The eta invariant and the Gromov–Lawson conjecture for elementary Abelian groups of odd order

Boris Botvinnik *, Peter B. Gilkey

Mathematics Department, University of Oregon, Eugene, OR 97403, USA

Received 11 April 1996

Abstract

Let M be a compact connected spin manifold of dimension $m \geq 5$. Assume the fundamental group of M is an elementary Abelian p group of rank k where p is an odd prime. If $k = 2$ and m is arbitrary or if $k = 3$ and m is odd, we use the eta invariant to show that M admits a metric of positive scalar curvature if and only if the \hat{A}-roof genus of M vanishes. This establishes the Gromov–Lawson conjecture for these cases. © 1997 Elsevier Science B.V.

Keywords: Eta invariant; Gromov–Lawson conjecture; Equivariant spin bordism

AMS classification: Primary 58G12, Secondary 58G25; 58A50; 53C25

1. Introduction

The Gromov–Lawson conjecture claims that a compact connected spin manifold M of dimension $m \geq 5$ admits a metric of positive scalar curvature if and only if the generalized index $\alpha(M)$ of the Dirac operator on the manifold M is zero. The precise statement of the conjecture depends on the fundamental group G of the manifold in question.

The \hat{A}-genus is well defined on the bordism groups Ω^Spin_m; it takes values in \mathbb{Z} if $m \equiv 0 \mod 4$, it takes values in \mathbb{Z}_2 if $m \equiv 1, 2 \mod 8$, and it is zero otherwise. If M admits a metric of positive scalar curvature, the Lichnerowicz formula shows M has no harmonic spinors and hence the \hat{A}-genus vanishes. If M is simply connected, Stolz [17] has shown the converse holds, i.e., M admits a metric of positive scalar curvature if and only if $\hat{A}(M) = 0$. This establishes the Gromov–Lawson conjecture in this case.

* Corresponding author. E-mail: botvinn@poincare.uoregon.edu.

Research partially supported by the NSF (USA) and MPIM (Germany). E-mail: gilkey@math.uoregon.edu.
In this paper, we suppose that \(\pi_1(M) = G \) where \(G = (C_p)^k \) is an elementary Abelian \(p \)-group of rank \(k \) where \(p \) is an odd prime. For these groups, the invariant \(\alpha(M) \) is just the \(\hat{A} \)-genus. The Gromov–Lawson conjecture for the group \(G \) is that \(M \) admits a metric of positive scalar curvature if and only if \(\hat{A}(M) = 0 \). This assertion has been proved by Kwasik and Schultz [11] if the rank of \(G \) is 1 (see also [5] for a different proof using the \(\eta \) invariant); we understand that Schultz [16] has proved this result if the rank of \(G \) is 2. The following is the main result of this paper:

Theorem 1.1. Let \(p \) be an odd prime and let \(M \) be a compact connected spin manifold of dimension \(m \geq 5 \) with fundamental group \(G = (C_p)^k. \)

(a) If \(k = 2 \), then \(M \) admits a metric of positive scalar curvature if and only if \(\hat{A}(M) = 0. \)

(b) If \(k = 3 \) and \(m \) is odd, then \(M \) admits a metric of positive scalar curvature if and only if \(\hat{A}(M) = 0. \)

We now outline the proof of Theorem 1.1. Let \(\Omega^\text{Spin}_m(\cdot) \) be the spin bordism theory and let \(\Omega^\text{Spin}_m(\cdot) \) be the reduced theory. If \(M \) is a compact connected spin manifold with finite fundamental group \(G \), give \(M \) the canonical \(G \) structure to regard \([M] \in \Omega^\text{Spin}_m(BG). \)

The work in [8,13–15] shows that if there exists a manifold \(M_1 \) which admits a metric of positive scalar curvature so that \([M_1] = [M] \in \Omega^\text{Spin}_m(BG) \), then \(M \) admits a metric of positive scalar curvature. Thus the question of whether or not \(M \) admits a metric of positive scalar curvature reduces to a question in equivariant spin bordism; in light of the result of Stolz we can work with the reduced theory. Thus to prove Theorem 1.1, it suffices to prove that every element of \(\Omega^\text{Spin}_m(B(C_p)^k) \) can be represented by a manifold which admits a metric of positive scalar curvature if \(m \geq 5 \) and if \(k = 2 \) or if \(m = 5 \) is odd and if \(k = 3 \).

We can reduce the problem still further. We recall some results of Kreck and Stolz [10]. Let \(\mathbb{H}\mathbb{P}^2 \) be the quaternionic projective plane with the usual homogeneous metric of positive scalar curvature. If \(X \) is a topological space, let \(T_m(X) \) be the subgroup of the bordism group \(\Omega^\text{Spin}_m(X) \) consisting of bordism classes \([(E^m, f \circ p)] \), where \(p: E^m \rightarrow B^{m-8} \) is a fiber bundle with fiber \(\mathbb{H}\mathbb{P}^2 \) and with transition functions belonging to the group of isometries \(PS\mathbb{P}(3) \) of \(\mathbb{H}\mathbb{P}^2 \). The functor \(X \rightarrow \Omega^\text{Spin}_m(X)/T_m(X) \) was studied by Kreck and Stolz [10]. We essentially use the fact from [10] that polynomial generators \(\zeta_{4k} \) of the ring

\[
\Omega_*^\text{Spin} \otimes \mathbb{Z}[\frac{1}{2}] \cong \mathbb{Z}[\frac{1}{2}][\zeta_4, \zeta_8, \ldots, \zeta_{4k}, \ldots]
\]

