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Let L be a lattice of divisors of an integer (isomorphically, a direct product
of chains). We prove [A||B|<|L||AAB]| for any A, BC L, where | - |
denotes cardinality and 4 A B ={gAab:acd, beB}. [AA B aftains its
minimum for fixed | A |, | B| when 4 and B are ideals. | - | can be replaced by
certain other weight functions. When the n chains are of equal size k, the ¢lements
may be viewed as n-digit k-ary numbers. Then for fixed [ 4], | B|, [A A B s
minimized when 4 and B are the | 4| and | B smallest n-digit k-ary numbers
written backwards and forwards, respectively. | 4 A B for these sets is deter-
mined and bounded. Related results are given, and conjectures are made.

1. INTRODUCTION

A lattice L is a partially ordered set (poset) where any two elements 4, b
have a least upper bound a v b (“a join »”) and a greatest lower bound
a A b (“a meet b). An ideal (resp. filter) is a subset 4 of a lattice (or poset)
which is closed downward (resp. upward). That is, if ac 4, be L, b<a
(resp. b > a) then b € 4. Note that the complement of an ideal is a filter. If
A, BC L we write A A Bforthe set {a A b: ae A4, b & B}. Trivially, if Bis an
ideal, sois A A B.If 4, B are both ideals, A A B = A N B. The cardidality of
a set C is denoted by [ C| and its complement by C. [x] is the greatest
integer <C x, and [x] is the least integer >=x.

Our objective is to study | 4 A B|. Let s(L), #(L) be the smallest real
numbers s, ¢ such that

Al |B| <sldNnB| for all ideals 4, BC L
1A |B| <t]AAB| for ali subsets 4, BC L.
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For example, suppose L is the lattice on {a, b, c, d, e, £, g} where a < b and
cach of (¢, d, e, f} is greater than b and less than g. Then s(L) = 8 and #(L) =
9, achieved by the ideals 4 = {a, b, ¢, d}, B=1{a, b, ¢, {}, AN B = {a, b}
and the subsets 4 ={b, ¢, d}, B={b, e, /}, A A B={b}. Clearly we always have

[ L] <s(L) <L)

These functions have their origins in [7], where it was proved that if L is a
lattice of subsets of a finite set, then

(ANB[|L| <|A4]||B| forallideals 4, BCL (1)
Trivially, if | A N B| is written as | B| — | 4 N B, (1) is equivalent to
A B]<<|L}]ANB]| for all ideals 4, BC L. 2

The function s(L) was first defined in [2], and it has been shown that (1)
holds in an arbitrary lattice iff s(L) = | L {. That (1) holds for the divisors
of an integer was proved by Anderson [1] and independently by Greene
and Kleitman [5]. As remarked by Welsh [8], the FKG inequality easily
shows that (2) holds when L is a distributive lattice, so then s(L) = | L |.

Most of our analysis applies to products of chains (linearly ordered sets).
The size of a chain Cis | C |, its length is | C | — 1. The direct product of »
chains of sizes ky ,..., k, is a lattice of cardinality k%, ,..., k£, . There are
three equivalent ways we may view the elements of such a lattice. They may be
considered divisors of an integer N = pat -+ ¥, where p; are distinct
primes. In this case a < b in the lattice iff @ divides b (written a | b). Or, they
are multisets of a set, where the ith element appears at most k; — 1 times.
Most often we will view an element a of the lattice as an n-tuple (g, , a5 ,..., @)
of integers where 0 << a; << k; — 1 for all 1 <{i < »n. The lattice consists of
all such n-tuples. Two elements a = (g, ,..., a,) and b = (b, ,..., b,) are
related, a < 8, iff a; <C b, for all 1 <7 < n. Note that (a A b); = min{a;, b;}
and (@ v b);, = max{a,, b;}.

In section 2 we show that for a product of chains, #(L) == | L | and s(L) =
(L), and we extend the result to slightly more general weight functions than
cardinality. In section 3 we find sets A and B that minimize | 4 A B[ for
fixed | 4|, | B| and discuss the value of this minimum. In section 4 we
present two related results that depend primarily on (1) and (2).
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2. GENERAL RESULTS CONCERNING A A B
Our first result is an inequality for | 4 A B 1.

