {agv0 | g ∈ Z2} is a basis for M and using Lemmas 6.10 and 6.9 we obtain
that the action of Xi is given by
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X1agv0 =
{

ag+e1v0, g1 � 0,

(1 − q1)
−1ag+e1v0, g1 < 0,

X2agv0 =
{

(q1λ12)
−g1ag+e2v0, g2 � 0,

(q1λ12)
−g1λq

−g2
2 ag+e2v0, g2 < 0.

(6.21)

The action of Yi on the basis is deduced uniquely from

Y1X1agv0 = (1 − q1)
−1agv0,

Y2X2agv0 = λq
−g1
1 q

−g2
2 agv0, (6.22)

which hold by (6.13) and (6.14).

6.5.2. The case m = n
(2)
λ , λ �= 0, rankK2 = 1

Let (a, b) be a basis element. Since Gm = K2 which is of rank one, B
(1)
m � C[T ,T −1] by

Corollary 4.6 so Mm is one-dimensional. As before we let Mm = Cv0. Then Za
1Zb

2v0 = ρv0 for
some ρ ∈ C∗.

We assume a �= 0. The case b �= 0 can be treated similarly. By changing basis, we can assume
that a > 0. Choose S = {0,1, . . . , a − 1} × Z. The corresponding basis for M is

C = {
wij := Xi

1Z
j

2v0 | 0 � i � a − 1, j ∈ Z
}
.

We now aim to apply Theorem 5.4. If 0 � i < a − 1 then clearly X1wij = wi+1,j . And

X1wa−1,j = Xa
1Z

j

2v0 ∈ CZ
j−b

2 v0 = Cw0,j−b.

We want to compute the coefficient of w0,j−b . Similarly to the proof of Theorem 5.4 we have,
using Lemma 6.12, Lemma 6.9 and (6.16),

X1wa−1,j = Za
1Z

j

2v0 = (
Za

1Z
j

2 r(a,b)Z
−b
2 Z−a

1

)
Za

1Zb
2v0

= r(a,b)(q1λ12)
jaqa·−b

1 λ−ab
12 Z

j

2Z−b
2 Za

1Z−a
1 ρv0

= (
λ−1q

(b−1)/2
2

)|b|
q

a(j+−b)

1 λ
a(j−b)

12 ρC0w0,j−b,

where

C0 =
{

1, b � 0,

λmin{j,b}q(1+2b−min{j,b})min{j,b}/2
2 , b > 0.

Using Lemma 6.9 one easily get the action of X2 on the basis. We conclude that

X1wij =
{

wi+1,j , 0 � i < a − 1,

(λ−1q
(b−1)/2
2 )|b|qa(j+−b)

1 λ
a(j−b)

12 ρC0w0,j−b, i = a − 1,

X2wij =
{

q−i
1 λi

21wi,j+1, j � 0,

q−iλi λq
j
w , j < 0.

(6.23)

1 21 2 i,j+1
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Fig. 1. Example of a weight diagram for M when m = n
(2)
λ , λ �= 0 and rankK2 = 1. Here a = 4, b = −2. The action of

X1 is indicated by → arrows, while ⇒ arrows are used for X2.

The action of the Yi is uniquely determined by

Y1X1vij = (1 − q1)
−1vij ,

Y2X2vij = λq−i
1 q

−j

2 vij , (6.24)

which hold by (6.13)–(6.14). See Fig. 1 for a visual representation.

6.5.3. The case m = n
(2)
λ , λ �= 0, rankK2 = 2

Let s1 = a = (a1, a2), s2 = b = (b1, b2) be a basis for Gm = K2 over Z. We can assume that
a1, b1 � 0 and that d := ∣∣ a1 b1

a2 b2

∣∣ > 0.

By Corollary 4.6, B
(1)
m � Tν for some ν which we will now determine. Using Lemmas 6.9

and 6.11 we have, as operators on Mm,

Z
a1
1 Z

a2
2 Z

b1
1 Z

b2
2 = q

−b1a1
1 λ

−b1a2
12 c(a2, b2)Z

b1
1 Z

a1
1 Z

b2
2 Z

a2
2

= q
a1b2−b1a2
1 λ

a1b2−b1a2
12 c(a2, b2)Z

b1
1 Z

b2
2 Z

a1
1 Z

a2
2 .