may be chosen so that \(\zeta_{4k} \in T_{4k}(pt) \), \(k \geq 2 \). In particular, \(\zeta_{4k} \) may be represented by manifolds with positive scalar curvature. Localized at odd prime \(p \) the ring \((\Omega_*^\text{Spin})_p \) is isomorphic to the tensor product \(\mathbb{B}P_* \otimes P_* \), where \(\mathbb{B}P_* = \mathbb{Z}_p[v_1, v_2, \ldots] \) is the coefficient ring of the corresponding Brown–Peterson homology theory \(\mathbb{B}P_* \), and \(P_* = \mathbb{Z}_p[x_{4k} \mid 2k \neq p^l - 1] \). Even more, there is a splitting of the spectrum \(\mathbb{M}\mathbb{P}_*(p) \): \(\mathbb{M}\mathbb{P}_*(p) = \mathbb{B}P \wedge M(P_*) \), where \(M(P_*) \) is a generalized Moore spectrum (which is just a wedge of spheres in our case, so that \(\pi_*(M(P_*)) = P_* \)). We show that the generators \(x_{4k}, v_n \) for \(k, n \geq 2 \) may be chosen in such way that they are represented by manifolds
with positive scalar curvature. Let \(J \) be the ideal of \((\Omega^*_{\text{Spin}})_p\) generated by \(x_{4k}, u_n \), \(k, n \geq 2 \). Thus to prove Theorem 1.1 it is suffices to show that corresponding elements of the groups \(\Omega_*(B(C^k)) := \Omega^*_{\text{Spin}}(B(C^k))/J \) may be represented by manifolds with positive scalar curvature. Note that \(\Omega_*(B(C^k)) \) is a module over \(\Omega_* := \Omega^*_{\text{Spin}}/J \).

We reduce the problem still further by factorizing the group \(\Omega_{m}(BG) \) by the “topologically decomposable” elements. More precisely, let \(G = G_1 \oplus G_2 \) be a nontrivial decomposition of \(G \). Cartesian product defines a natural homomorphism \(\Omega_{m}(BG_1) \otimes \Omega_{m}(BG_2) \to \Omega_{m}(BG_1 \wedge BG_2) \to \Omega_{m}(BG) \); the last homomorphism is an inclusion of the direct summand. Let \(\mathcal{D}_m(BG) \) be the subgroup of \(\Omega^*_{\text{Spin}}(BG) \) which is generated by the image of all such Cartesian products. Let \(\mathcal{D}'_m(BG) \) be the subgroup of \(\Omega^*_{\text{Spin}}(BG) \) which is generated by the image of all such Cartesian products of the reduced groups \(\Omega^*_{\text{Spin}}(BG_1) \otimes \Omega^*_{\text{Spin}}(BG_1) \). Note that \(\mathcal{D}_m(BG) \) is not the projection of \(\mathcal{D}_{m}(BG) \) to the reduced theory. Let

\[
A_m(BG) := \Omega^*_{\text{Spin}}(BG)/[J + \mathcal{D}_m(BG)].
\]

The lens spaces generate \(\Omega^*_{\text{Spin}}(BC_p) \) as an \(\Omega^*_{\text{Spin}} \) module. We can use this observation and the solution of the Gromov–Lawson conjecture for \(k = 1 \) to see all the elements of \(\Omega^*_{\text{Spin}}(BC^k) \) can be represented by manifolds which admit metrics of positive scalar curvature if \(m \geq 2 \), see [5] for details. Thus every element of \(\mathcal{D}_m(B(C_p)^2) \) can be represented by a manifold that admits a metric of positive scalar curvature if \(m \geq 3 \). The proof of Theorem 1.1(a) will show that all the elements of \(\mathcal{D}'_m(B(C_p)^2) \) can be represented by manifolds which admit metrics of positive scalar curvature if \(m \geq 3 \) and consequently every element of \(\mathcal{D}_m(B(C_p)^3) \) can be represented by a manifold that admits a metric of positive scalar curvature if \(m \geq 4 \). Note that since we are not proving the Gromov–Lawson conjecture in even dimensions if \(k = 3 \), that the process stops at this point and we cannot proceed to discuss the case rank \(k = 4 \). This reduces the proof of Theorem 1.1 to showing the elements of \(A_m(B(C_p)^k) \) may be represented by manifolds which admit metrics of positive scalar curvature if \(m \geq 5 \) and if \(k = 2 \) or if \(m \geq 5 \) is odd and if \(k = 3 \).

In Section 2, we use results of Johnson and Wilson [9] on the structure of \(\mathbb{BP}_*(B(C_p)^k) \) to study \(\Omega_*(B(C_p)^k) \) as \(\Omega_* \) module. We will show that if \(k = 2 \) and if \(m \) is even, then \(A_m(B(C_p)^2) = 0 \); this completes the proof of Theorem 1.1 in this case. To summarize the discussion, if \(m \) even, we will show that the relevant classes are generated by Cartesian products or are the image of elements from \(\Omega^*_{\text{Spin}}(BC_p)^k \) and can be represented by manifolds that admit metrics of positive scalar curvature. If \(m \) is odd, the relevant classes are generated by \(\text{Tor} \) terms coming from the Küneth formula and require further discussion. If \(k = 3 \), we cannot handle the \(\text{Tor} \) terms which would arise in even dimensions and hence we restrict Theorem 1.1(b) to the case \(m \) odd.