TreoreM 1. If a lattice L is a product of chains and A, B are any subsets,
then
lA[1Bl<{Lj|4AB] (3

By complementation, we also have | A || V| <|L||4v B|. Phrased
in terms of divisors of an integer, theorem 1 becomes: If A and B are families
of divisors of an integer N, the proportion of divisors of N that are greatest
common divisors (or least common multiples) of a member of 4 with a
member of B is not less than the product of the like proportions for 4 and B.

Theorem 1 can be proved independently, but we omit the proof for several
reasons. Phrased in the terminology of the introduction, theorem 1 is equiva~
lent to #(L) = | L| for a product of chains. Since theorem 2 will show
s(L) = (L) in this case, and since s{(L) = | L.| for any distributive lattice [8],
theorem 2 will imply theorem 1. Also, theorem 11s a special case of theorem 3.
Finally, since the writing of this paper, one of the authors has obtained a
stronger result than theorem 1 by a different method of proof. In [3] we find
that a lattice is distributiveiff | 4 | | B | <<{Av B||AAB|. Since | Av B| <
| L | and a product of chains is a distributive lattice, theorem 1 follows again
as a corollary. Using the result in [3]instead of theorem 1 does not significant-
ly strengthen our later results concerning error bounds, so we will continue
to use the bound | A A B| > | 41| B/| L| given by theorem 1. As we will
see, it is sometimes strict.

Tueorem 2. If a lattice L is a product of chains and A, B are any subsets
with | A1 = o, | B| = f3, then min| A » B | can be aitained when A and B are
ideals.

Proof. Without changing the size of 4 or B, we will transform them to
make the first component of their elements as small as possible. In doing so
we will never increase | 4 A B |. Doing this successively on each component,
we will transform 4 and B into ideals, which suffices to prove the theorem.

We now define operators to formalize this transformation. For ce L,
define 3,¢ by

¢ for i=#p
(By0); = (0 for i=p, ¢, =0
c; — 1 for i=p, ¢; >0

For CCL let fuC ={cieccC, 8,ce C} U B, cel, d,c¢ C} and §,C =
tim,, .. £,(C). Clearly /™ attains a limit and §, is well-defined. 8, wherever
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possible replaces an element ¢ of a set C with a lattice element ¢’ < ¢ notin C
which agrees with ¢ everywhere but in the pth component. Viewing the lattice
as divisors of an integer, &, takes a subset of divisors and divides out the pth
prime as much as possible without producing equality of elements. We have

c€8,C only if (¢; 50 Cpog s Ji Cprg rees ) €8,Clorall 0 <j <, (4)

and
[6,C] = |C]|. (%)

We claim
(6,4 A 8,B)C8,(4 A B). )

Suppose ¢ € (8,4 A 6,B)with ¢, = j. Takea € 8,4, b € §,Bsuch thata A b=
¢. min{a, , b,} = j, so (4) guarantees that 8,4 and therefore 4 has at least
j + 1 elements that agree with « in everything but a, , similarly for b in B.
Call these sets of elements & and 4. Take the element in & U 4 with largest
pth component; we may assume it is . Form {a} A b. This yields at least
j + 1elementsin A A B which agree with c in the other components. (4) then
ensures ¢ € 0,(4 A B), which establishes (6).