We conclude that B
(1)
m � Tν where

ν = λd
12q

a1b2−b1a2
1 c(a2, b2). (6.25)

The function c was defined in (6.19), d = a1b2 − b1a2 and k := max{0, k} for k ∈ Z. For Mm

to be finite-dimensional it is thus necessary that this ν is a root of unity. Assume this and let r

denote its order. Then dimMm = r . Let

{v0, v1, . . . , vr−1} (6.26)

be a basis such that
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Z
a1
1 Z

a2
2 vj = νjρvj , (6.27)

Z
b1
1 Z

b2
2 vj =

{
vj+1, 0 � j < r − 1,

μv0, j = r − 1,
(6.28)

where ρ,μ ∈ C∗.
The next step is to determine a set S ⊆ G̃m = Z2 of representatives for the set of cosets

G̃m/Gm = Z2/K2 which makes it possible to write down the action of the algebra later. We
proceed as follows.

Recall that K2 = Z · (a1, a2) ⊕ Z · (b1, b2). Let d1 be the smallest positive integer such that
(d1,0) ∈ K2. We claim that d1 = d/GCD(a2, b2). Indeed d1 must be of the form ka1 + lb1 where
k, l ∈ Z and ka2 + lb2 = 0 with GCD(k, l) = 1. For such k, l, k|b2, l|a2 and b2/k = −a2/l =:
p > 0. Then GCD(a2/p,b2/p) = 1 which implies that GCD(a2, b2) = p. Thus d1 = ka1 + lb1 =
(b2a1 − a2b1)/p = d/GCD(a2, b2) as claimed.

Next, let d2 denote the smallest positive integer such that some K2-translation of (0, d2) lies
on the x-axis, i.e. such that

(
(0, d2) + K2

) ∩ Z × {0} �= ∅.

Such an integer exists because if we write GCD(a2, b2) = ka2 + lb2, then

(0, ka2 + lb2) − k(a1, a2) − l(b1, b2) = (−ka1 − lb1,0).

On the other hand, if (0, d2) + ka + lb ∈ Z × {0}, i.e. if d2 = ka2 + lb2, then GCD(a2, b2)|d2.
Therefore d2 = GCD(a2, b2).

We also see that for any point in Z2 of the form (x, d2) there is a g ∈ K2 such that (x, d2)+g ∈
Z × {0}. Also, (d1,0) ∈ K2 so for any point of the form (d1, y) there is a g ∈ K2 (namely
(−d1,0)) such that (d1, y) + g ∈ {0} × Z.

Suppose now that for some k, l ∈ Z,

k(a1, a2) + l(b1, b2) ∈ K2 ∩ {0,1, . . . , d1 − 1} × {0,1, . . . , d2 − 1}.

Then we would have (0, ka2 + lb2) − (ka + lb) ∈ Z × {0} and ka2 + lb2 ∈ {0,1, . . . , d2 − 1}
which contradicts the minimality of d2 unless ka2 + lb2 = 0. But in this case (ka1 + lb1,0) ∈ K2
which contradicts the minimality of d1 unless ka1 + lb1 = 0. Hence K2 ∩ {0,1, . . . , d1 − 1} ×
{0,1, . . . , d2 − 1} = {(0,0)}. We have shown that

S := {0,1, . . . , d1 − 1} × {0,1, . . . , d2 − 1}

is a set of representatives for Z2/K2. In particular we get from Corollary 5.3 that dimM is finite
and

dimM/dimMm = |S| = d1d2 = a1b2 − b1a2.

We fix now integers a′
2, b

′
2 such that

d2 = GCD(a2, b2) = a′
2a2 + b′

2b2 (6.29)
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• • • • •

Fig. 2. An example of the action on supp(M) when m = n
(2)
λ , λ �= 0 and rankK2 = 2. Here a = (2,−2), b = (3,2),

d1 = 5, d2 = 2 and s = 2. The ⇒ arrows indicate the action of X1 and the → arrows show the action of X2.

and such that −a′
2a1 − b′

2b1 ∈ {0,1, . . . , d1 − 1}. This can be done because for any p ∈ Z,
(a′′

2 , b′′
2) := (a′

2 + pb2/d2, b
′
2 − pa2/d2) also satisfies a′′

2a2 + b′′
2b2 = d2 but now

−a′′
2a1 − b′′

2b1 = −(
a′

2 + pb2/d2
)
a1 − (

b′
2 − pa2/d2

)
b1 = −a′

2a1 − b′
2b1 − pd1.

We set

s = −a′
2a1 − b′

2b1. (6.30)

Let (i, j) ∈ S. We have the following reductions in Z2 modulo K2:

(1,0) + (i, j) =
{

(i + 1, j), 0 � i < d1 − 1,

(0, j), i = d1 − 1,

(0,1) + (i, j) =
⎧⎨
⎩

(i, j + 1), 0 � j < d2 − 1,

(i + s,0), j = d2 − 1, i + s � d1 − 1,

(i + s − d1,0), j = d2 − 1, j + s > d1 − 1.

