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Affinity reagents are essential tools in both basic and applied research; however, there is a growing concern about
the reproducibility of animal-derived monoclonal antibodies. The need for higher quality affinity reagents has
prompted the development of methods that provide scientific, economic, and time-saving advantages and do
not require the use of animals. This review describes two types of affinity reagents, recombinant antibodies
and aptamers, which are non-animal technologies that can replace the use of animal-derived monoclonal anti-
bodies. Recombinant antibodies are protein-based reagents, while aptamers are nucleic-acid-based. In light of
the scientific advantages of these technologies, this review also discusses ways to gain momentum in the use
ofmodern affinity reagents, including an update to the 1999 National Academy of Sciencesmonoclonal antibody
production report and federal incentives for recombinant antibody and aptamer efforts. In the long-term, these
efforts have the potential to improve the overall quality and decrease the cost of scientific research.

© 201 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

There is a strongdesirewithin the scientific community to see an im-
provement in the reproducibility of biomedical research. Last year,
Francis Collins M.D., Ph.D., Director of the United States National Insti-
tutes of Health (NIH), and Lawrence Tabak, D.D.S., Ph.D., Principal
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. General structure of an IgG antibody showing the heavy and light chains, the Fab,
and Fc domains, and antigen binding sites.
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Deputy Director of the NIH, wrote that the NIH is concerned about the
lack of reproducibility in biomedical research and shared actions the
NIH was exploring to address this problem (Collins and Tabak, 2014).
In response, a workshop organized by theNIH, Science, andNature Pub-
lishing Groupwas convened to identify principles to increase reproduc-
ible, robust, and transparent research (McNutt, 2014). Among these
principles is the recommendation to establish best practice guidelines
for reporting on antibodies used in research, including the source, dilu-
tion used, and how the antibody was validated (NIH, 2015).

Similarly, there is a growing awarenesswithin the scientific commu-
nity of the need to improve the quality of commercial antibodies, which
often showpoor specificity or fail to recognize their targets. Recent pub-
lications cite documented evidence of the lack of quality and reproduc-
ibility of animal-derived antibodies and describe how their use has
wasted tremendous amounts of money, time, and experimental sam-
ples (Baker, 2015; Bradbury and Plückthun, 2015). One study found
that only 49% (2726 out of 5436) of commercial, animal-derived anti-
bodies could be validated to recognize only their targets (Berglund
et al., 2008). It has been estimated that half of the $1.6 billion spent
worldwide on protein-binding reagents is used on unreliable antibodies
and that these antibodies may be the laboratory tool most commonly
contributing to irreproducible research (Baker, 2015; Bradbury and
Plückthun, 2015).

Alternative affinity reagents offer increased quality, speed of pro-
duction, and return on investments in research. The existence of
aptamers and recombinant antibodies (rAbs), two much-discussed
modern non-animal affinity reagents, makes the replacement of con-
ventional animal-based monoclonal antibody (mAb) production
methods an attractive and achievable goal. One of the impediments
to the replacement of animal-derived antibodies has been that the
research community is largely unaware of the benefits associated
with rAb and aptamer technologies. This review aims to familiarize
antibody users with the state-of-the-science of these non-animal-
based methods, how rAbs and aptamers can be incorporated into
protocols that require affinity reagents, and how to gain momentum
in the transition to these reagents. Greater awareness of the techni-
cal advantages of these non-animal alternatives among academia, in-
dustry, regulators, and funding bodies will help to facilitate wider
funding, development, and use.

1.1. Background on antibodies

In their native role as components of the adaptive immune system,
antibodies—also called immunoglobulins (Ig)—are large, complex
glycoproteins capable of binding substances, termed antigens, that
may elicit a larger immune system response. Antibodies recognize
small structural elements, or epitopes, on an antigen, thereby mark-
ing them for phagocytosis or other biological processes. Epitopes
recognized by antibodies are typically short amino acid sequences
within foreign proteins.

There are five mammalian antibody classes: IgA, IgD, IgE, IgG, and
IgM. Antibodies belonging to the IgG class are the predominant immu-
noglobulin in human serum and the most important from a research
perspective. They are generally represented as Y-shaped molecules
consisting of two heavy and two light chains (Fig. 1). The shorter light
chains interact with the N-terminus of the heavy chains to form the
two “arms,” or antigen-binding (Fab) domains, which are composed of
both constant and variable regions. Six variable amino acid loops at
the termini of the Fab domains, also called the complementarity deter-
mining regions (CDRs), are responsible for binding to the antigen
(Kierny et al., 2012). The tail of the Y-shape, the Fc domain, mediates
the antibody's interaction with macrophages and other cells expressing
Fc receptors.

The ability of antibodies to precisely bind their target antigen is the
principal characteristic making antibodies an irreplaceable component
of the immune system and particularly useful in research
applications. Both polyclonal (derived from multiple lines of
antibody-producing cells) and monoclonal (derived from a single
line of antibody-producing cells) antibodies are used in research.
Monoclonal antibodies are defined by their capacity to selectively
bind a single antigen.

1.2. Historical methods of monoclonal antibody discovery and production

Monoclonal antibodies are generated using either animal or recom-
binant DNAmethods.Many technical advances have beenmade inmAb
production technology in the four decades since Köhler and Milstein
published their manuscript on hybridoma technology in 1975 (Köhler
and Milstein, 1975). Their report describes the hybridization of
antibody-producing B cells from the spleens of immunized mice with
an immortal mouse myeloma tumor cell line, enabling the production
of mouse mAbs for use as an investigational tool. The two general
ways to discover and produce mAbs in animals, the ascites method
and the “in vitro” method, share initial discovery steps. First, an animal
(usually a mouse) is immunized with an antigen of interest. The
mouse is often immunized multiple times over several weeks and, ulti-
mately, killed to extract the spleen. Antibody-producing spleen cells
from the mouse (immunocompetent B cells, which have a limited life
span) are fused with immortalized myeloma tumor cells in vitro to pro-
duce a hybridoma.Hybridomas can be expanded in twoways: (1) by in-
jection into the peritoneal cavity of a second mouse (called the in vivo
ascites method) or (2) by culturing the hybridoma cells in vitro (called
the “in vitro” method). While both methods use animals in the initial
immunization step, the ascites method uses additional animals in pro-
cedures recognized to cause considerable pain and distress (Fig. 2)
(Animal Welfare Division of OPRR, 1997; Marx et al., 1997; NRC,
1999). Historically, the ascitesmethod producedmore concentrated an-
tibodies than the “in vitro”methodwithout the need for expertise in cell
culturemethods; however, technological advancements have led to the
“in vitro” production of more concentrated antibodies and non-animal
affinity reagents (Hendriksen, 2006; Marx and Merz, 1995).

