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Abstract

We compare recent lattice studies of QCD thermodynamics at non-zero quark chemical potential with the thermodynamics
of a hadron resonance gas. We argue thaffer 7. the equation of state derived from Monte Carlo simulations of two flavour
QCD at non-zero chemical potential can be well described by a hadron resonance gas when using the same set of approximations
as used in current lattice calculations. We estimate the importance of truncation errors arising from the use of a Taylor expansion
in terms of the quark chemical potential and examine the influence of unphysically large quark masses on the equation of state
and the critical conditions for deconfinement.
0 2003 Elsevier B.V. Open access under CC BY license.

1. Introduction at uy = 0 into the region oft, > 0. Nonetheless they
led to qualitatively and even quantitatively similar re-

While the thermodynamics of strongly interacting sults. .
matter at vanishing baryon number density or chemi- The basic pattern found for the Fe_mperatu_re de-
cal potential has been studied [1] in lattice calculations pendence of, e.g., the pressure at finite density, fol-
for quite some time, the first investigations of the equa- lows closely _that_already seenjay = 0; the pressure
tion of state at non-vanishing quark chemical poten- changes rapidly in a narrow temperature mterval_and
tial (11,) have started only recently [2—4]. These stud- comes close to the Stefan—Boltzmann value of an ideal

ies of bulk thermodynamics have been performed with gas of quarks and gluons at about tw_ice the transition
different lattice actions and also have used different [€MpPerature. Consequently, the density dependence of

methods (exact matrix inversion [2] or Taylor expan- the equation of state in the high temperature plasma

sion [3,4]) to extend previous calculations performed pha_se has successfully been compared [5] with quasi-
particle models that were also used.gt= 0.

In this Letter we concentrate on a discussion of the
E-mail address; karsch@serv1.physik.uni-bielefeld.de thermodynamics of the hadronic phase of QCD in the
(F. Karsch). regime of low baryon number density{/7 < 1) but
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high temperatureT{ ~ T.(u, = 0)). In a recent pa- partition function as

per [6] we have shown that the partition function of

a hadron resonance gas yields quite a satisfactory de-, (T, ) = I|m Z InZ(T, g, V). (1)
scription of lattice results on bulk thermodynamic ob-

servables in the low temperature, hadronic phase of For small values ofu,/T the pressure may be
QCD at g = 0. We will extend here our previous expanded in a power series,

study to finite chemical potential and compare the pre-

dictions of the resonance gas model calculations with p(T, u4) Uq

lattice results obtained in 2-flavour QCD using a Tay- ~— 74 ZCZ”(T)<T> ‘ @

lor expansion for smalk, /T [4]. The reference sys- n=0

tem for these calculations is a previous analysis [7] In recent lattice calculations this series has been ana-
of the temperature dependence of the pressure in 2-lyzed up to(’)((,uq/T)“) and in addition to the den-
flavour QCD performed af, = 0. Unlike the ap-  sity dependent change of the pressuxe) quantities
proach based on an exact inversion of the fermion de- like the quark number density{) and quark number
terminant [2] the Taylor expansion, obviously, has the susceptibility {,) have been calculated. The latter are
disadvantage of being approximate. There is, however, obtained from Eq. (2) through appropriate derivatives
good reason to expect, that at least at high temperature with respect to the quark chemical potential,

the contribution of terms that are beyo@cd(uq/T)“)

order is small. Moreover, as will become clear from 2P _ P(I', kg) — p(T,0)

our discussion below, it turns out that the expansion T4~ T4
coefficients themselves provide useful information on 2 4
the relevant degrees of freedom controlling the den- = CZ(T)( ) + C4(T)( ) )

sity dependence of thermodynamic quantities. We ar-

gue that baryons and their resonances are these rele-4 M

vant degrees of freedom that govern thermodynamics T3 g

in the confined phase at finite density. We show that 3
for T < T, the equation of state at non-zero chemi- ~ 262(T)( ) +4C4(T)< ) )

cal potential which has been obtained in lattice calcu-
lations can be well described by a baryonic resonance Xq _ *p(T, Iq)

gas when using the same set of approximations as used 72 B 3#3
in current lattice studies. We examine the importance 2
of truncation effects in the Taylor expansion and dis- >~ 2c2(T) + 126‘4(7")(%) . 3)

cuss the influence of unphysically large quark mass

values on thermodynamic observables and the critical |n the asymptotically high temperature limit this ex-

conditions for deconfinement. pansion terminates, in fact, at the order given in
Eq. (3). The expansion coefficients are then given by
c2(00) = n /2 andca(oo)/ca(c0) = 1/272, respec-