In Lemma 2.3, we will show that if \(k = 2 \) or if \(m \) is odd and if \(k = 3 \), then

\[
|A_m((C_p)^k)| \leq p^{\varepsilon(k, m)}
\]

where \(\varepsilon(k, m) \) is defined as follows:

\[
\varepsilon(k, m) = 0 \quad \text{if } m \text{ is even or if } m \leq 0,
\]
\[\varepsilon(1, 4\nu + 1) = \varepsilon(1, 4\nu + 3) = \nu + 1, \quad \text{and} \]
\[\varepsilon(k, m) = \varepsilon(k - 1, m) + \varepsilon(1, m) + \sum_{1 \leq t \leq p-1} \varepsilon(k - 1, m - 2t). \quad (2) \]

Let \(C_n \) be the cyclic group of order \(n \) where \(n = p^\ell \) is an odd prime power. Let \(U(\nu) \) be the unitary group. Let \(\tau : C_n \to U(\nu) \) be a fixed point free representation of the cyclic group \(C_n \) for \(n = p^\ell \) and let \(L^{2\nu-1}(n; \tau) := S^2^{2\nu-1}/\tau(C_n) \). The generalized lens space \(L^{2\nu-1}(n; \tau) \) admits a natural spin structure and a natural \(C_n \) structure. Let \(\tilde{L}^{2\nu-1}(n; \tau) \) be the natural projection of \(L^{2\nu-1}(n; \tau) \) to \(\mathcal{M}(BC_n) \). If \(\beta \) is a group homomorphism from \(C_n \) to \((C_n)^k \), then \(\beta_* \) induces a homomorphism from \(\mathcal{A}_m(BC_n) \) to \(\mathcal{A}_m(B(C_n)^k) \). Let

\[B_m(B(C_n)^k) := \text{span}_{Z}\{\beta_* \tilde{L}^m(n; \tau)\} \subset \mathcal{A}_m(B(C_n)^k), \quad (3) \]

where we use all embeddings \(\beta \) of \(C_n \) in \((C_n)^k \) and all suitable lens spaces. We will show in Proposition 3.2 that \(|B_m(B(C_n)^k)| \geq n^{\varepsilon(k, m)} \). It then follows that \(B_m(B(C_p)^k) = \mathcal{A}_m(B(C_p)^k) \) if \(k = 2 \) or if \(m \) is odd and if \(k = 3 \). Since the lens spaces of dimension at least 3 admit metrics of positive scalar curvature, this will complete the proof of Theorem 1.1.

We can use these methods to generalize Theorem 1.1 slightly:

Proposition 1.2. Let \(n = p^\ell \) be an odd prime power and let \(M \) be a compact connected spin manifold of dimension \(m \geq 5 \) with fundamental group \(G = (C_n)^k \). Assume that \(m \leq 2(p - 1) \).

(a) If \(k = 2 \), then \(M \) admits a metric of positive scalar curvature if and only if \(\tilde{A}(M) = 0 \).

(b) If \(k = 3 \) and \(m \) is odd, then \(M \) admits a metric of positive scalar curvature if and only if \(\tilde{A}(M) = 0 \).

Thus if we fix the dimension \(m \), the Gromov–Lawson conjecture holds in this setting for \(p \) sufficiently large. We shall omit the proof of this generalization as it is straightforward. If \(\ell > 1 \), Proposition 2.3 fails if \(m > 2(p - 1) \) so our methods do not apply.

2. Spin bordism of elementary Abelian groups

Let \(p \) be an odd prime, and \(\text{BP}_*(\cdot) \) be the Brown–Peterson theory corresponding to the prime \(p \), \(\text{BP}_* = \mathbb{Z}_{(p)}[v_1, v_2, \ldots] \) with \(\text{deg } v_n = 2p^n - 2 \).

The reduced bordism groups \(\Omega_*^{\text{Spin}}(B(C_p)^k) \) are isomorphic to their localization at \(p \) since the space \(B(C_p)^k \) is already \(p \)-local. It is well known that the Thom spectrum \(ext{MSpin} \), localized at \(p \), splits into the wedge of suspensions of the spectrum \(\text{BP} \).

Proposition 2.1. Let \(p \) be an odd prime. There is a \(\text{BP}_* \)-module isomorphism

\[(\Omega_*^{\text{Spin}})_{(p)} \cong \text{BP}_* \otimes \text{P} \quad \text{where } \text{P} := \mathbb{Z}_{(p)}[x_{4i} \mid 2i \neq p^i - 1], \quad (4) \]
where the generators v_2, v_3, \ldots of $BP_* = Z_{(p)}[v_1, v_2, \ldots]$, deg $v_n = 2p^n - 2$, and the generators $x_{4i}, i \geq 2, 2i \neq p^j - 1$ may be chosen in such way that they are represented by manifolds which admit metrics of positive scalar curvature.

Proof. Recall that the natural homomorphism $\Omega^*_{\text{Spin}} \to \Omega^*_{\text{SO}}$ induces an isomorphism

$$\Omega^*_{\text{Spin}} \otimes Z[\tfrac{1}{2}] \cong \Omega^*_{\text{SO}} \otimes Z[\tfrac{1}{2}],$$