From this we can understand how the Xi act on the support of M , see Fig. 2 for an example. By
Theorem 5.1 the set

C = {
wijk := Xi

1X
j

2vk | 0 � i < d1, 0 � j < d2, 0 � k < r
}

is a basis for M where vk is the basis (6.26) for Mm.
If 0 � i < d1 −1 we clearly have X1wijk = wi+1,j,k . Suppose i = d1 −1. Then by Lemma 6.9,

X1wijk = X
d1
1 X

j

2vk = q
d1j

1 λ
d1j

12 X
j

2X
d1
1 vk.

Thus we must express X
d1
1 in terms of Z

a1
1 Z

a2
2 and Z

b1
1 Z

b2
2 . Since (d1,0) = b2/d2a − a2/d2b we

have

(
Z

a1
1 Z

a2
2

)b2/d2
(
Z

b1
1 Z

b2
2

)−a2/d2 = C−1
1 X

d1
1 (6.31)

as operators on Mm for some constant C−1
1 which we must calculate.

Lemma 6.13. The constant C1 defined in (6.31) is given by
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C−1
1 = r

−b2/d2
a

(
q

−a1a2
1 λ

−a1a2
12

) b2
d2

(
b2
d2

−1)/2 · ra2/d2
b

(
q

−b1b2
1 λ

−b1b2
12

) a2
d2

(
a2
d2

+1)/2

· qb1a2a2b2/d
2
2

1 λ
b1a

2
2b2/d

2
2

12 r−1
(0,−b2a2/d2)

C′
1, (6.32)

where the rg , g ∈ Z2, are given by (6.20),

C′
1 =

{
(1 − q1)

−min{|a1b2/d2|,|b1a2/d2|}, a2b2 > 0,

1, a2b2 � 0,

k = max{0, k} for k ∈ Z and d2 = GCD(a2, b2).

Proof. If b2 � 0 for example, we have by Lemma 6.9

(
Z

a1
1 Z

a2
2

)b2/d2 = q
−a1a2
1 λ

−a1a2
12 · (q−a1a2

1 λ
−a1a2
12

)2

· . . . · (q−a1a2
1 λ

−a1a2
12

)b2/d2−1
Z

a1b2/d2
1 Z

a2b2/d2
2

= (
q

−a1a2
1 λ

−a1a2
12

) b2
d2

(
b2
d2

−1)/2
Z

a1b2/d2
1 Z

a2b2/d2
2 .

When b2 < 0 we get a similar calculation where r
−b2/d2
a appears by Lemma 6.12. (Zb1

1 Z
b2
2 )−a2/d2

can analogously be expressed as a multiple of Z
−b1a2/d2
1 Z

−b2a2/d2
2 . We then commute Z

a2b2/d2
2

and Z
−b1a2/d2
1 using Lemma 6.9. As a last step we use Lemma 6.10 and obtain two more fac-

tors. �
We conclude that

X1wijk =
{

wi+1,j,k, i < d1 − 1,

q
jd1
1 λ

jd2
12 C1ν

b2/d2k
′′
1 ρb2/d2μk′

1w0,j,k′′
1
, i = d1 − 1.

Here

k − a2/d2 = rk′
1 + k′′

1 with 0 � k′′
1 < r. (6.33)

Next we turn to the description of how X2 acts on the basis C. If 0 � j < d2 − 1 we have
X2wijk = q−i

1 λ−i
12 wi,j+1,k by Lemma 6.9. Suppose j = d2 − 1. Then, as in the first step of the

proof of Theorem 5.4,

X2wijk = q−i
1 λ−i

12 Xi
1X

d2
2 vk = q−i

1 λ−i
12 Xi

1

(
X

d2
2 r(−s,d2)Z

−d2
2 Zs

1

)(
Z−s

1 Z
d2
2

)
vk. (6.34)

By (6.16) and (6.20),

X
d2
2 r(−s,d2)Z

−d2
2 Zs

1 = r(−s,d2)r
−1
(0,−d2)