2. Finitedensity QCD and Taylor expansion tively.2 In this limit the ratiocs/co is small and the
leading order term, consequently, dominates in the

The basic quantity that describes thermodynamics Taylor expansion for a wide range of values for/ T .
at non-vanishing chemical potential is the pressure. In The lattice results for the expansion coefficients, ob-
the grand-canonical ensemble it is obtath&dm the

2 Also at 0(g?) the high temperature expansion terminates
1 Although the volume dependence of thermodynamic quantities at O ((14/T)%. This, however, changes in the resumedg®)
calculated on the lattice requires a careful analysis and has not yet contribution. The complete expansion upOangIn g) has recently
been performed for most thermodynamic studies with dynamical been presented in [8]. A discussion of the dependence of the
quarks, we will for simplicity of notation suppress in the following  pressure at non-zero chemical potential and high temperature is
any volume dependence in our formulas. given in [9].
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Fig. 1. Temperature dependence of the second order expansion coefligiantsc, of the pressure in powers of; /T obtained in 2-flavour
QCD [4]. In (a) we show(T) and (b) shows the ratiog(7')/c2(T). The temperature scale is given in units of the transition temperature
at g = 0 which for the quark masses used in the calculation of Ref. [This: 200 MeV. ForT > Ty the dashed horizontal line shows the
massless Fermi gas valuea@f/c,. The dashed-dotted curves in (a) show results of a resonance gas model calculatienGe, 1.0, 1.1, 1.2
(from top to bottom) as discussed in Section 3. The dashed-dotted curve in (b) represents the resonancecgas\al0gs.

tained in 2-flavour QCD are shown in Fig. 1. It can InZ(T, ug, V)= Z In Z,ﬁi(T, V)

be seen, that af ~ 1.5Ty the numerical results for iemesons

c2(T) still deviate by about 20% from the ideal gas n Z

value while the ratia4/c2 is already close to the cor-

responding result expected in the infinite temperature

limit. whereZp (Z) denote single particle partition func-

tions for bosons and fermions with massandu g =

3u, is the baryon chemical potential. Here the fermion

partition function contains the contribution from a par-

ticle and its anti-particle. The total pressure of the res-

onance gas is then obtained from Eq. (1) and builds up
The analySiS of eXperimental dataonthe prOdUCtion as a sum of contributions from partic]es of mass

cross-sections of various hadrons in heavy'ion colli- The dependence of the pressure on the Chemica| po_

sions shows astonishingly good agreement with corre- tential at a fixed temperature is thus entirely due to the

sponding thermal abundances calculated in a hadronicbaryonic sector. The contributiop,,, of baryons of

resonance gas model at appropriately chosen tempermasgn to the total pressure is given by

ature and chemical potential [10]. Our recent analy-

sis of the equation of state calculated on the lattice at d T —e(k)
dkkzln[<l+zexp{ })

InZE (T, up, V), (4)

m;
iebaryons

3. Resonance gas and Boltzmann approximation

ng = 0 also has shown that a gas of non-interacting TM =52
resonances can provide a good description of the low- 0
temperature phase of QCD [6]. We want to extent here . —e(k)
our analysis to the case of non-vanishing chemical po- X (1 tz exp{ T })]
tential.
The partition function of a resonance gas can be ®)

specified through the mass spectra for the mesonicwherez = exp{up/T} is the baryonic fugacity with
and baryonic sectors of QCD, respectively. In a non- 148 = 3it4, d is the spin—isospin degeneracy factor and
interacting resonance gas the partition function reads, (k) = vk2 + m?2 is the relativistic single particle en-
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ergy. The pressure may be expressed in terms of a fu-the dependence of the pressure on the baryon chem-

gacity expansion as ical potential will just be mediated through a multi-
plicative factor as given in Eq. (8). We stress that this
2 o© . . L .
Pm __d (m +1)-2 tm simple relation is independent of details of the mass
==l=) DDk — . >
T4  #2\T = T spectrum as long as all fermions are sufficiently heavy.
- The factorization of the part depending on the mass
x cosl-(m—B), (6) spectrum and that depending on the chemical poten-
T tial, however, also relies on the assumption that inter-
whereKk is the Bessel function. actions among the hadrons and resonances are negli-