More specifically, ascites antibody production often involves
injecting animals' abdominal linings with a priming solution (such
as Pristane or Freund's Incomplete Adjuvant) to induce inflamma-
tion and interfere with drainage of peritoneal fluid. Priming is
followed by injection of the hybridoma cell suspension. Hybridoma
cells multiply and produce antibody-containing fluid, which accu-
mulates in the abdominal cavities of the mice. As tumors grow, ani-
mals' abdomens distend as they fill with antibody-containing fluid;

Image of Fig. 1


Fig. 2.Historical methods of monoclonal antibody production. Monoclonal antibodies have historically been produced using the ascites or “in vitro”methods. The methods' steps include
1) immunization of a mouse with the antigen; 2) isolation of antibody-producing cells from themouse's spleen; 3) fusion of immortal myeloma cells with the antibody-producing spleen
cells tomake hybridomas; and 4) screening and selection of the desired antibody-producing hybridoma, followed by expansion of the hybridoma cells either in amouse (ascitesmethod)
or in vitro.
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animals have been reported to suffer from hunched posture, rough hair
coat, reduced food consumption, emaciation, inactivity, difficulty in
walking, and respiratory problems during this process—signs associated
with pain and distress (AnimalWelfare Division of OPRR, 1997; de Geus
and Hendriksen, 1998; Hendriksen and de Leeuw, 1998; Howard and
Kaser, 2013; Jackson et al., 1999; Marx et al., 1997; McGuill and
Rowan, 1989; NIH Office of Animal Care and Use, 1996; NRC, 1999;
OECD, 2002; Peterson, 2000). The fluid is typically extracted one to
three times before the animal is killed, and the extraction procedure
can lead to circulatory shock, as indicated by pale eyes, ears, andmuzzle
as well as breathing difficulties (Howard and Kaser, 2013; Jackson et al.,
1999; NIH Office of Animal Care and Use, 1996; Peterson, 2000). With-
out intervention, an animal will die within two to four weeks after suf-
fering from weight loss, muscle atrophy, dehydration, and
complications associated with the tumor (NRC, 1999).

Overall, the “in vitro” hybridoma method is a refinement that uses
fewer animals than the ascites method because animal use is not in-
volved in the production phase. However, it still requires animal use
in the discovery phase and, consequently, presents animal welfare con-
cerns. In addition to animal welfare issues, these animal-basedmethods
pose scientific issues, including the inability of an animal to mount an
immune response to antigens that are highly conserved orthologs; the
risk of contamination with viruses, rodent plasma proteins, bioreactive
cytokines, murine immunoglobulins, and other contaminants; the de-
struction of antigens that are particularly labile in animal systems; and
the inability to develop antibodies against toxic antigens that kill the an-
imals prior to antibody production (Frenzel et al., 2014; Geyer et al.,
2012; Hairul Bahara et al., 2013; Marx et al., 1997; McArdle, 1997;
Scholler, 2012; Thiviyanathan and Gorenstein, 2012). Additionally,
there are issues with the reproducibility of animal-derived antibodies
(Baker, 2015; Bradbury and Plückthun, 2015; Marx et al., 1997). In
2015, 111 academic and industry scientists called for an international
shift to the use of recombinant antibodies for reasons that include
increased reliability and reduced lot-to-lot variability in affinity re-
agents (Bradbury and Plückthun, 2015).

Hybridoma-derived antibodies are time-consuming to create and
often cause immune reactions in humans, limiting their usefulness as
clinical therapies (Geyer et al., 2012). There is also an issue of practical-
ity; in this era of proteomics, it is not feasible to use such animal-
intensive and lengthy processes to create antibodies for the growing
number of available variations of human proteins and their animal
orthologs.

2. Recombinant antibodies

Recombinant antibodies are produced in vitro and can be used for
the same purposes as mAbs produced in vivo. Recombinant antibod-
ies are selected from libraries of genes encoding slightly different an-
tibody proteins for their affinity to bind to target antigens. In 1985,
George Smith demonstrated that foreign proteins could be expressed
on the surface of a bacteriophage, a virus that infects Escherichia coli
(E. coli), by fusing the gene of the peptide to be displayed with the
gene of the minor phage coat protein, pIII (Smith, 1985). In 1990,
McCafferty and colleagues showed that variable domains of antibod-
ies could be displayed in the same way (McCafferty et al., 1990). In
the 25 years since this discovery, researchers have made great
strides in optimizing the specificity and affinity achieved with this
technology.

Various rAb display platforms have been developed that present the
antibody on the surface of phages, mammalian cells, yeast, bacteria, in-
sect cells, or ribosomes (Harel Inbar and Benhar, 2012). Phage display in
bacteria is one of the oldest and most commonly used techniques
(Even-Desrumeaux and Chames, 2012; Frenzel et al., 2014). Phage dis-
play involves the generation of an antibody library, selection of specific
antibodies, and affinity maturation, as discussed below (and shown in
Fig. 3) (Even-Desrumeaux and Chames, 2012; Frenzel et al., 2014).

Image of Fig. 2


Fig. 3. Recombinant antibody generation in phage. Recombinant antibody generation
consists of: 1) antibody genes are fused with a gene of the phage coat protein, causing
the phage to display the antibody protein on its surface. 2) Panning involves
a) selecting an antibody of interest by combining the antibody library with an antigen
immobilized on a solid support; b) washing antibody-antigen complexes to remove
nonspecific or low affinity antigens/phage; and c) eluting the bound phage and in-
fecting E. coli cells to amplify selected clones. The panning process is generally repeat-
ed several times. 3) the antibody-DNA-containing expression vector transformed
into E. coli is plated on agar plates. Colonies representing individual mAbs are picked
and grown. 4) antibody molecules are screened for specificity and sequenced to iden-
tify unique antibodies, which are then expressed and purified. Sequence diversity is
introduced and antibody clones are evaluated for improved affinity.
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2.1. Construction of recombinant antibody libraries and phage display

There are four main types of libraries that differ by the source of the
sequences used to build the library: immune, naïve, synthetic, and semi-
synthetic (Geyer et al., 2012; Harel Inbar and Benhar, 2012). Immune
antibody libraries are generated using active B cells from an immunized
human donor or animal, usually amouse, and consist of more than 1010

different antibody clones (Lloyd et al., 2009; Rader, 2012). A new im-
mune library must be generated for each antigen of interest (Geyer
et al., 2012). Naïve antibody libraries are generated using resting B
cells from healthy, non-immunized humans and have been reported
to consist of up to 1011 clones (Lloyd et al., 2009; Thie et al., 2009).

Synthetic or semi-synthetic libraries contain either exclusively
manmade CDRs or both natural and artificial CDRs, respectively. Be-
cause the region on the antibody that binds to the antigen (the CDR)
is manmade, synthetic libraries are not limited to natural CDRs existing
in animals. Examples of synthetic libraries areMorphoSys' Human Com-
binatorial Antibody Library (HuCAL) (available through Bio-Rad AbD
Serotec) and AxioMx's library, each of which consists of more than
1010 antibody clones (AxioMx, 2015; Prassler et al., 2011; Ylera, 2010).

In phage display, libraries consist of antibody gene fragments
presented on phage particles. Because the full length IgG cannot be
displayed on the phage surface, Fab fragments or single chain Fv
(scFv) are often used (Frenzel et al., 2014). The complete antigen-
binding site is retained; therefore, these fragments still have high af-
finity for their targets and can be modified to increase their affinity
(Donzeau and Knappik, 2007). For some downstream applications,
the Fab or scFv fragment is preferable over the full length IgG
(e.g., to decrease nonspecific binding or interference from other
parts of the molecule and in applications where their smaller size
may be advantageous) (Donzeau and Knappik, 2007; Holliger and
Hudson, 2005; Kierny et al., 2012).