Zs
1

= (1 − q1)
s
(
λ−1q

(d2−1)/2
2

)d2
(
λ−1q

(−d2−1)/2
2

)d2Zs
1

= (1 − q1)
s
(
λ2q2

)−d2Zs
1. (6.35)
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We must express Z−s
1 Z

d2
2 in the generators of the algebra B

(1)
m in order to calculate its action

on vk ,

(
Z

a1
1 Z

a2
2

)a′
2
(
Z

b1
1 Z

b2
2

)b′
2 = C−1

2 Z−s
1 Z

d2
2 , (6.36)

for some C2 ∈ C∗ since the degree on both sides are equal by (6.29) and (6.30). Similarly to the
proof of Lemma 6.13,

C−1
2 = r

−a′
2

a
(
q

−a1a2
1 λ

−a1a2
12

)a′
2(a

′
2−1)/2 · r−b′

2
b

(
q

−b1b2
1 λ

−b1b2
12

)b′
2(b

′
2−1)/2

· q−b1b
′
2a2a

′
2

1 λ−b1b
′
2a2a

′
2C′

2C
′′
2 , (6.37)

and

C′
2 =

{
1, a′

2b
′
2 � 0,

(1 − q1)
−min{|a1a

′
2|,|b1b

′
2|}, a′

2b
′
2 < 0,

C′′
2 =

{
1, a2a

′
2b2b

′
2 � 0,

λm′
q

(1−2b2b
′
2+(sgnb2b

′
2)m

′)m′/2
2 , a2a

′
2b2b

′
2 < 0,

where m′ = min{|a2a
′
2|, |b2b

′
2|}. Furthermore, letting

b′
2 + k = rk′

2 + k′′
2 , where 0 � k′′

2 < r (6.38)

we have by (6.27)–(6.28),

(
Z

a1
1 Z

a2
2

)a′
2
(
Z

b1
1 Z

b2
2

)b′
2vk = νa′

2k
′′
2 ρa′

2μk′
2vk′′

2
. (6.39)

If i + s � d1 −1 we can now write down the action of X2 on wijk by combining (6.34)–(6.37),
(6.39) to get a multiple of wi+s,0,k′′

2
. However if i + s > d1 − 1, we must reduce further because

then (i + s,0) /∈ S. Let

k′′
2 − a2/d2 = rk′

3 + k′′
3 , where 0 � k′′

3 < r. (6.40)

Then by the calculations for the action of X
d1
1 on Mm,

X
d1
1 vk′′

2
= X

i+s−d1
1 X

d1
1 vk′′

2
= C1μ

k′
3νk′′

3 b2/d2ρb2/d2wi+s−d1,0,k′′
3
.

Summing up, M has a basis

{wijk | 0 � i < d1, 0 � j < d2, 0 � k < r}

and X1,X2 act on this basis as follows:
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• • • ...... • •

Fig. 3. Weight diagram when m = n
(2)
λ , λ �= 0, rankK2 = 2 and q1 = q2.

X1wijk =
{

wi+1,j,k, i < d1 − 1,

q
jd1
1 λ

jd2
12 C1ν

b2/d2k
′′
1 ρb2/d2μk′

1w0,j,k′′
1
, i = d1 − 1,

X2wijk = (q1λ12)
−i

·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wi,j+1,k, if 0 � j < d2 − 1,

(1 − q1)
s(λ2q2)

−d2C2ν
a′

2k
′′
2 ρa′

2μk′
2wi+s,0,k′′

2
,

if j = d2 − 1 and i + s � d1 − 1,

(1 − q1)
s(λ2q2)

−d2C2ν
a′

2k
′′
2 +k′′

3 b2/d2ρa′
2+b2/d2μk′

2+k′
3C1wi+s−d1,0,k′′

3
,

if j = d2 − 1 and i + s > d1 − 1,

(6.41)

where C1 is given by (6.32), C2 by (6.37) and ν by (6.25). The parameters ρ and μ comes from
the action (6.27), (6.28) of B

(1)
m on Mm and k′

i , k
′′
i are defined in (6.33), (6.38) and (6.40).

The action of the Yi is uniquely determined by

Y1X1wijk = (1 − q1)
−1wijk,

Y2X2wijk = λq−i
1 q

−j

2 wijk. (6.42)

We remark that the case q1 = q2 corresponds to a = (a1, a2) = (1,−1). Then d2 = 1, d1 =
d = |b1 + b2| and s = 1. X1 and X2 will act on the support in the same direction, cyclically as
in Fig. 3. The explicit action can be deduced from the above more general case noting that here
k′′

2 = k, k′
2 = 0 and

k′
1 = k′

3 =
{

0, k < r − 1,

1, k = r − 1,
k′′

1 = k′′
3 =

{
k, k < r − 1,

0, k = r − 1.