In the hadronic phase of QCD the relevant tempera- 9ible. The validity of this assumption can be verified
tures will always be smaller than the transition temper- through a direct comparison with lattice calculations
ature to the plasma phase determined in lattice calcu- for #q >0 and for7' < To.
lations atuz = 0, i.e., we are interested in the regime  Following Egs. (7), (8) we can specify the results
T < 200 MeV [7]. As the mass of the lightest baryon for the change in pressure, the quark number density
(my) is about five times larger than this value, the and quark number susceptibility. In order to compare
Bessel functions appearing in Eq. (6) can always be the prediction_s of the resonance gas model with Iatt_ice
approximated by the asymptotic form valid for large results one still needs to perfqrm th_e Taylor expansion
arguments, i.e Ko(x) ~ /7 /2x exp(—x). This shows up to the same (_)rde_r as given in Eq. (3). In the
that higher order terms in Eq. (6) are suppressed by Boltzmann approximation we have,
factors exp—£(m —up)/T). Aslongasmy —up) = A
T the contribution of baryons to the resonance gas par- _‘Z =F(T) |:COShM—B - 1]
tition function is thus well approximated by the lead- T T
ing term in Eq. (6), which constitutes the Boltzmann ar 2 g 4
approximation. In this case each baryon/anti-baryon ~F(T) C2<_) +c4(7) ’
pair contributes to the pressure with

ng . MB
. 4 N2 " s 73 = 3F(T)sinh T
74" ﬁ(?) KZ(?) C°$*(7)- ) ( (10 g ()

i (212 e 22)).

Thus, the total baryonic contribution to the pressure of r r
a resonance gas reads Xg _ 9F (T) cosh™E

T2 T
PB “B 2
7a = 1D Cw(?)’ ®) ~ F(T)(ZEZ + 12@(%) ) (10)

whereF (T) is defined by
with ¢; = 9/2 and¢é4 = 27/8. In the resonance gas
d;i (mi\? m; model the expansion coefficients introduced in Eq. (3)
F(T) = Z ﬁ(?) K2< ) ©) are given bycy, = ¢2, F(T). We note that ratios of
these quantities indeed are independent of the reso-
and the sum is taken over all known baryons and their nance mass spectrum and only depend on the chemical
resonances. potential. For fixedu, /T we thus expect to find that
Current lattice studies of the hadronic phase of any ratio of two of the above quantities is temperature
QCD with non-vanishing chemical potential con- independentinthe hadronic phase. Using the same or-
centrate on a temperature regime8% < 7 < Tp der of the Taylor expansion as used in the lattice cal-
with quark chemical potentialg, < T. The baryon culations such ratios only depend&yc, = 3/4, i.e.,
chemical potentialep = 31, thus stays considerably the resonance gas model yields a temperature indepen-
smaller than the nucleon mass. Under these conditionsdent ratioca/c2. As can be seen in the right-hand part
the Boltzmann approximation will be applicable and of Fig. 1 this is indeed in good agreement with the

T
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Fig. 2. The ratio of pressure and quark number susceptibility versus
temperature for fixed values @f; /7. The horizontal lines are the

71

tions of the equation of stafeln addition we have
to take into account that also the transition temper-
ature is quark mass dependent. For the quark mass
value used in the numerical study of the equation of
state [4,7] the transition temperature has been deter-
mined aslp ~ 200 MeV. While an extrapolation to the
chiral limit yields the transition temperature of about
170 MeV. We usdy to express the hadron masses in
units of the temperature;/ T = (m/ To)(To/ T) with
T scaled in units of/p.

The distortion of the hadron mass spectrum due to
unphysically large quark masses) can in general
be deduced from lattice calculations at zero tempera-
ture. A generic feature of such studies is that the de-
viation from the physical mass value due to unphysi-
cally large values of the quark mass becomes smaller

results of hadron resonance gas model. The points are the lattice for heavier hadronic states (see, e.g., [11]). More-
values from Ref. [4]. While the dashed-dotted curves represent the gyer, one finds [12,13] that the quark mass dependence

complete expression (Eq. (11)) the dashed curves give the result

of a Taylor expansion to the same order as that used in the lattice
calculations.

lattice results. We note that this result is independent
of details of the hadron mass spectrum. It thus should

also be insensitive to the change in the quark mass

used in the lattice calculation. In Fig. 2 we show the ra-
tio Ap/ szq for two values of the chemical potential.
The good agreement between lattice calculations an

the hadronic gas results merely reflects the agreemen

found already for the ratios/c>. In the resonance gas
model we can, however, provide also the complete re-
sult for this ratio,

= }<1 - cosh1<3ﬁ)).
9 T

This is shown as a dashed-dotted line in Fig. 2.
The agreement of the ratio;/c2 calculated in the