Polynomial generators ζ_{4m} of the ring

$$\Omega^*_{\text{Spin}} \otimes Z[\tfrac{1}{2}] \cong Z[\tfrac{1}{2}][\zeta_4, \zeta_8, \ldots, \zeta_{4m}, \ldots]$$

may be chosen such that $\zeta_{4m} \in T_{4m}$ for $m \geq 2$; see [10, Proposition 4.21, thus the generators $\zeta_8, \ldots, \zeta_{4m}$ are represented by manifolds with positive scalar curvature. Natural homomorphisms

$$\Omega^*_{\text{Spin}} \xrightarrow{\mu_{\text{Spin}}} \Omega^*_{\text{SO}} \xrightarrow{\mu_{\text{SO}}} \Omega^*_{\text{U}}$$

induce

$$(\Omega^*_{\text{Spin}})_{(p)} \xrightarrow{\cong} (\Omega^*_{\text{SO}})_{(p)} \xrightarrow{\mu_{\text{SO}}} BP_* \otimes R_*$$

where μ_{SO} is a surjection, $R_* = Z_{(p)}[y_{2j} \mid j \neq p^f - 1]$, and μ_{SO} restricted on $BP_* \otimes Z_{(p)}[y_{2q} \mid 2q \neq p^f - 1]$ is an isomorphism, see [18]. In particular, a splitting $\text{MSpin}_{(p)} = BP \wedge M(P)$ (where $M(P)$ is a generalized Moore spectrum, $\pi_*(M(P)) = P_*$) may be chosen so that $BP_* \otimes 1 = \mu_{\text{SO}}(BP_*)$, and $P_* = \mu_{\text{SO}}(R_*)$.

Let v_1, v_2, \ldots be the standard polynomial generators of the $BP_* \otimes 1 \subset (\Omega^*_{\text{Spin}})_{(p)}$. We consider two cases: (1) $p = 3$, (2) $p > 3$.

Case 1. Let $p = 3$, then v_1 has a degree 4, so $v_1 = \lambda_4$, where $\lambda \in Z_{(p)}$. We let $v_1 = \zeta_4$. The element ζ_4 may be represented by a spin manifold M^4, so that $A(M^4) = 2$. Now we decompose a generator v_2 (of degree 16) as a polynomial on v_1:

$$v_2 = \mu_2 \zeta_4 + Q_0(\zeta_4) + v_1 Q_1(\zeta_4) + \cdots + v_1^3 Q_3(\zeta_4) + \lambda_2 \bar{v}_1^4,$$

where $i = 2, 3, 4.$ Then the generator $v_2 = v_2 - \lambda_2 \bar{v}_1^4$ is represented by manifold with positive scalar curvature since $\hat{A}(v_2) = 0$ [17]. Evident induction completes the argument.

Case 2. Let $p > 3$. It is easy to see that $\hat{A}(v_1) = a \neq 0, a \in Z_{(p)}$, for any choice of the generator v_1 of the $BP_* \otimes 1 \subset (\Omega^*_{\text{Spin}})_{(p)}$. Let $\bar{v}_1 = v_1$. We note that the element

$$z = \bar{v}_1 - \bar{a} \zeta_4^{(p-1)/2}, \quad \bar{a} = a/2^{(p-1)/2},$$

is represented by a manifold with positive scalar curvature since $\hat{A}(z) = 0$. Now we decompose the element v_2 as a polynomial on \bar{v}_1, ζ_4:

$$v_2 = Q_0(\zeta_4, i \neq 4) + \sum_{i,j} \zeta_i \bar{v}_1^j Q_{i,j}(\zeta_4, i \neq 4) + Q(\zeta_4, \bar{v}_1)$$

where $2i + j(p - 1) < p^2 - 1$, and the polynomial $Q(\zeta_4, \bar{v}_1)$ is a sum of monomials $\lambda_{i,j} \zeta_4^2 \bar{v}_1^j$, $2i + j(p - 1) = p^2 - 1, \lambda_{ij} \in Z_{(p)}$. The polynomials $Q_{i,j}(\zeta_4, i \neq 4), 2i + j(p - 1) < p^2 - 1$ may be represented by manifolds with positive scalar curvature. It is clear that there is
a number $\mu \in \mathbb{Z}_p$ so that $\tilde{A}(Q(\zeta_4, v_1) - \mu \tilde{v}_1^{p+1}) = 0$, so the element $\tilde{v}_2 = v_2 - \mu \tilde{v}_1^{p+1}$ is represented by a manifold with positive scalar curvature [17]. Induction completes the argument. \hfill \Box

Remark 2.2. Let X be a (-1)-connected p-local ring spectrum. Recall from [4] that X is a free-free spectrum if the homology $H_n(X; \mathbb{Z})$ and homotopy $\pi_n(X)$ groups are free finitely generated modules over \mathbb{Z}_p for all n. A free-free ring spectrum X defines a cohomology theory $X_*(\cdot)$, so that there exists the first Chern class c^X. The formal group theory implies that there is a map of ring spectra $j : X \to BP$ classifying the Chern class c^X. In particular, the coefficient ring X_* becomes a free BP_*-module. One may construct the homology theory $E(Y) = X_* \otimes_{BP_*} BP_*(Y)$. The spectrum E may be considered as BP-algebra. Boardman [4, Theorem B] shows that the map j induces isomorphism ring spectra $X \to E$.

In the case of the spectrum $MSpin(p)$, the coefficient ring $(\Omega^*_\text{Spin}(p))$ is a free BP_*-module, as it follows from Proposition 2.1. We obtain the isomorphism of BP_*-modules: $(\Omega^*_\text{Spin}(Y))_p \cong (\Omega^*_\text{Spin})_p \otimes_{BP_*} BP_*(Y)$.