2.2. Panning

There are multiple variations to the panning process. In general, the
antigen of interest is immobilized on solid supports, such as magnetic
beads, immunotubes, or microtiter plates (Kotlan and Glassy, 2009).
The antibody library is then incubated with the immobilized antigen
(Hairul Bahara et al., 2013). During this process, the selection conditions
can be precisely controlled by presenting specific conformations of the
target antigen or by including competitors to direct selection toward
epitopes of interest. This is useful, for example, in the generation of
phospho-specific antibodies, those specific to the ubiquitin-bound or
guanosine triphosphate (GTP)-bound form of proteins, and those that
specifically recognize post-translational modifications (Eisenhardt
et al., 2007; Gao et al., 2009; Hoffhines et al., 2006; Kehoe et al., 2006;
Nizak et al., 2003; Nizak et al., 2005). Furthermore, because integral
membrane proteins need a membrane or detergent environment to
maintain their native conformation, conformation-specific rAbs can be
selected for in the presence of a detergent, which is not possible in
vivo due to the denaturing effect of the serum (Rothlisberger et al.,
2004). Following incubation, nonspecific antibodies are washed away,
and specific antibodies are eluted and amplified by infection in a bacte-
rial host. This selection processes, called panning, generally occurs sev-
eral times (Kierny et al., 2012). With each iteration, the pool of selected
antibodies becomes enriched (Coomber, 2001).

2.3. Cloning, selection, and screening

After panning, the resulting antibody DNA is cloned into expression
vectors, transformed into E. coli, and then plated on agar plates (Kotlan
and Glassy, 2009). Colonies—each of which represents one mAb—are
picked and grown. Antibody molecules are screened for specificity and
sequenced to identify unique antibodies, which are then expressed
and purified.

Image of Fig. 3
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2.4. Affinity maturation

Antibody affinity describes the strength of the interaction be-
tween an epitope on an antigen and one antigen-binding site on an
antibody. In animals, affinity maturation is the process in which B
cells produce antibodies with increasing ability to bind an antigen.
The nature of the B cell response in animals, including the incubation
time of the antigen with the B cell surface antibody, somatic
hypermutation, and the presentation of the antigen to T cells, limits
the affinity of animal-derived antibodies (Foote and Eisen, 2000). Be-
cause these biological constraints do not exist for rAbs, they can
reach affinities higher than that of natural antibodies (Foote and
Eisen, 1995, 2000; Geyer et al., 2012).

In general, larger antibody libraries can be used to reach higher af-
finities. Recombinant DNA-derived antibodies reach high antigen affin-
ity through the introduction of sequence diversity into an antibody by
either targeted or non-targeted methods. Non-targeted techniques,
such as error-prone PCR and DNA shuffling, introduce diversity ran-
domly into the whole antibody, which can lead to the introduction of
deleterious mutations that compromise antibody stability. Targeted
techniques, such as site-directed mutagenesis or CDR exchange and
combination, allow themutations to be directedwithin the CDR, the re-
gion most likely to increase antibody affinity without introducing dele-
terious mutations (Geyer et al., 2012; Ponsel et al., 2011; Steidl et al.,
2008). Following the in vitro affinity maturation process, antibody
clones are evaluated for improved affinity, and antibody affinity in the
picomolar to femtomolar range can be obtained (Boder et al., 2000;
Hanes et al., 2000; Kierny et al., 2012; Lee et al., 2004; Razai et al.,
2005; Schier et al., 1996). Advantages of recombinant antibody technol-
ogy and relevant considerations for its use are noted in Tables 1 and 2,
respectively.

3. Aptamers

Aptamers are similar to antibodies in that they can bind to proteins
and modulate their function, and they are referred to as chemical
Table 1
Advantages of recombinant antibody technology.

High affinity: The in vitro affinity maturation process allows for the production of antibodie
affinity, can be controlled using methods such as increasing the number of panning itera
adjusting the amount and presentation of antigens (Donzeau and Knappik, 2007).

High specificity: Altering antigens during panning iterations can select for cross-reactive rA
used to generate highly specific antibodies that can differentiate between similar targets
Donzeau and Knappik, 2007). For example, antibodies have been generated that recogn

Variety of targets: Recombinant methods allow for the generation of antibodies against tis
membrane proteins, RNA, post-translational modifications, and complexes, such as biotin
et al., 2003; ten Haaf et al., 2015; Lev et al., 2002; Pavoni et al., 2014; Moutel et al., 200

Independent of a biological immune response: Unlike animal methods, recombinant techniq
immunosuppressant, or non-immunogenic antigens (Chen and Sidhu, 2014; Frenzel et
developed to target West Nile virus and Botulinum neurotoxins (Scholler, 2012). In add
to immunize an animal (Barkhordarian et al., 2006; Harper and Ziegler, 1999).

Reduced immunogenicity: Recombinant antibodies developed from human-derived librarie
used in therapeutic applications. This is especially relevant for the treatment of chronic

Precisely controlled selection conditions: Antibody selection conditions, such as the presenc
Thie et al., 2009). Control over selection parameters in the panning process has resulted
similar sequences (Hairul Bahara et al., 2013).

Known sequence: Because the amino acid sequence of the antibody is known, its generatio
modifications can be inserted into an antibody's sequence, such as to increase its affinity
2015). For example, rAbs have been conjugated with peptide tags and enzymes (Donzea
is known, modifications such as biotinylation, multimerization, and the addition of epito

Versatility: Recombinant antibody technology allows for the generation of smaller antibod
format, depending on downstream applications. Because the sequence of a rAb is known
using simple cloning techniques (Dozier, 2010).

Faster production: The phage display selection process is largely automated. Once an antibo
in contrast to the four or more months in animals (Dozier, 2010; Geyer et al., 2012; Yler
(Chen and Sidhu, 2014; Hairul Bahara et al., 2013; Kotlan and Glassy, 2009).

Dependability: Unlike hybridoma cell lines, recombinant antibody supplies are not at risk o
synthesis if necessary. Additionally, standardized rAb production results in low lot-to-lo

Existing infrastructure: Recombinant antibodies can leverage the structural and intellectua
Animal welfare: There are no animal welfare issues with the production of rAbs (e.g., no an
antibodies due to their synthetic production (Ahmadvand et al.,
2011; Bouchard et al., 2010). Aptamers are short, single-stranded
DNA or RNA oligonucleotides that can bind to their targets with
high specificity and affinity through van der Waals forces, hydrogen
bonding, salt bridges, and hydrophobic and other electrostatic inter-
actions. Aptamers have the ability to fold into complex and stable
three-dimensional shapes, which allows them to fold within or
around their targets. DNA aptamers have greater chemical stability,
while RNA aptamers produce more structural shapes due to their
greater flexibility (Radom et al., 2013; Toh et al., 2015). Aptamers
have been identified against targets that include small organic and
inorganic molecules, such as dyes, nucleotides, amino acids, and
drugs; biopolymers, such as peptides, proteins, and polysaccharides;
ions; phospholipids; nucleic acids; viruses; bacteria; cell fragments;
and whole cells (Kong and Byun, 2013; Li et al., 2011; Nezlin, 2014;
Ni et al., 2011; Pei et al., 2014; Thiviyanathan and Gorenstein,
2012; Zhu et al., 2012, 2014).