Ap

— (11)
szq

resonance gas model and on the lattice also implies

that, for all values ofu, /7T, the temperature depen-
dence ofAp and its derivatives like, e.g., the quark
number susceptibility is to a large extent controlled
by the same function;2(T) = (9/2) F(T). To deter-
mine, however, the functio® (7)) we have to spec-
ify the baryon mass spectrum explicitly. This is, in
general, known experimentally. However, to facilitate
a direct comparison with lattice calculations we have
to take into account that the spectrum is distorted due
to the still quite large quark masses used in calcula-

is well parametrized through the relatiom; ya)? =
(mHa)Shys+ b(mza)?, where(m ya)phys denotes the
physical mass value of a hadron expressed in lattice
units and(m ga) is the value calculated on the lattice
for a certain value of the quark mass or equivalently a
certain value of the pion masaf ~ m,). Until now,
however, the masses of only a few baryonic states con-
structed from(u, d)-quarks have been studied in more

ddetail on the lattice [11-13]. This is obviously not suf-
tficient to fix the functionF (T') in Eq. (7) that requires

the contributions from a large set of baryonic reso-
nances.

The above quadratic parametrization of the quark
mass dependence of baryon masses shows at least
for nucleon, delta and their parity partners only a
weak dependence on the hadron mass. We thus take
this as a general ansatz for the parametrization of the
dependence of baryon masses on the pion mass,

2
~14+A77,
my
wherem(m,) is the distorted hadron mass at fixed
my; and mpy is its corresponding physical value.
This parametrization is consistent with our previous

m(my)

mpy

(12)

3 The phase transition temperature has been calculated at a large
set of quark mass values, including rather small values which lead
to “almost” physical hadron masses. So far the equation of state,
however, has been studied with improved actions only for one set of
quark masses corresponding to a pion mass of about 770 MeV [7].
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5 5 finite density is to large extent governed by the
af T = baryonic resonances. As can be seen in Fig. 1(a) the
15% uncertainty in the parametrization of the baryonic
mass spectrum (Eg. (12)) results in 20% error on the
values of physical observables, i.€x(T), atT = T.

Iy . . .
ar A - B ; 4. Relaxing the lattice constraints
Flgsev ¥ 7 ‘ . . .
2k A { i We want to discuss here in somewhat more detail
; E"é}' what the resonance gas model calculation suggests for
é% LR e the quark mass dependence of current thermodynamic
Oéia =7 i ; . studies on the lattice and what the influence of the
o8 k8 2t truncation of the Taylor series expansion on the behav-

Fig. 3. Lattice results from Ref. [4] for the quark number suscep- lor of thermodynamic quantities in the hadronic phase
tibility in 2-flavour QCD calculated in next-to-leading order Tay- could be. T_he Iatt_er clearly Q¢pends on the observable
lor expansion for different values of the quark chemical potential, UNder consideration. As anticipated also in Ref. [4] the
The lines are results from the resonance gas model using a distortedinfluence of a truncation of the Taylor expansion for
baryon spectrum (Eq. (12) with = 1) and treated within the same  the pressure aﬂ((#q/T)4) becomes more severe in
approximation as in the lattice study. calculations of the quark number susceptibility as the
expansion stops here alread)(%(t(uq/T)z). The res-
analysis [6] where we have used the MIT bag model onance gas model suggests thayfgy 7 = 1 the trun-
to determine then . -dependence of hadron masses.  cated result for the pressure differs only by 15% from
The lattice results [4] for QCD thermodynamics at the complete result. These truncation errors rise to
finite 1, were obtained in 2-flavour QCD. An im-  about 80% in calculations o(fq/T2 atu,/T =1.The
mediate consequence of the restriction to only two major part of this truncation error could be removed by
quark flavour is that we have to suppress the contri- calculating the(?((uq/T)G) contribution toAp/ T4,
bution from strange baryons to the resonance gas in These properties are seen in Fig. 4 where the results
the low temperature phase. Moreover, since the lattice of the resonance gas calculation performed with the
results were obtained with a quite large valuenf, complete(u, / T)-dependence and a Taylor expansion
corresponding tan, /./o = 1.844 0.04, we account  truncated aD((Mq/T)“) are shown for pressure and
for modifications of the baryon mass spectrum using quark number susceptibility.
Eqg. (12). From the pion mass dependence of the nu-  Already in the discussion of thap/ szq we in-
cleon, delta and their parity partners [12,13] we esti- dicated that within the Boltzmann approximation this
mate 09 < A < 1.2 in Eq. (12). This range of values and similar ratios are independent of the resonance
is also expected from the bag model study in Ref. [6]. mass spectrum and thus also on the quark masses.
The above discussion fixes our parametrization of Changes in the quark mass thus will influence calcu-
the baryonic sector of the resonance gas model atlations of the pressure and its derivatives in a simi-
unphysical values of the quark mass as they are used inlar way. Replacing in the resonance gas calculation
current lattice calculations. The resulting temperature the modified baryon spectrum by the experimentally
dependence of the expansion coefficient?) is known spectrum will increase the value of the pres-
shown in Fig. 1(a). The corresponding result for the sure as all baryons become lighter. This effect is some-
quark number susceptibility at different values of the what reduced as also the relevant temperature scale is
quark chemical potential is shown in Fig. 3 for the shifted to smaller values, i.e., the transition tempera-
choice A = 1.0. The agreement of the resonance gas ture will shift from Ty >~ 200 MeV toTp ~ 170 MeV.
model and results obtained from lattice calculations As can be seen in Fig. 4 this increases the pressure
is indeed quite satisfactory. This indicates that the and its derivatives. The extrapolation to the physical
thermodynamics of the confined phase of QCD at case depends, however, quite sensitively on the value
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a) | .A(P/T‘)/”_/T:, b)