Now we review some known facts on $\Omega^*_\text{Spin}(B(C^k_p))$. Since

$$\Omega^*_\text{Spin}(X \times Y) \cong \Omega^*_\text{Spin}(X \wedge Y) \oplus \Omega^*_\text{Spin}(X) \otimes \Omega^*_\text{Spin}(Y)$$

for any pointed spaces X, Y, to calculate $\Omega^*_\text{Spin}(B(C^k_p))$ is enough to know $\Omega^*_\text{Spin}(B(C^k_p)^\wedge k)$. Let P_* be the polynomial ring from Eq. (4), considered as a free BP-module. At the odd prime p, we have that

$$\Omega^*_\text{Spin}(B(C^k_p)^\wedge k) \cong BP_* (B(C^k_p)^\wedge k) \otimes_{BP_*} P_*.$$

Let J be an ideal of Ω^*_Spin generated by the elements $\tilde{v}_2, \tilde{v}_3, \ldots, x_8, \ldots, x_{4k}, \ldots$ where $2k \neq p^i - 1$. Note that all these elements are represented by manifolds with positive scalar curvature. Denote by $\text{to}_*(B(C^k_p)^\wedge k) = \Omega^*_\text{Spin}(B(C^k_p)^\wedge k)/J$. We use results of Johnson and Wilson [9] on the structure of $BP_* (B(C^k_p)^\wedge k)$ as a BP_* module to describe $\text{to}_*(B(C^k_p)^k)$. Let $\text{to}_* = \mathbb{Z}(p)[\hat{x}_4]$, where \hat{x}_4 is the projection of the element v_1 (when $p = 3$) and of the element x_4 (when $p > 3$). Let L_k be a free to_*-module on generators of degree $2i$, $0 < i < p^k$. For to_*-modules M, N we denote $M \otimes_{\text{to}_*} N$ by $M \otimes N$, and $M \otimes_{\text{to}_*} \cdots \otimes_{\text{to}_*} N$ by $M^{\otimes k}$. We adopt the convention that M^0 is a free to_*-module on a generator of degree 0. The following proposition is an immediate consequence of [9, Theorem 5.1].

Proposition 2.3. There is a filtration of $\text{to}_*((B(C^k_p)^\wedge k)$, localized at the prime p, such that the associated graded module $\text{to}_*((B(C^k_p)^\wedge k)$ is given by

$$\text{to}_*((B(C^k_p)^\wedge k) \cong \bigoplus_{i_1 + \cdots + i_k = n-k} L_1^{\otimes i_1} \otimes \cdots \otimes L_k^{\otimes i_k} \otimes \text{to}_*(B(C^p)^\wedge k).$$

Let $\mathcal{A}_m(BG)$ and $\varepsilon(k, m)$ be as defined in Eqs. (1) and (2). The following estimate is an immediate consequence of Proposition 2.3.

Lemma 2.4. We have $|\mathcal{A}_m(B(C^k_p)^k)| \leq p^{\varepsilon(k, m)}$ if $k = 2$ or if m is odd and if $k = 3$.
Remark 2.5. To prove Proposition 1.2, we need a similar estimate for the order of the groups $\mathcal{A}_m(B(C_n)^k)$ where $n - p^e$ is a prime power. Proposition 2.3 generalizes immediately, but the free modules $L_k(\ell)$ have more generators. By restricting $m \leq 2(p - 1)$, we truncate these modules and can replace $L_k(\ell)$ by $L_k(1)$ and obtain the estimate

$$|\mathcal{A}_m(B(C_n)^k)| \leq p^{r(k,m)} \quad \text{if } m \leq 2(p - 1). \quad (5)$$

3. The eta invariant

If M is an odd dimensional spin manifold with a G structure and if σ is a unitary representation of G, let $\eta(M, \sigma) \in \mathbb{R}/\mathbb{Z}$ be the eta invariant of the tangential operator of the spin complex with coefficients in the flat bundle defined by σ; we refer to [2, p. 414] for details. The eta invariant is additive with respect to direct sums so the map $\sigma \rightarrow \eta(M, \sigma)$ extends to the augmentation ideal $R_0(G)$ of the group representation ring $R(G)$. If A is an Abelian group, the dual group A^* is the group of homomorphisms from A to \mathbb{R}/\mathbb{Z}. Define $\eta^*(M) \subset R_0(G)^*$ by $\eta^*(M)(\sigma) = \eta(M, \sigma) \in \mathbb{R}/\mathbb{Z}$. Let $\mathcal{A}_m(BG)$ be as defined in Eq. (1).

Lemma 3.1. Let m be odd and let G be a finite Abelian group. Then the map $\sigma : M \rightarrow \eta^*(M)$ extends to a homomorphism η^* from $\mathcal{A}_m(BG)$ to $R_0(G)^*$.

Proof. If $\sigma \in R_0(G)$, let $\eta_\sigma(M) = \eta(M, \sigma)$. We use the index theorem for manifolds with boundary [2, Theorem 3.3] to see that the eta invariant extends to a map in bordism η_σ from $\tilde{\mathcal{A}}_m(BG)$ to \mathbb{R}/\mathbb{Z}. We proved in [6, Lemma 3.2] that $\eta_\sigma(M) = 0$ if $M \in \tilde{\mathcal{T}}_m(BG)$. To show that η^* extends to $\mathcal{A}_m(BG)$, we must show that $\eta(M, \sigma) = 0$ for $[M] \in \tilde{\mathcal{T}}_m(BG)$. The tangential operator of the spin complex is multiplicative with respect to Cartesian product in a suitable sense. If we decompose $G = G_1 \oplus G_2$, let $M := M_1 \times M_2$ where $[M_i] \in \tilde{\mathcal{A}}_{m_i}(BG_i)$ and $m_1 + m_2 = m$. Since $R(G) = R(G_1) \otimes R(G_2)$, we may assume without loss of generality that $\sigma = \sigma_1 \otimes \sigma_2$. Assume m_1 is even and m_2 is odd and use [3, last equation on p. 84] to see that

$$\eta(M, \sigma) = \dim(\sigma_1)\tilde{A}(M_1)\eta(M_2, \sigma_2).$$

Since $M_1 \in \tilde{\mathcal{A}}_{m_1}(BG)$, $\tilde{A}(M_1) = 0$. \qed

Let $n = p^e$. Let $C_n := \{ \lambda \in \mathbb{C}: \lambda^n = 1 \}$, and let $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z} = C_n^*$. Let $\varepsilon(k, m)$ and $B_m(B(C_n)^k)$ be as defined in Eqs. (3) and (2). The remainder of this section is devoted to the proof of the following result:

Proposition 3.2. We have that $|\eta^*B_m(B(C_n)^k)| \geq n^{\varepsilon(k,m)}$.