Aptamers can be used to detect and characterize their targets and
modify the activity of their targets. First reported in 1990, aptamers
were conceptualized independently by three groups of researchers,
Ellington and Szostak (1990), Robertson and Joyce (1990), and
Tuerk and Gold (1990). Tuerk and Gold named the production pro-
cess the Systematic Evolution of Ligands by Exponential Enrichment
(SELEX) (Fig. 4).

3.1. SELEX

The process of screening large nucleic acid pools to develop
aptamers, SELEX, has been optimized since its development to meet a
variety of needs (Radom et al., 2013; Tan et al., 2011). Mimicking natu-
ral selection, SELEX involves screening pools of random-sequence
nucleic acid libraries for oligonucleotides that bind a particular target
(Citartan et al., 2012; Radom et al., 2013). Automated DNA synthesizers
prepare the libraries of up to approximately 1017 random sequence
oligonucleotides using equimolar mixtures of nucleotide bases dur-
ing generation of the random regions (Zaher and Unrau, 2005).
s with affinities in the picomolar to femtomolar range. Antibody properties, including
tions, adjusting washing stringency, presenting different selection conditions, and

bs and negative selection techniques (competition with related molecules) can be
(Ayriss et al., 2007; Mersmann et al., 2010; Parsons et al., 1996; Pershad et al., 2010;
ize only fetal and not adult hemoglobin (Geyer et al., 2012).
sue samples, whole cells, small molecules, specific protein conformations, integral
ylated major histocompatibility complex/peptide complexes (Geyer et al., 2012; Yau

9).
ues allow for the generation of antibodies to unstable, toxic, volatile,
al., 2014; Hairul Bahara et al., 2013; Thie et al., 2009). For example, rAbs have been
ition, phage display technology requires less antigen to isolate an rAb than is needed

s elicit a reduced immune response compared to animal-derived antibodies when
diseases that require repeated doses over long periods of time (Rader, 2012).
e of salts, buffers, detergents, or a specific pH, can be controlled (Kierny et al., 2012;
in the ability to create antibodies with high affinity against proteins that have very

n is reproducible, recombinant analogs of existing antibodies can be created, and
or modify biochemical properties (Altshuler et al., 2010; Bradbury and Plückthun,
u and Knappik, 2007). In addition, because the DNA sequence encoding the antibody
pe tags are easy to incorporate using simple cloning procedures (Casey et al., 2000).
y fragments, such as monovalent or bivalent Fab or the complete immunoglobulin
, fragments can be converted into and switched between any of the antibody classes

dy library is established, it takes approximately two to eight weeks to produce a rAb,
a, 2010). Recombinant antibodies also are compatible with high-throughput methods

f dying off. Because rAb's sequences are known, they can be reproduced by DNA
t variability (Bradbury and Plückthun, 2015).
l infrastructure already in place for antibodies.
imals are used, unless immune antibody libraries are derived from animals).



Table 2
Considerations of recombinant antibody technology.

Fragment conversion: For some applications, such as many therapeutic uses, researchers will need to convert the antibody fragment selected during phage display into the full
length immunoglobulin form by gene engineering (Hu et al., 2010).

Construction of rAb libraries: Immune libraries may be derived from humans or animals; however, the animal-derived libraries present scientific disadvantages, such as the
production of antibodies that may need to be humanized to avoid side effects if administered to humans (Clementi et al., 2012).

Intellectual property: Intellectual property (IP) rights and the specific technological skills needed to create rAbs have slowed their adoption and are still impediments to rAb
development (Echko and Dozier, 2010; Storz, 2011). IP issues may include patents providing exclusive rights to sell an antibody, which may be defined by its target, its
functional properties, an epitope of a target, its sequence, or other attributes; patents for new indications for an already existing antibody; patents for antibodies used in
conjunction with another agent; and patents for antibody formats, such as fragments or rearranged components of antibodies (Storz, 2011). However, development processes
are now more routine, and development kits can be purchased. In addition, as more universities have started working with rAbs, more libraries have become available in the
public domain (Shoemaker, 2005).

Cost: Cost has been a barrier to the adoption of rAbs. Production costs for rAbs are similar to those for animal-derived antibodies and should decrease over time (Bradbury and
Plückthun, 2015). Animal-derived antibodies have been produced for decades; therefore, the technology and knowledge are widespread, and many antibodies do not have to
be custom-developed. Currently, fewer rAbs have been developed and are available for production, making the initial investment in a new, custom-made rAb, as well as
fit-for-purpose validation, costly. In the short-term, developing new technologies may be more expensive, but the price should decline because more universities and
companies are becoming involved in rAb development. Additionally, the potential cost-savings associated with the more reproducible research that will result from using
higher quality antibodies should be considered.

Fig. 4. Basic concept of SELEX, of which there are various modifications. SELEX involves:
1) random sequence oligonucleotides are synthesized with a central randomized region
and terminal binding sites. 2) an immobilized target is incubated with the oligonucleotide
library. 3) oligonucleotides that bind to the target are isolated, eluted, and amplified. This
cycle is repeated until oligonucleotideswith high binding affinity are selected for. 4) oligo-
nucleotides that bind the target are cloned, sequenced, verified for binding ability, and
modified for their intended use.
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Larger libraries allow for greater sequence diversity and increased
ability to develop high-specificity and high-affinity aptamers. Li-
brary oligonucleotides have a central randomized sequence of ap-
proximately 30 to 80 bases with defined terminal binding sites on
each end for capturing and enzymatic manipulation. An immobilized
target is incubated with the library, and the oligonucleotides that
bind to the target are isolated, eluted, and amplified. This is accom-
plished by filter assay, chromatography, electrophoresis, or another
separation method followed by polymerase chain reaction (PCR) for
DNA or reverse transcription PCR (RT-PCR) for RNA (Ahmadvand
et al., 2011; Bouchard et al., 2010; Bunka et al., 2010; Kong and Byun,
2013; Ni et al., 2011; Radom et al., 2013; Sundaram et al., 2013).

The cycle of isolation, elution, and amplification is repeated with in-
creased stringency in order to select for oligonucleotides with greater
sensitivity and/or specificity; this usually requires seven to fifteen itera-
tions with increasing binding affinities (Bouchard et al., 2010; Bunka
et al., 2010; Toh et al., 2015). In addition, selection parameters may be
modified to screen for aptamers that meet particular conditions
(e.g., pH, temperature, and buffer composition) (Radom et al., 2013).
The pool of oligonucleotides that bind the target is then cloned, se-
quenced, and tested for target binding ability.

Finally, aptamer candidates are characterized and modified for their
anticipated use. For example, aptamer modification can increase reten-
tion time in the body by imparting resistance to nuclease degradation or
can incorporate a variety of functional groups for the purpose of conju-
gation with drug molecules, antibodies, fluorescent tags, or nanoparti-
cles for diagnostic and therapeutic applications (Ahmadvand et al.,
2011; Bouchard et al., 2010; Dassie and Giangrande, 2013; Kong and
Byun, 2013; Nezlin, 2014; Šmuc et al., 2013; Sundaram et al., 2013).