1
1.2

/T,

T/T,

Fig. 4. Quark number susceptibility (a) and change in pressure (b) for fixed quark chemical potgrifal= 1 as a function off'/ Tp.

The points are lattice results from Ref. [4] and lines are the resonance gas model results. The dashed and dashed dotted lines are obtainec
with a baryon mass spectrum appropriate for the unphysical quark masses used in lattice calculations and with a Taylor expansion truncated at
O((uq/ T)%) and the full result, respectively. The full lines are resonance gas model results obtained with physical hadron masses, no expansion
in g/ T and for three values of the transition temperatde= 160 MeV (lower), 170 MeV (middle) and 180 MeV (upper), which cover the

range of current lattice estimates for the chiral limit extrapolatiofi.ah 2-flavour QCD.

for the critical temperature. We note that the resonance tween lattice results on the QCD thermodynamics and
gas model calculation favours a small critical tempera- resonance gas model calculations should show up at
ture as it seems to be unlikely thap/ 7 will exceed O((1q/ T)").
the corresponding ideal gas valuerat

Finally, we want to comment on the convergence
radius of the Taylor expansion ifu,/T). The reso- 5. Conclusion and outlook
nance gas model as we have introduced it here, i.e., as
a finite sum of non-interacting Fermi gases, of course ~ We have shown that basic features of the density de-
does not lead to critical behaviour. Consequently also pendence of the QCD equation of state in the hadronic
the dependence o(u,/T) is given by an analytic  phase observed in recent lattice studies can be under-
function. The resulting Taylor expansion has an infi- stood in terms of the thermodynamics of a baryonic
nite convergence radius, which in terms of the conver- resonance gas. A quite robust result, independent of
gence criterium used in Ref. [4] is reflected in the fact the detailed structure of the hadron mass spectrum, is

that, the dependence of thermodynamic quantitiepnT
& at fixed temperature. This indicates that the thermody-
lim | — =00, namics at low temperatures is dominated by heavy de-
n—>00\ 2,42

grees of freedom which justify a Boltzmann approx-
for all temperatures in the resonance gas model. In imation for the partition function. Within the reso-
the case of QCD, we expect, however, that the conver- nance gas model these degrees of freedom are non-
gence radius is bounded from above by the location of interacting which leads to simple relations among dif-
the phase boundary to the quark gluon plasma phase ferent thermodynamic observables. In particular, we
In particular, we expect that the ratios, /c2,+2 Stay argued that the ratinp/szq is independent of tem-

close to unity for temperatures close Tg. In fact, perature at fixegk, /T. This is in agreement with cur-
this also is the case for the low-order expansion co- rent lattice calculations. It is, however, clear that this
efficients in the resonance gas model, i®/c4 = has to change, when the system undergoes a true phase

4/3. This, however, changes already at the next or- transition at some temperatufg(u,) < To for a suf-
der,ca/ce = 10/3. We thus expect that differences be- ficiently large value oft, /T . In particular, we expect
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of a line of first order phase transitions [14], which Eubﬁft;’zig?b fb-" ;i::r’:'dt' hep-1at/0305007, Phys. Rev. D,
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