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ABSTRACT 

A short proof is given of Wielandt’s visibility theorem, using a special case of a 
theorem of Rbdei, which was proved in an elementary way by Gvasz and Schriver. 

1. INTRODUCTION 

During the Conference on Groups and Geometries, May 1972, in Ober- 
wolfach, Wielandt asked the audience of his lecture to provide a more direct 
geometric proof for his visibility theorem. This theorem had been proved by 
complicated arguments in Wielandt’s lecture notes on permutation groups [3], 
during the classification of groups of degree p2. In the present note we will 
give a short proof of Wielandt’s result, using a theorem by Lovisz and 
Schrijver [I], which is equivalent to a theorem of Ridei [2]. 

2. THE THEOREM 

For any prime p, let AG(2, p) denote the affine plane over the field of p 
elements. Let G be a permutation group acting on the points of AG(2, p), 
such that G contains all translations of AG(2, p). 
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Let G, c G denote the stabilizer in G of the origin in AG(2, p). 

THEOREM 1 (Wielandt [3]). Let S be a collection of k lines through the 

origin in AG(2, p), with p prime and 1~ k < k( p + 1). Zf G, fixes S as a 

point set, then any g E G maps any line of S into a line of AG(2, p). 

In other words, the theorem says that if G, fixes S as a point set, then it 
permutes the lines of S as wholes. 

3. THE PROOF 

The proof of Theorem 1 is a direct consequence of the following version of 
a theorem by Redei [2, Satz 24i], which was proved in an elementary way by 
Lovasz and Schrijver [l]. 

THEOREM 2 (Redei; LovaSz and Schrijver). Let p be a prime, and let X 

be a subset of AG(2, p) with 1X1= p. Then either X is a line, or X determines 

nt least i(p +3) directions (of lines intersecting X in at least two points). 

To see that Theorem 2 implies Theorem 1, we consider the set of the k 

directions of the lines of the collection S. Let g E G, and let t(y) denote the 
translation over y. Then t( - g( y))gt( y) maps 1c - y onto g(x)- g(y). If I is 
a line in S, then the set g(Z) is a set of p points which determines at most k 

directions. Since k < i(p +3), Theorem 2 implies that g(l) is a line. This 
proves the assertion. 
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