There are a variety of modifications of the SELEX method, includ-
ing negative-SELEX and counter-SELEX (Darmostuk et al., 2015). In
negative-SELEX, oligonucleotides are incubated with the matrix
used to immobilize the target before incubation with the actual
target in order to reduce nonspecific binding (Aquino-Jarquin and
Toscano-Garibay, 2011; Lakhin et al., 2013). In counter-SELEX, oligo-
nucleotides are incubated with a target analog or with a range of
structurally-similar but undesirable molecules before the actual tar-
get, thereby allowing for the removal of these potential interfering
targets (Aquino-Jarquin and Toscano-Garibay, 2011). Other modifi-
cations, which reduce the time required for aptamer selection, in-
clude bead-based and microfluidic approaches. In the bead-based
method, the oligonucleotide library is synthesized on noncleavable
beads, and aptamers are identified in one step. In the microfluidic ap-
proach, researchers are able to select and characterize aptamers tomul-
tiple targets in days or weeks by carrying out the selection process on
microfluidic chips (Dassie and Giangrande, 2013; Thiviyanathan and
Gorenstein, 2012; Xu et al., 2010).

Image of Fig. 4


1793K. Groff et al. / Biotechnology Advances 33 (2015) 1787–1798
Another optimized process, Cell-SELEX, uses living cells to select for
aptamers without prior knowledge of the molecular properties of the
target. In this method, oligonucleotides are incubated with target cells,
such as cancer cells. Oligonucleotides that bind with the target cells
are selected, cloned, and sequenced in order to identify aptamers.
The Cell-SELEX method has the ability to discover biomarkers of dis-
ease and novel cell-surface targets and to profile the molecular char-
acteristics of target cells (Pei et al., 2014; Ray et al., 2013; Zhu et al.,
2012, 2014). Due to their ability to distinguish between diseased and
healthy cells, aptamers are a promising avenue for cancer treatment
and personalized medicine (Sundaram et al., 2013). Aptamers have
been selected for by Cell-SELEX for several types of cancer cells, in-
cluding lymphocytic leukemia, myeloid leukemia, liver cancer,
small and nonsmall-cell lung cancer cells, and hepatocellular carci-
noma (Pei et al., 2014; Tan et al., 2011; Zhu et al., 2014). See
Table 3 for advantages of aptamer technology and Table 4 for consid-
erations of this technology.

4. Applications of recombinant antibodies and aptamers

Monoclonal antibodies are used extensively in basic biomedical re-
search, in diagnosis of disease, and in treatment of illnesses. Recombi-
nant antibodies and aptamers can be used in the same applications as
mAbs produced in animals, including in basic research, regulatory test-
ing, and clinical applications.

4.1. Basic research

In basic research, rAbs and aptamers can be conjugatedwith peptide
tags, proteins, and nanoparticles to give them fluorescent properties to
identify and detect the concentration of molecules, biological com-
pounds, viruses, residues in food, and diseased cells (Esposito et al.,
2014; Geyer et al., 2012; Hairul Bahara et al., 2013; Kierny et al., 2012;
Pei et al., 2014; Penner, 2012; Zhu et al., 2012). They can be used in
commonly-performed assays, such as immunofluorescencemicroscopy,
microarrays, immunocytochemistry, immunohistochemistry, flow cy-
tometry, ELISA, and blotting assays (Cho et al., 2011; Deng et al., 2014;
Hairul Bahara et al., 2013; Martin et al., 2013; Ramos et al., 2007,
2010; Schirrmann et al., 2011; Shin et al., 2010; Simmons et al., 2012;
Toh et al., 2015; Webber et al., 2014; Zeng et al., 2010).
Table 3
Advantages of aptamer technology.

High affinity and specificity: Aptamers can have high affinity and binding specificity for the
et al., 2013; Citartan et al., 2012; Esposito et al., 2014; Ni et al., 2011; Pei et al., 2014). T
adjusted by sequence modifications (Banerjee and Nilsen-Hamilton, 2013; Toh et al., 20
specificity or the range of targets recognized, closely related aptamers can distinguish b

Small size: At about one-tenth the molecular weight of antibodies, aptamers have the abilit
immune system (Bunka et al., 2010; Thiviyanathan and Gorenstein, 2012). They are also

Flexible structures: Their flexible structures permit aptamers to bind to hidden epitopes, w
Modifications: Aptamers have the ability to be easily modified to chemically conjugate with
the addition of functional groups (Amaya-González et al., 2013; Gold et al., 2010; Kong
include optimizing the aptamer's recognition sequence or secondary structure, and chan
in the nucleotide chain (Thiviyanathan and Gorenstein, 2012).

Stable: Aptamers are stable in harsh chemical and physical conditions, such as at high temp
Reproducible: Aptamer technologies allow for easy access to underlying gene sequence inf
characteristics (Bannantine et al., 2007; Ramos et al., 2007; Shin et al., 2010).

Independent of a biological immune response: Aptamers can be developed to bind to highly
(Ahmadvand et al., 2011; Pei et al., 2014; Zhu et al., 2012, 2014).

Reversible: In human therapeutic applications, the addition of reverse complementary olig
thus, minimize side effects (Sundaram et al., 2013). In addition, aptamers have the pote
therapies, such as siRNAs, chemotherapeutics, toxins, and nanoparticles (Dassie and Gia

Repeat use: Denaturation of aptamers is reversible and, thus, aptamers can be repeatedly u
concentrated salt solutions, acidic or basic solutions, surfactants, and other methods can
a functional configuration (Toh et al., 2015; Yue et al., 2013).

Reliable: Because aptamers do not rely on biological processes, batch to batch variation is
Storage: Aptamers have the ability to be dehydrated and stored for years (Pendergrast et
Faster production: Aptamers are synthesized and modified in vitro and are relatively quick
large-scale production (Amaya-González et al., 2013; Nezlin, 2014; Noma et al., 2006; Z

Animal welfare: There are no animal welfare issues with the production of aptamers.
One of the most common basic research uses of antibodies is in
the detection of proteins by Western blotting. The routine complica-
tions associated with Western blotting—including nonspecific bind-
ing that results in either cross reactivity with similar proteins or a
lack of detectable signal compared to noise—have been extensively
reported (Baker, 2015; Bradbury and Plückthun, 2015). The use of
rAbs and aptamers overcomes many of the hurdles associated with
the use of animal-derived antibodies. When using rAbs, it is impor-
tant to remember that, if a Fab format is used instead of an immuno-
globulin format, the secondary antibody cannot be directed against
the Fc domain that is lacking in Fab antibodies. Instead, an anti-
human Fab secondary antibody or antibodies against appropriate
epitope tags can be used. Alternately, some companies have devel-
oped methods that allow for the direct detection of rAbs in the ab-
sence of a secondary antibody, for example by conjugation to a
fluorescent dye (Ylera, 2010). Conjugation of an rAb or aptamer di-
rectly to a reporter unit such as a dye allows proteins to be identified
in much of the sameway as a traditional antibody, while allowing for
greater specificity and sensitivity (Shin et al., 2010; Strehlitz et al.,
2008). Multiple laboratories have reported protein blotting results
using rAbs or aptamers to be comparable or superior to blots probed
with traditional antibodies (Cho et al., 2011; Lazzarotto et al., 1997;
Martin et al., 2013; Ramos et al., 2007, 2010; Shin et al., 2010;
Webber et al., 2014). Others have published on the advantages,
such as faster turn-around time. For example, Shin et al. (2010) de-
tected their protein of interest via Western blot following a shorter
incubation time (2 h versus overnight incubation) with an aptamer
than with the animal-derived antibody. This same lab has developed
an aptamer-based biochip technology that can be used for specific
and sensitive detection and quantification of proteins (Lee and
Hah, 2012).