We begin the proof of Proposition 3.2 by recalling some combinatorial facts concerning the eta invariant. Let $\rho_s(\lambda) = \lambda^s$ for $s \in \mathbb{Z}_n$ and $\lambda \in C_n$ be the irreducible unitary representations of C_n. If $\vec{s} = (s_1, \ldots, s_v)$ is a collection of integers coprime to p with $s_1 + \cdots + s_v$ even, let $\tau(\vec{s}) := \rho_{s_1} \oplus \cdots \oplus \rho_{s_v}$ define $L^{2u-1}(n; \vec{s})$.

Lemma 3.3. Let $\psi(\vec{s}) := \rho(s_1, \ldots, s_\mu)/2 \det(I - \tau(\vec{s})) \in R_0(C_n)$.
(a) If $\sigma \in R_0(C_n)$, then $\eta(\vec{L}^{2\nu-1}(n; \vec{s}), \sigma) = n^{-1} \sum_{\lambda \neq 1} \lambda^{\nu} \det(\lambda) \{\psi(\vec{\lambda})(\lambda)\}^{-1}$.
(b) We have $\eta(\vec{L}^{2\nu-1}(n; \vec{s}), \psi(\vec{s})) = (n-1)/n$.
(c) If $\sigma_G \in R_0(C_n^k)$ and $\beta : C_n \to (C_n)_k$, then we have that
$$\eta(\beta_*\vec{L}^{2\nu-1}(n; \vec{s}), \sigma_G) = \eta(\vec{L}^{2\nu-1}(n; \vec{s}), \beta^* \sigma_G).$$
(d) If $\sigma \in R_0(C_n)^{\nu+1}$, then $\eta(\vec{L}^{2\nu-1}(n; \vec{s}), \sigma) = 0$.

Proof. The first assertion follows from work of Donnelly [7]. The second assertion follows from the first and the third assertion is immediate. Let $\sigma \in R_0(C_n)^{\nu+1}$. Since $\psi(\vec{s}) R_0(C_n) = R_0(C_n)^{\nu+1}$, there exists $\delta \in R_0(C_n)$ so that $\sigma = \psi(\vec{s}) \cdot \delta$. We use the orthogonality relations and the observation $\text{Tr}(\delta(1)) = 0$ to see that we have
$$\eta(\vec{L}^{2\nu-1}(n; \vec{s}), \sigma) = n^{-1} \sum_{\lambda \neq 1, \lambda^{\nu+1}} \text{Tr}(\delta(\lambda)) = n^{-1} \sum_{\lambda \neq 1} \text{Tr}(\delta(\lambda)) \in \mathbb{Z}. \quad \Box$$

Lemma 3.4. In the free Abelian group generated by the reduced lens spaces \vec{L}, define
$$\mathcal{B} \vec{L}^m(n; \vec{s}) := 4 \vec{L}^{m+4}(n; \vec{s}, 2, -2) - \vec{L}^{m+4}(n; \vec{s}, 1, -1),$$
$$K^{4\mu+1} := \mathcal{B} \vec{L}^1(n; 2), \quad \text{and} \quad K^{4\mu+3} := \mathcal{B} \vec{L}^3(1; n, -1).$$
Let $\sigma \in R_0(C_n)$.
(a) We have $\eta(\vec{L}^{m+4}(n; \vec{s}, 1, -1), \psi(1, -1) \sigma) = \eta(\vec{L}^m(n; \vec{s}), \sigma)$.
(b) We have $\eta(\mathcal{B} \vec{L}^m(n; \vec{s}), \sigma) = \eta(\vec{L}^{m+4}(n; \vec{s}, 2, -2), \sigma \psi(1, -1))$.
(c) If $\sigma \in R_0(C_n)^3$, then $\eta(K^m, \sigma) = 0$.
(d) There exists $\sigma_m \in R_0(C_n)$ so that $\eta(K^m, \sigma_m) = (n-1)/n$.

Proof. We use Lemma 3.3. If $\vec{s} = (s_1, \ldots, s_\nu)$ and $\vec{t} = (s_1, \ldots, s_\nu, 1, -1)$, then we have $\psi(\vec{t}) = \psi(\vec{s}) \psi(1, -1)$ and the first assertion now follows. The second assertion follows from the identity $4 \psi(1, -1) - \psi(2, -2) = \psi(1, -1)^2$. If $\sigma \in R_0(C_n)^2$, then $\sigma \psi(1, -1) \mu \in R_0(C_n)^{2\mu+2}$ so that
$$\eta(K^{4\mu+1}, \sigma) = \eta(\mathcal{B} \vec{L}^1(n; 2), \sigma) = \eta(\vec{L}^{4\mu+1}(n; 2, 2, -2, \ldots), \sigma \psi(1, -1) \mu) = 0.$$ Since $\psi(1, -1) \mu R_0(C_n) = R_0(\mathbb{Z})^{2\mu+1}$, we can choose $\sigma_{4\mu+1} \in R_0(C_n)$ so that we have $\sigma_{4\mu+1} \psi(1, -1) \mu = \psi(2, 2, -2, \ldots)$. Then $\eta(K^{4\mu+1}, \sigma) = (n-1)/n$. This completes the proof if $m \equiv 1 \mod 4$; the remaining case is similar. \Box