By (5) and (6) we may replace 4, B by 8,4, 8,B and have | 6,4 A 3,B| <
[8,(4 AB)=]|AnAB]|

For any C C L, let us now define a sequence of sets C; generated by pushing
down on successive components. That is, let C, = C, C; = 6,C,_, for
1 < i< n We wish to show C, = C* is an ideal. Suppose c€ C*, ¢’ < c.
If the first component where ¢ and ¢’ differ is the (n — i)th, (4) and the fact
that 8; changes nothing outside the /th component establishes a simple
induction on i to show ¢’ € C*. Applying this to any 4 and B, A* and B* will
be ideals having the same cardinality, such that | 4* A B* | <[ A A B|. §

By a complementary argument, we could construct filters 4*, B* to
minimize | A v B|. Note that theorem 2 does not extend to distributive
lattices. Consider the lattice a <<b < {c, d} <<e, and let « = 8 = 2. Here
{b, ¢} » {b, d} = {b}, which has cardinality 1. {a, b} is the only ideal of size 2,
and {a, b} A {a, b} = {a, b} still has size 2. However, {b, ¢} and {b, d} are
compact sets, where a set S'is compact if x, ye S, x <z < yimplies z€ 5. In
other words, S is the intersection of a filter and an ideal. We conjecture that
if |Ad|=aand |B| =24, then | 4 A B| is minimized by certain compact
sets. If this does not hold for all lattices, it may still be true of distributive
lattices.

For products of chains we now have three equivalent inequalities, (1), (2)
and (3). The next theorem shows that in those inequalities we can replace
cardinality by a more general weight function. First we must prove a lemma
about sequences of real numbers.
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LemMA 1. Suppose uy , Uy oo, Uy, aid Dy, Dy .., Uy QFE TWO Seqliences of
non-negative real numbers. Let A,y = max{u,v; , uv,: r <i < s}. Then

@O A <Ay foral r<s<t

.. ) , D
i) uw, + wvs < uws + max{nv, , U, , U

s~1 s
(11}) Z Us iUy < Z )\is .
i=0 Gt

Proof. (i) is obvious. For (ii) we have three cases.
() Yu <u,,then upr, < uw, and uw, < max{u,v, , Up, , U0}
(2) Ifv, <v,, then uy, <uw, and ¥v, < max{u,v, , U, , Ul
(3) MHu, >u,and v, >v,,then

U, + U5 = up, +4- (Ur - vs) u; + (Us - Ur) Uy + U0,
= UL, -+ (ur "' us)(vs o Ur) + Uy
< Ul -+ Uy .
For (iii) we proceed by induction on s — ». If 7 = 5, uv, = A, . Ifs — p = 1

we have (ii). Suppose s — r > 1 and the lemma is true for smaller values of
s — r. Using (i) and (ii), we have

ST s—r-1
2 Us_Vryg == ULy + UL, + Z UsiUryi
=0 =1

§—p—2

= UL, + max{uTU, » Uglr 5 urvs} + Z Us 1 Uriipy
i=0

)\js- l

Mm

s~1
< Ass + >\frs + Z Aj,s—l <

i=r+i i

i
LS

THEOREM 3. Suppose L is a product of n chains. Choose non-negative real
numbers Wy, Wy ..., W, as “weights”. For ac L, let w(a) = [J;, w¥. For
ACL, let w(A) = 3 4eq w(a). Then for all A, BC L,

w(Aw(B) < w(Lyw{4 A B).

Proof. We proceed by induction on n, the number of chains, by “factoring
out” the part of the weight due to the nth chain. For n = 0 we may say
w(4) = 1 for all 4 C L, so theorem holds trivially. Put x = w, and let k be
the size of the nth chain. Suppose » > 0 and the theorem holds for smaller
values .of a. ‘

For CC L define C/f = {c € C: ¢; = j}. Define f,(C) as before, so w(C,?) =
xw(f,N(C,D).
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In particular, if v = w(L, % is the weight of the sublattice obtained by drop-
ping the last chain,

W(L) = Z W(LJ) = 2 (/L) = v 2 .