6.6. The case m /∈ {n(i)
μ | μ ∈ C, i = 1,2}

This is the generic case. We have Z2
m = Q by Corollary 6.8. Our statements here generalize

without any problem to the case of arbitrary rank.
Assume first that the qi are roots of unity of orders oi (i = 1,2) and that ω does not contain

any 1-breaks or 2-breaks. Then by Corollary 6.2 and Proposition 6.4 we have G̃m = Z2. Thus
Gm = (o1Z) × (o2Z). Moreover,

X
o1
1 X

o2
2 = λ

o1o2
12 X

o2
2 X

o1
1

so B
(1)
m � T

λ
o1o2
12

by Corollary 4.6. This algebra has only finite-dimensional representations if

λ
o1o2
12 is a root of unity. Assuming this, let r be the order of λ

o1o2
12 . Then there are ρ,μ ∈ C∗ and

Mm has a basis v0, v1, . . . , vr−1 such that
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X
o1
1 vi = λ

io1o2
12 ρvi,

X
o1
2 vi =

{
vi+1, 0 � i < p − 1,

μv0, i = p − 1.

Choose S = {0,1, . . . , o1 − 1} × {0,1, . . . , o2 − 1}. The corresponding basis for M is C =
{wijk := Xi

1X
j

2vk | 0 � i < o1, 0 � j < o2, 0 � k < r}. The following formulas are easily de-
duced using (2.6)–(2.8):

X1wijk =
{

wi+1,j,k, k < o1 − 1,

λ
o1(o2k+j)

12 ρw0jk, k = o1 − 1,

X2wijk = (q1λ12)
−i ·

⎧⎨
⎩

wi,j+1,l , l < o2 − 1,

wi,0,l+1, l = o2 − 1, i < r − 1,

μwi00, l = o2 − 1, i = r − 1.

(6.43)

The action of Y1, Y2 is determined by

Y1X1wijk = q−i
1

(
α1 − [i]q1

)
wijk,

Y2X2wijk = q−i
1 q

−j

2

(
α2 − [j ]q2

(
1 + (q1 − 1)α1

))
wijk. (6.44)

In all other cases one can show using the same argument that dimMn = 1 for all n ∈ supp(M)

and that M can be realized in a vector space with basis {wij }(i,j)∈I , where I = I1 × I2 is one of
the following sets:

Nd1 × Nd2 , Nd1 × Z±, Z± × Nd2 , Z × Z,

Z± × Z, Z × Z±, Z± × Z±, Z± × Z∓,

where Nd = {0,1, . . . , d −1}, Z± = {k ∈ Z | ±k � 0} and di is the order of qi if finite. The action
of the generators is given by the following formulas:

X1wij =
⎧⎨
⎩

wi+1,j , (i + 1, j) ∈ I,

ρλ
d1j

12 w0,j , (i + 1, j) /∈ I, I1 = Nd1 and α1 �= [i]q1 ,

0, otherwise,

X2wij = (q1λ12)
−i ·

⎧⎪⎪⎨
⎪⎪⎩

wi,j+1, (i, j + 1) ∈ I,

μwi,0, (i, j + 1) /∈ I, I2 = Nd2

and α2 �= [j ]q2(1 + (q1 − 1)α1),

0, otherwise,

(6.45)

Y1wij = q−i+1
1

(
α1 − [i − 1]q1

)

·
⎧⎨
⎩

wi−1,j , (i − 1, j) ∈ I,

(ρλ
d1j

12 )−1wd1−1,j , (i − 1, j) /∈ I, I1 = Nd1 and α1 �= [i − 1]q1,
0, otherwise,
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Y2wij = λ−i
12 q

−j+1
2

(
α2 − [j − 1]q2

(
1 + (q1 − 1)α1

))

·

⎧⎪⎪⎨
⎪⎪⎩

wi,j+1, (i, j + 1) ∈ I,

μ−1wi,d2−1, (i, j + 1) /∈ I, I1 = Nd2

and α2 �= [j − 1]q2(1 + (q1 − 1)α1),

0, otherwise.

(6.46)

Thus we have proved the following result.

Theorem 6.14. Let A be a quantized Weyl algebra of rank two with arbitrary parameters q1, q2 ∈
C\{0,1}. Then any simple weight A-module with no proper inner breaks is isomorphic to one
of the modules defined by formulas (6.6), (6.7), (6.8), (6.9), (6.10), (6.11), (6.21)–(6.22), (6.23)–
(6.24), (6.41)–(6.42), (6.43)–(6.44) or (6.45)–(6.46).
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