We can embed the group of units $U(\mathbb{Z}_p)$ of the field \mathbb{Z}_p in the group of units $U(\mathbb{Z}_n)$ of the ring \mathbb{Z}_n by requiring that $\alpha \in U(\mathbb{Z}_p)$ satisfy $\alpha^{p-1} \equiv 1 \mod n$. Let $\gamma(\alpha)(\lambda) = \lambda^\alpha$ and $\gamma(\alpha)(\rho_\alpha) = \rho_\alpha \alpha$ define adjoint representations of $U(\mathbb{Z}_p)$ on C_n and on $R_0(C_n)$. We note that $R_0(C_n)/R_0(C_n)^3$ is a finite Abelian group of order n^2: we work in this quotient henceforth where j is chosen to be large. For $0 < t < p-1$, we define the projection
$$\pi_t := (p-1)^{-1} \sum_{\alpha \in U(\mathbb{Z}_p)} \alpha^{-t} \gamma(\alpha).$$
The π_t are an orthogonal family of projections whose range is the eigenspace of the action of $U(\mathbb{Z}_p)$; $\gamma(\alpha)\pi_t = \alpha^t\pi_t$. We have localized at the prime p to define $(p - 1)^{-1}$ and α^{-1}; all the torsion we shall be considering is p torsion so this does no harm.

Lemma 3.5. Let $\xi := \pi_1(\rho_1 - \rho_0)$. We have $\pi_s\xi^t = \delta_{s,t}\xi^t$ in $R_0(C_n)/R_0(C_n)^2$ and $\xi^t R(C_n)/R_0(C_n)^{\nu+1} = R_0(C_n)^t / R_0(C_n)^{\nu+1}$.

Proof. Since γ is a ring homomorphism, $\gamma(\alpha)(\xi^t) = (\gamma(\alpha)\xi)^t = \alpha^t\xi^t$ and the first identity follows. The second identity will follow for arbitrary t from the corresponding assertion for $t = 1$. We may expand $\xi = c(\rho_1 - \rho_0) + x$ for $c \in R_0(\mathbb{Z}_p)$; since $R_0(C_n) = (\rho_1 - \rho_0)R(C_n)$, it suffices to show c is coprime to p. We reduce mod p to take $n - p$ and evaluate the eta invariant on the circle; by Lemma 3.3, $\eta(S^1, \rho_0 - \rho_0) = \alpha/p$ in \mathbb{R}/\mathbb{Z}. Thus

$$c/p = \eta(S^1, c(\rho_1 - \rho_0)) = \eta(S^1, \xi) = (p - 1)^{-1} \sum_{\alpha \in \Omega(\mathbb{Z}_p)} \alpha^{-1} \eta(S^1, \rho_0 - \rho_0) = 1/p. \quad \square$$

Let $R_m(k, n, \ell)$ be the subgroup of $R_0((C_n)^k)^*$ which is generated by the maps $\psi_M \mapsto \eta(M, \beta^* \sigma_G \xi^t)$ where β ranges over all embeddings of C_n in $G = (C_n)^k$ and where M ranges over all lens spaces of dimension m. Since we have that $R_m(k, n, 0) = \eta^* B_m(BG)$, Proposition 3.2 will follow from the following lemma:

Lemma 3.6. We have that

(a) $|R_m(1, n, \ell)| \geq n\varepsilon(1, m - 2\ell)$.

(b) $|R_m(k, n, \ell)| \geq |R_m(k - 1, n, \ell)| / |R_m(1, n, \ell)| \cdot \prod_{1 \leq t \leq p-1} |R_m(k - 1, n, \ell + t)|$.

Proof. When $k = 1$, we take β to be the identity map. We first prove (a) with $\ell = 0$. If $m = 1$ or $m = 3$, then $|\eta^*(B_m(BC_n))| = n = n\varepsilon(1, m)$ since $\eta(\tilde{L}^m(n; \tilde{s}), \psi(\tilde{s})) = (n - 1)/n$. We use induction on m. The map σ goes to $\psi(1, -1)\sigma$ induces a dual map ψ^* from $R_0(C_n)^*$ to $R_0(C_n)^*$. Since $\eta^*(B_m(BC_n))$ is a subset of $\psi^*(\eta^*(B_{m+4}(BC_n)))$. Since $\sigma(\psi(1, -1)) \in R_0(C_n)^3$, $\eta^*(B_{m+4}(\psi(1, -1)\sigma)) = 0$ and thus $\psi^* \eta^* K^{m+4} = 0$ so $\eta^* K^{m+4} \in \ker(\psi^*)$. Since we can choose σ_m so $\eta^* K^{m+4}$ has order n in \mathbb{R}/\mathbb{Z}, $\eta^* K^{m+4}$ is an element of order at least n. We prove assertion (a) if $\ell = 0$ by computing:

$$|\eta^* B_{m+4}(C_n)| = |\psi^* \eta^* B_{m+4}(C_n)| \cdot |\ker(\psi^*) \cap \eta^* B_{m+4}(C_n)|$$

$$\geq |\eta^* B_m(C_n)| \cdot n \geq n\varepsilon(1, m + 1) = n\varepsilon(1, m + 4).$$