Now, let D = 4 A B and put

Xy = w(dy,), X'v; = w(B,)), X'z; = w(D,)

forj=0,1,.., k — 1, so that '
E-1 E—1 r=1
wid) = Y wx!  w(B) =Y vx'  w(dAB) =Y zx.
=0 7=0 j

D, is composed of meets between elements of 4 and B, where the minimum

of the two nth components is j. The nth component of the other element may
also be decreased to j without changing the meet. That is,

D, = {J (4 A B) ) (4.° A B,)

izd >4

= U @~ fi B U (45 A BY)
i>j i>7
Everything in the last expression has nth component j, so they are embedded

in a sublattice on fewer chains. By the induction hypothesis, we have u;p; <
vz; and uw; Lvz; forall j <i <k,

In fact, for all 0 <<j < s < &k we have
)93 = max{urvz s Uily s] S} VZ,"

Lemma 1 and the equations above allow us to bound w(4)w(B)

w(A) w(B) = (kil u,-xf)(ki1 vjxf')

i=0 i=0
J 2k—2 k=1
=Y ¥ Yo+ Y XY ww
j ' P S W R

o1 i 22 k-l
Z Z s+ 2 XY Aga

i=k i=j—k+1

A per) A
( k-1

v : x)(g w(D a)) — W) wd A B). |
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3. Sers THAT MINIMIZE | A A B

In this section we exhibit sets that minimize | 4 A B | on products of chains
of equal length. Also, we analyze the sharpness of | 4 | [ B|/| L | as a lower
bound on that minimum. Intuitively, one would expect that restricting the
weight of elements in the two sets as much as possible to different components
will result in meets with very low rank, of which there are comparatively few.
Theorem 4 formalizes this idea.

THEOREM 4. Suppose L is a product of n chains of equal size k. The
elements of L may be viewed as the set of n-digit k-ary numbers. Fix | 4 | = «
and | B| = B. Then min| A A B is attained by letting B be the B smallest
n-digit k = ary numbers and A the o smallest written backwards.

Proof. For any element ¢ € L we define a forward and a backward value
by (c) = X k*ic; and i(c) = Y1 ki-lc; , respectively. v and 7 evaluate
elements as k-ary numbers when the components are written in order or in
reverse order. We also define an insertion operator g,/ by g4(@) = (a1, @5 5.,
Giq 5 J» @ yunr @,). Tt sticks a  in the ith place and pushes every subsequent
integer one component to the right.

Let Cy(n, o) and Dy(n, B) be the prescribed sets of size « and 8. Note that
C={cel:i(c)y <o} and D={cel:v(c) <B} C and D are clearly
ideals, as required by theorem 2. For n == 1 and & arbitrary, C and D must
minimize | 4 Ao B| since they are the only ideals of size « and 5. We procesd
by induction on ».

Suppose | 4 A B| is minimal over all | 4| =« and | B| = §, but B £
Difn, B) or A 5% Ci(n, o). Then we can find x, ye L with x¢ B, ye 5,
v(x) <u(y) or x¢ d, ye 4, B(x) <d(p). x and y may disagree in every
component, or they may agree somewhere.

Suppese first that x and y agree in the ith compounent. Define 4,7, B/, and
E;7 = (A A B)]as before. Since 4 and B are known to be ideals (by theorem 2),
we have BPD8;BAD D8 BE and 4D 8,420 -+ D 8145, This
means 47 A B/ contains 4, A BI*" and 47" A B forall 0 <r <k —j, s0
Ef = A/ A B/,

Fixing i, the compoenent where x and y agree, put o; = | 4,7 | and 8; =
| B/ |. Minimize | 4, ~ B/ | subject only to the values «; and 5, . This wilt
minimize | E] subject to those values if when we put the results for all j
together to form A4 and B we still have ideals. For a given value of /, minimizing
| A7 A Bf | is a meet minimization problem on a sublattice with fewer
chains. By induction, we replace 47 by gi(Cun — 1, o)) and B by
g/(Dyn — 1, B)) for all j. Since oy < oy <~ <oy and By <Py <+ <
Br_1 , the new 4 and B are also ideals. Recalling the pair (x, y), y now appears
in the replacement set only if x does also.
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This replacement procedure strictly decreases Yep v(b) or 344 i(a),
whichever generated the pair (x, y), without increasing | A A B|. Since
A = Cy(n, o) minimizes Y ,., #(e) and B = Dy(n, f) minimizes g v(b),
it follows that repeating the procedure a finite number of times leads to one of
the following situations. 1) 4 and B become Cy(n, o) and D;(n, B) without
increasing | 4 A B|. 2) Whenever v(x) < #(y), x¢ B, y B or o(x) < (),
x¢ A, ye A, x and y differ in every component.