4.2. Regulatory testing

The properties of rAbs and aptamers are ideal to aid safety and ef-
ficacy testing for regulatory purposes. For example, rAb technology
has been used to develop an assay to determine vaccine potency,
and a study conducted by the U.S. Food and Drug Administration
(FDA) demonstrated that aptamers can be used during the quality
control testing of therapeutic proteins by detecting small differences
ir targets and recognize both intracellular and extracellular targets (Amaya-González
hey are able to discriminate between highly similar molecules, and specificity can be
15). In addition, because small changes in aptamer sequence can alter target
etween similar targets (Gopinath et al., 2006).
y to access targets, such as viruses and other pathogens that escape recognition by the
able to rapidly penetrate tissues (Tan et al., 2011; Zhu et al., 2012).

hich antibodies are unable to reach (Pei et al., 2014; Zhu et al., 2014).
other molecules, such as imaging labels and siRNAs, and obtain new properties from
and Byun, 2013; Ni et al., 2011; Zhang et al., 2011; Zhu et al., 2014). Modifications
ging the binding reaction conditions. Modifications can be introduced at any position

eratures (Šmuc et al., 2013; Thiviyanathan and Gorenstein, 2012; Zhang et al., 2011).
ormation for characterization and optimization of binding and functional

toxic or non-immunogenic antigens, unlike animal immunization technologies

onucleotides can reverse an aptamer's action or allow for controlled drug release and,
ntial to reduce side effects through targeted treatment or targeted delivery of
ngrande, 2013; Esposito et al., 2014).
sed under certain conditions (Šmuc et al., 2013; Toh et al., 2015). For example, heat,
be used to release an antigen from an aptamer; the aptamer can then be refolded into

limited (Kong and Byun, 2013; Zhang et al., 2011).
al., 2005).
and inexpensive to produce compared to animal-based antibodies, allowing for
hu et al., 2014). Aptamers can be synthesized within days (Baird, 2010).



Table 4
Considerations of aptamer technology.

Library synthesis: Large oligonucleotide libraries must be synthesized or purchased prior to aptamer development (Darmostuk et al., 2015).
Small size: Because of their small size, aptamers are subject to faster renal filtration and nuclease degradation than antibodies (Lakhin et al., 2013; Taylor et al., 2014). Therefore,
in therapeutic applications, aptamers are modified either during or after production to increase their half-lives, for example, by chemical modification of the phosphate
backbone, sugars, or the bases or end-capping at the 3′ or 5′ termini (Bunka et al., 2010; De Souza et al., 2009; Nezlin, 2014; Thiviyanathan and Gorenstein, 2012; Zhu et al.,
2014). Other modifications can be made to stabilize aptamer structures and to prolong aptamer circulation times. Modifications must be tested to ensure that they do not
affect the aptamer's activity (Kong and Byun, 2013; Ni et al., 2011).

Limited functional groups: Consisting of a sugar phosphate backbone and four bases, DNA and RNA have a limited number of functional groups; therefore, it can be difficult to
develop aptamers for some targets (Taylor et al., 2014). For example, because it can be difficult to select an aptamer targeted to very acidic proteins, functional groups must
be added to the oligonucleotide bases in these circumstances (Thiviyanathan and Gorenstein, 2012).

Aptamer selection: The identification process for aptamers that bind to a target is not as well developed as it is for antibodies. Often, the ligand-binding domain of the selected
aptamers does not involve all the nucleotides in the random region. Amplification of small concentrations of short molecules can result in artifacts, and the immobilization of
the target onto resin can lead to the identification of aptamers for components of the resin if appropriate measures are not taken to counter this (Penner, 2012). This is an area
requiring more research.

High malleability: The high malleability of aptamers' structures in response to the local environment can decrease their affinity for targets in solution and in vivo. This is a key
issue since the environment in which the aptamer undergoes the SELEX process may influence its utility. However, aptamer structure has been shown to be a function of the
ionic environment, and knowledge of the environment in which the aptamer will be employed allows aptamer specificity and affinity to be better controlled (Ilgu et al.,
2013).

Hybridization and nonspecific binding: Hybridization of the random region in aptamers with the primer regions, which are adjacent to the central random domain and function
to amplify the target-bound sequences via PCR, can alter the aptamer structure, and, therefore, its affinity for a target. Primer regions and/or regions distal to the
ligand-binding domain of the aptamer may also cause nonspecific binding or compromise affinity (Alsager et al., 2015). Modifications of standard SELEX protocols have been
implemented to address these issues (Pan and Clawson, 2009; Radom et al., 2013).

Modifications: Traditional SELEX does not optimally select for aptamers that recognize cell surface receptors in their native state, undergo cellular uptake, and release in the
cytoplasm of target cells. For example, a hurdle to using aptamers for siRNA therapeutics is cytoplasmic delivery into cells. These hurdles can be overcome by variations of the
SELEX method and modifications of the aptamers (Dassie and Giangrande, 2013).

Pharmacokinetic profile: In therapeutic applications, the pharmacokinetic profile, toxicity, and other properties of aptamers upon systemic delivery are poorly understood
(Zhang et al., 2011).

Intellectual property: Aptamers may be subject to intellectual property patents (Keefe et al., 2010). However, core patents that apply broadly to aptamers and aptamer discovery
and development expired recently or will be expiring in the next couple of years (Archemix Corp., 2008).

Protocol and reagent availability: While antibody assay protocols and reagents are widely available in laboratories, a large part of the scientific community is not yet familiar with
aptamer protocols and secondary reagents.
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among protein products that went undetected by animal-based
mAbs. Additionally, the U.K.'s Department of Environment, Food,
and Rural Affairs (DEFRA) conducted a project to develop aptamers
for rabies batch potency testing with the aim of replacing mice
used to develop antibodies for the detection of contaminants in vac-
cine preparations (Department for Environment Food and Rural
Affairs; Weidanz, 2014; Zichel et al., 2012).

Similarly, aptamers and rAbs can replace the use of animal-derived
antibodies to detect environmental contaminants. For example, re-
searchers at the University of Illinois and the University ofWaterloo de-
veloped an aptamer-based colorimetric sensor test kit to detect an
analyte in an aqueous test sample (Lu and Liu, 2013).

4.3. Clinical applications

4.3.1. Imaging
Aptamers' small size, reduced immunogenicity relative to animal-

derived antibodies, and rapid diffusion and clearance make them ideal
for imaging (Ni et al., 2011; Toh et al., 2015). Clinical applications for
rAbs and aptamer-based imaging agents are widespread, including for
treatment monitoring and cancer detection (Hong et al., 2011). For ex-
ample, aptamers targeting cancer biomarkers can be conjugated with
nanomaterials for tumor imaging (Lao et al., 2015). Due to the specific-
ity and binding affinity of aptamers to their targets, cancer cells can be
detected at low levels (Pei et al., 2014).