Let $m = 2i - 1$; we assume $m - 2\ell > 0$ in the proof of assertion (a) as otherwise the inequality is vacuous. If $\sigma \in R_0(C_n)^{i+1}$, then $\eta(M, \sigma) = 0$ for any lens space M of dimension m. Thus we may work modulo the ideal $R_0(C_n)^{i+1}$. By Lemma 3.5,
$R_0(C_n)^\ell = \xi^\ell R(C_n) + R_0(C_n)^{i+1}$. We may therefore choose $y \in R(C_n)$ so that $y\xi^\ell - \psi(2)^{\ell} \in R_0(C_n)^{i+1}$. Let $|\tilde{\ell}| = i - \ell > 0$. By Lemma 3.4,

$$
\eta(\tilde{L}^{-2\ell}(n; \tilde{\ell}), \sigma) = \eta(\tilde{L}^{2i-1}(n; \tilde{\ell}, 2, \ldots, 2), \psi(2)^{\ell} \sigma) = \eta(\tilde{L}^{2i-1}(n; \tilde{\ell}, 2, \ldots, 2), y\xi^\ell \sigma).
$$

Multiplication by y induces a natural map $y^*: R_0(C_n)^* \to R_0(C_n)^*$; the desired inequality in general now follows from the case $\ell = 0$ since

$$
R_{m-2\ell}(1, n, 0) \subset y^* R_m(1, n, \ell) \quad \text{so} \quad |R_{m-2\ell}(1, n, 0)| \leq |R_m(1, n, \ell)|.
$$

We will use the following lemma to prove Lemma 3.6(b).

Lemma 3.7. Let $k \geq 2$. Decompose $G - (C_n)^k = H \oplus C_n$ where $H = (C_n)^{k-1}$. Let $\sigma_H \in R_0(H)$, $\sigma_n \in R_0(C_n)$ and $M = \tilde{L}^m(n; \tilde{s})$. If β embeds C_n in H and $1 \leq s \leq p - 1$, let

$$
\beta_s := (p - 1)^{-1} \sum_{\alpha \in U(\mathbb{Z}_p)} \alpha^{-s} \{(\beta \circ \gamma(\alpha)) - \beta \oplus 0 - (0 \circ \gamma(\alpha))\}
$$

be a virtual embedding where we localize at the prime p. Then we have that:

(a) $\eta(M, (\beta \oplus 0)^*(1 \otimes \sigma_n)\xi^\ell) = 0$,

(b) $\eta(M, (\beta \oplus 0)^*(\sigma_H \otimes \xi^\ell)\xi^\ell) = 0$,

(c) $\eta(M, (\beta \oplus 0)^*(\sigma_H \otimes 1)\xi^\ell) = \eta(M, \sigma_n\xi^\ell)$,

Proof. Since $(\beta \oplus 0)^*(1 \otimes \sigma_n) = 0$, $(\beta \oplus 0)^*(\sigma_H \otimes \xi^\ell) = 0$, and $(\beta \oplus 0)^*(\sigma_H \otimes 1) = \beta^*(\sigma_H)$, (a) follows; the proof of (b) is similar. Since $\beta_s^*(1 \otimes \sigma_n) = 0$ and $\beta_s^*(\sigma_H \otimes 1) = 0$, two of the vanishing assertions of (c) also follow. Since $(\beta \oplus 0)^*(\sigma_H \otimes \xi^\ell) = 0$ and $(0 \oplus \text{id})^*(\sigma_H \otimes \xi^\ell) = 0$ we may replace β_s by $\chi_s := (p - 1)^{-1} \sum_{\alpha} \alpha^{-s}(\beta \oplus \gamma(\alpha))$ in the proof of the final assertion of (c). We complete the proof by observing $\chi_s^*(\sigma_H \otimes \xi^\ell) = \beta^*(\sigma_H) \pi_s(\xi^\ell)$ and $\pi_s(\xi^\ell) = \delta_s, s \xi^\ell$.

We have inclusions and dual projections

$$
i_H : R_0(H) \to R_0(H) \otimes 1, \quad i_H^* : R_0(G)^* \to R_0(H)^*,$$

$$
i_C : R_0(C_n) \to 1 \otimes R_0(C_n), \quad i_C^* : R_0(G)^* \to R_0(C_n)^*,$$

$$
i_t : R_0(H) \to R_0(H) \otimes \xi^t, \quad i_t^* : R_0(G)^* \to R_0(H)^*.$$
Let $S_m(H)$ (respectively $S_m(C_n)$ and $S_m(t)$) be the elements of $\mathcal{R}_m(k, n, \ell)$ generated the eta invariant of lens spaces using embeddings of the form $\beta \oplus 0$ (respectively $0 \oplus \text{id}$ and β). Lemma 3.7 shows $i^*_H(S_m(H)) = 0$, $i^*_C(S_m(H)) = 0$, $i^*_H(S_m(C_n)) = 0$, $i^*_C(S_m(C_n)) = 0$, $i^*_H(S_m(t)) = 0$, $i^*_C(S_m(t)) = 0$, and $i^*_S(S_m(t)) = 0$ for $s \neq t$. Thus these eta invariants are supported on disjoint subgroups of $R_0(G)$ and
\[
|\mathcal{R}_m(k, n, \ell)| \geq |i^*_H S_m(H)| \cdot |i^*_C S_m(C_n)| \cdot \prod_{1 \leq t \leq p-1} |i^*_t S_m(t)|.
\]
We use Lemma 3.7 to see $i^*_H S_m(H) = \mathcal{R}_m(k - 1, n, \ell)$, $i^*_C S_m(C_n) = \mathcal{R}_m(1, n, \ell)$, and $i^*_S S_m(t) = \mathcal{R}_m(k - 1, n, \ell + t)$; Lemma 3.6(b) now follows. □

References