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ABSTRACT

A short proof is given of Wielandt’s visibility theorem, using a special case of a
theorem of Reédei, which was proved in an elementary way by Lovasz and Schriver.

1. INTRODUCTION

During the Conference on Groups and Geometries, May 1972, in Ober-
wolfach, Wielandt asked the audience of his lecture to provide a more direct
geometric proof for his visibility theorem. This theorem had been proved by
complicated arguments in Wielandt’s lecture notes on permutation groups [3],
during the classification of groups of degree p2. In the present note we will
give a short proof of Wielandt’s result, using a theorem by Lovasz and
Schrijver [1], which is equivalent to a theorem of Rédei [2].

2. THE THEOREM

For any prime p, let AG(2, p) denote the affine plane over the field of p
elements. Let G be a permutation group acting on the points of AG(2, p),
such that G contains all translations of AG(2, p).
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Let G, C G denote the stabilizer in G of the origin in AG(2, p).

TuaeoreM 1 (Wielandt [3]). Let S be a collection of k lines through the
origin in AG(2, p), with p prime and 1<k <3(p+1). If G, fixes S as a
point set, then any g € G maps any line of S into a line of AG(2, p).

In other words, the theorem says that if G, fixes S as a point set, then it
permutes the lines of S as wholes.

3. THE PROOF

The proof of Theorem 1 is a direct consequence of the following version of
a theorem by Rédei [2, Satz 24!], which was proved in an elementary way by
Lovasz and Schrijver [1].

TueoreM 2 (Rédei; Lovasz and Schrijver). Let p be a prime, and let X
be a subset of AG(2, p) with |X|= p. Then either X is a line, or X determines
at least 5(p + 3) directions (of lines intersecting X in at least two points).

To see that Theorem 2 implies Theorem 1, we consider the set of the k
directions of the lines of the collection S. Let g € G, and let t(y) denote the
translation over y. Then #( — g(y))gt(y) maps x — y onto g(x)—g(y). If l is
a line in S, then the set g(l) is a set of p points which determines at most k
directions. Since k <3(p +3), Theorem 2 implies that g(!) is a line. This
proves the assertion.
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