4.3.2. Therapeutics
Recombinant antibodies and aptamers have been used in therapeutic

applications to alter target activity, for example, by binding to cell surface
receptors, or by delivery of therapeutic agents to target cells via
conjuation to antibiotics, RNA interference, toxins, enzymes, or drugs
(Ahmadvand et al., 2011; Bunka et al., 2010; Dassie and Giangrande,
2013; Esposito et al., 2014; Nezlin, 2014; Pei et al., 2014; Sundaram
et al., 2013; Zhu et al., 2012). Aptamer and rAb development methods
inwhich cells (instead of purified proteins) are used as targets are useful
for developing aptamers and antibodies for drug delivery to targeted
cells (Geyer et al., 2012). Aptamers also have the ability to deliver agents
that are otherwise impermeable to cells because they can target internal
cell surface receptors in some circumstances (Xiao et al., 2008). Recom-
binant antibodies and aptamers are potential tools to treat a range of
conditions, including the following:

• Autoimmune conditions: For example, an RNA aptamer has been devel-
oped that suppresses activity of sphingolipid S1P, a signalingmolecule
implicated in autoimmune conditions (Purschke et al., 2014).

• Toxins: Recombinant antibodies have been developed to neutralize
toxins, such as botulinum neurotoxin A, staphylococcal enterotoxin
B, and snake venom (Hu et al., 2010; Unkauf et al., 2015).

• Chronic diseases: Aptamers have been shown to have the ability to
modify T-cell reactions (Nezlin, 2014).

• Diseases caused by pathogens: Includes human immunodeficiency
virus (HIV), hepatitis B and C viruses, influenza virus, andmany others
(Feng et al., 2011; Gao et al., 2014; Wandtke et al., 2015; Zhu et al.,
2012). Using immune libraries created from B cells isolated from do-
nors, phage display has been used to create rAbs to block the entry
of influenza into cells (Geyer et al., 2012). Aptamers are small and
have a flexible structure and, therefore, are more likely to penetrate
into a viral particle than antibodies. In one case, an aptamer was re-
ported to prevent viral entry and replication in cultured human cells
by up to 10,000 fold by binding a core region of the HIV viral protein
(Banerjee and Nilsen-Hamilton, 2013).

• Cancer: Aptamers have been developed to target the extracellular do-
main of transmembrane receptors over-expressed in tumors and can
potentially deliver therapeutic agents to targeted tissues. Both
aptamers and rAbs can be conjugated to imaging probes, siRNAs,
and therapeutics to be delivered specifically to the cancer cells, there-
by increasing treatment efficacy and decreasing side effects (Esposito
et al., 2014).

Currently marketed rAbs can be used to treat a variety of diseases.
For example, ecallantide is used for the treatment of acute attacks
of hereditary angioedema, and belimumab is used to treat the
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autoimmune disease systemic lupus erythematosus (Center for Drug
Evaluation and Research, 2011; Seymour, 2009). Recombinant anti-
bodies have been produced for the treatment of other diseases,
such as cancer or autoimmune conditions (e.g., necitumumab and
ramucirumab), and the neutralization of toxins (e.g., raxibacumab for
the treatment of inhalation anthrax) (Center for Drug Evaluation and
Research, 2012; Nixon et al., 2014).

The aptamer drug pegaptanib was approved by the FDA in 2004 for
the treatment of macular degeneration (NDA 021756). Other aptamers
are currently being assessed in clinical trials, and aptamers for hundreds
of targets have been discovered (Darmostuk et al., 2015; Dassie and
Giangrande, 2013; Ni et al., 2011). As seen in the wide range of ongoing
clinical trials, aptamers can be used to treat a variety of conditions from
vision loss to cancer (NIH Office of Animal Care and Use, 1996).

5. Discussion

Recombinant antibodies and aptamers are two types of affinity
reagents that can replace animal-derived mAbs and offer a range of
technological advantages. From a scientific perspective, it is clear
that there is a strong need for more reliable, specific, and versatile af-
finity reagents (Baker, 2015; Bradbury and Plückthun, 2015; NIH,
2015). Recombinant antibodies and aptamers meet that need; they
can be sequenced and reproduced, selected for in controlled
Table 5
Names and websites for companies offering commercially available (pre-made and custom) rA
listed sell animal-derived antibodies in addition to rAbs.

Company Name Website

Catalog recombinant antibodies
Bio-Rad AbD Serotec (host HuCAL) http://www.a
Absolute Antibody http://absolut
Creative Diagnostics (including Creative BioMart) Diagnostics: h

BioMart: http:
RayBiotech, Inc. http://www.ra
Toronto Recombinant Antibody Centre http://trac.uto
University of Geneva https://www.

Custom recombinant antibodies
Bio-Rad AbD Serotec http://www.a
Absolute Antibody http://absolut
Abgent http://www.a
Avantgen http://avantge
AxioMx http://axiomx
Toronto Recombinant Antibody Centre http://trac.uto
University of Geneva https://www.

Catalog aptamers
Amsbio http://www.a
Aptagen http://www.a
AptSci http://www.a
Base Pair Biotechnologies http://www.b
CD Genomics http://www.c
Creative Biogene http://www.c
GeneLink http://www.g
OTC Biotech http://www.o
SomaLogic http://estore.s

Custom aptamers
AM Biotech http://am-bio
Aptagen http://www.a
AptaMatrix http://www.a
AptSci http://www.a
Aptasol http://www.a
Base Pair Biotechnologies http://www.b
CD Genomics http://www.c

G8hszXraoBEi
O04xgkAuEKf

Creative Biogene http://www.c
GeneLink http://www.g
LC Sciences http://www.lc
NeoVentures Biotechnology http://neoven
SomaLogic http://www.s
TriLink http://www.tr
conditions, modified to fill a specific purpose, bind a variety of tar-
gets with high affinity, and offer financial and time-saving benefits
over animal-derived mAbs.

Animal welfare principles provide further impetus to the use of rAbs
and aptamers because they stress replacement, reduction, and refine-
ment of the use of animals by seeking, considering, and implementing
modern alternatives to the use of animals. Hundreds of thousands of an-
imals are used in the production of affinity reagents every year. The
number of animals used in antibody production in theU.S. is unavailable
because the numbers of mice and rats used in testing are not publically
available, and, for species whose numbers are available, the manner in
which they are used is not reported. However, in 2013 alone, 9522 ani-
mals were documented to be used in the production of monoclonal or
polyclonal antibodies in Great Britain (Home Office, 2014). Thus, in ad-
dition to meeting a scientific need, the development and further use of
rAbs and aptamers satisfies a recognized ethical need.

5.1. Antibody regulations in the European Union and the United States

In general, two European laws regulate the use of animals in re-
search: (1) Council Directive 2010/63/EU (formerly 86/609/EEC) and
(2) the European Convention for the Protection of Vertebrate Animals
Used for Experimental and Other Scientific Purposes, ETS 123 (Council
of Europe, 2006; European Parliament, 2010). These laws require that
bs and aptamers. Note that this list is not comprehensive, and a number of the companies

bdserotec.com/monoclonal-antibodies.html
eantibody.com/catalog/
ttp://www.creative-diagnostics.com/CommonTypeList_185.htm;
//www.creativebiomart.net/Recombinant-Antibodies_140.htm
ybiotech.com/products/reagents/antibodies/
ronto.ca/index.html
unige.ch/medecine/phym/en/antibodies/see-our-antibodies/

bdserotec.com/hucal-monoclonals.html
eantibody.com/custom-services/
bgent.com/ELITE-Services-for-Drug-Discovery
n.com/partner.html
inc.com/services/custom-antibodies/
ronto.ca/index.html
unige.ch/medecine/phym/en/antibodies/order-a-new-recombinant-antibody/

msbio.com/aptamers.aspx
ptagen.com/aptamer-index/aptamer-list.aspx
ptsci.com/product/product.html
asepairbio.com/project-phases-2/existing-aptamers/
d-genomics.com/Aptamers-list-40.html
reative-biogene.com/Product/Aptamers-list-40.html
enelink.com/newsite/products/modoligosINFO.asp
tcbiotech.com/aptamers.php
omalogic.com/Category/2_1/Reagents.aspx

tech.com/services/
ptagen.com/research-and-development/project-inquiry.aspx
ptamatrix.com/company/
ptsci.com/pro/pro_1.html
ptamergroup.co.uk/Solutions/Services/Ordering
asepairbio.com/services/
d-genomics.com/Aptamers-Service.html?gclid=Cj0KEQiA8rilBRDZu_
QABlB9Y3BfTCCzFZ8S1eyKp6gD-
ydJB4uJ0YOQaAmZ68P8HAQ
reative-biogene.com/Services/Aptamers
enelink.com/newsite/products/aptamers.asp
sciences.com/applications/genomics/dna-rna-aptamer-arrays/ordering-information/
tures.ca/custom-aptamer-identification/
omalogic.com/Products-Services/SOMAmer-Discovery-Service.aspx
ilinkbiotech.com/aptamers/aptamersynthesis.asp

http://www.abdserotec.com/monoclonalntibodies.html
http://absoluteantibody.com/catalog/
http://www.creativebiomart.net/Recombinant-ntibodies_140.htm
http://www.creativebiomart.net/Recombinant-ntibodies_140.htm
http://www.raybiotech.com/products/reagents/antibodies/
http://trac.utoronto.ca/index.html
https://www.unige.ch/medecine/phym/en/antibodies/seeurntibodies/
http://www.abdserotec.com/hucalonoclonals.html
http://absoluteantibody.com/custom-ervices/
http://www.abgent.com/ELITE-ervicesor-rug-iscovery
http://avantgen.com/partner.html
http://axiomxinc.com/services/customntibodies/
http://trac.utoronto.ca/index.html
https://www.unige.ch/medecine/phym/en/antibodies/orderew-ecombinantntibody/
http://www.amsbio.com/aptamers.aspx
http://www.aptagen.com/aptamerndex/aptamerist.aspx
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alternatives to animals be used when “reasonably and practicably
available.”

Furthermore, the use of the ascites method specifically has been
discouraged by regulatory and oversight bodies for decades due to
the pain and distress it causes the animals used in the process. In
fact, a report from a 1996 European Union Reference Laboratory for
Alternatives to Animal Testing (EURL ECVAM) organized workshop
stated that the ascites method should not be used and suggested a
two-year transition period to phase it out (Marx et al., 1997). A number
of countries, such as Australia, The Netherlands, the United Kingdom,
Germany, Switzerland, and Canada, have restricted or banned the pro-
duction of antibodies via the ascitesmethod due to animal welfare con-
cerns (Canadian Council on Animal Care, 2002; Hendriksen, 2006;
National Health and Medical Research Council, 2008).

As far back as 1997, the NIH Office of Laboratory AnimalWelfare en-
couraged the use of “in vitro” methods for producing mAbs as opposed
to the use of the ascites method (Animal Welfare Division of OPRR,
1997). In April 1997 andMarch 1998, the American Anti-Vivisection So-
ciety (AAVS) petitioned the NIH to prohibit the use of animals in the
production of mAbs (NRC, 1999). In response, the NIH commissioned
a study from the National Research Council (NRC) to determine wheth-
er there is a scientific necessity for producing mAbs using the mouse
method. Completed in 1999, the NRC report called for the replacement
of ascites-derived mAbs with “in vitro” methods wherever possible
(NRC, 1999). At that time, the NRC determined that the use of ascites
was only scientifically justified in three to five percent of proposed
uses. Information about rAbs and aptamerswas not included in the orig-
inal NRC study. In the more than 15 years since this report was pub-
lished, significant advances have been made in rAb and aptamer
technology, highlighting the need for an updated version of this NIH
guidance.

5.2. Recommendations

Multiple paths forward have the potential to assist researchers in the
transition from animal-derived antibodies to non-animal sources, such
as the following:

• In light of tremendous scientific advancements since the publication
of the NRC reportMonoclonal Antibody Production in 1999, NIH should
commission an updated review that includes the merits of non-
animal-derived antibodies and other affinity reagents (NRC, 1999).

• Researchers should familiarize themselves with and use non-animal
research methods such as those offered by aptamer and rAb technol-
ogies whenever possible and, when using antibodies, should search
for existing rAbs from companies, such as those listed in Table 5.

• Federal funding incentives should be made available for researchers
interested in the development, use, and fit-for-purpose validation of
rAbs or aptamers.

• Universities should provide monetary assistance to researchers who
are interested in using rAbs but do not have the funds to purchase
custom-made antibodies.

• A consortium of industry, academia, government, and nongovern-
mental organizations should fund the development of commonly
used affinity reagents to be made available to all researchers.

• For industry, the use of rAb and aptamer technologies for regulatory
testing purposes must be considered. In 1999, the NRC reported that
the FDAestimated that it would cost between two and tenmillion dol-
lars to prove equivalence of an “in vitro” antibody to amAb previously
produced via the ascites method (NRC, 1999). While fit-for-purpose
validation is likely less expensive today, seemingly small procedural
changes can lead to significant costs for companies conducting regula-
tory testing, and incentives should be implemented so that companies
are not penalized for switching to a more sophisticated and humane
technology.

• To help rAb and aptamer developers identify key areas of interest, a
list of ascites-produced antibodies purchased by researchers and the
justification for using the ascites method of production should be
made publicly available. Thiswill allowdevelopers of alternative tech-
nologies to focus efforts on the development of these antibodies via
recombinant methods.

• To take advantage of resources already spent on developing and vali-
dating existing hybridoma monoclonal antibodies, existing hybrid-
omas should be sequenced and produced using recombinant
technology moving forward (Bradbury and Plückthun, 2015).

As outlined, once technological knowledge and the supporting infra-
structure are established, rAbs and aptamers require less time to pro-
duce, require less purified antigen, and can be created against a larger
number of targets than mAbs (Petrenko and Vodyanoy, 2003). These
technologies are theway forward to increased scientific validity and re-
producibility and to accelerated research in the life sciences.
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