If the former occurs, we are finished. Suppose the latter occurs for B (the
case for 4 follows by symmetry). The v-smallest y € B belonging to such a
pair satisfies o(y) = v(x) + 1 for some such x. This occurs with disagreement
in every component only when x = (j — 1, k—1, k —1,.., kK — 1) and
¥ == (j, 0,0,..., 0) for some j, x ¢ B, y € B. We claim the only v-larger elements
which can appear in Bare ¥, = {/,0,0,...,0,1): 0 < i < r}, where 0 <r <
k—1.(,0,0,.., 0, k — 1) agrees with x in the last place, so it cannot be in
B. If v(j, 0,0,..,0,r + 1) <v(j, 0, k — 1,..., k — 1), z agrees with (j, 0,
0...., 0, -+ 1) in the second place and must also avoid B. Now every digit
has appeared in the third through (n — 1)st component of some element not
in B, so no z with v(z) > (j, 0, k — 1,..., k — 1) can lie in B. By similar
reasoning, the only p-smaller elements which can avoid being in B are
X,={(G—1L k-1 k—1.,k—110);s<i<k—1} where r <s <
k—1.

We are reduced to the case B=jk" ' +r+k—1-—45 0<<r <s<
k—1, B=Dyn, B+ k—s)— X]. We now claim that ¢ = (j, 0,..., 0, )
can be replaced in B by w = (j — 1, k — 1,..., k — 1, s) without increasing
|A A B|. For any ac A4, consider elements that might be added by the
replacement, namely z=a A w. If z <<w, we have z€ B, s0o z=a Az is
already present in 4 A B. The remaining possibility is @ A w = w, in which
case @ = w. Since r < s, #{(t) < t(w) < ¥(a). Applying the argument of the
preceeding paragraph symmetrically to 4 and o, we see that for this to
happen A must have some element u with # > £. That guarantees 6 4 A B,
since ¢ = u A t. Replacing ¢ by w in B replaces # by w in 4 A B, resulting in
no net change. Repeating this procedure k — s times transforms B into
D,(n, B), which completes the proof. §

We note that theorem 4 can be proved by another argument in which
elements of B are “pushed” towards elements of the same rank but smaller
lexicographic value, while those of 4 are pushed toward larger lexicographic
values. Always this is done without increasing | 4 A B|. This efficacy of
both proof by induction and proof by “pushing” toward the desired set
occurs frequently in extremal set theory.

Now, suppose we have an arbitrary product of chains with sizes k = (k; ,...,
k,). By convention, put ky, = k,; = 1. If we let v¥(c) = 22;1(]_[2; ko
and () = 31 (I T'—s k») ¢; » we can still define C(k, o) and D(k, p) as the
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and f3 élements of the lattice with smallest values under #* and v¥ , respectively.
When the k; are all equal, these reduce to the definitions in theorem 4. Most
of the argument of theorem 4 holds in this more general setting. Elements
differeing by one under v still differ in every place only when x = (j — I,
ky — 1, ks — Lk, — 1) and y = (j, 0...., 0). Creating sets ¥, and X, as
before, it is still possible to replace the largest element of Y, by the smallest
element of X, without increasing 4 A B. However, different orderings of the
k; may produce different values of | C(k, o) A D(k, 8)]. This fouls up the
induction step. Depending on « and f, the best ordering of the chains may
vary. The simplest example has n =2, &y =2, k, = 3, Here C(k, 2) =
{00, 10}, C(k, 3) = {00, 10, 01}, D(k, 3) = {00, 01, 02}, and D(k, 4) =
{{00, 01, 02, 10}. If on the other hand k; = 3 and k; = 2, then C(k, 2) =
C(k, 2), C, 3) = {00, 10, 20}, D(k’, 3) = C(k, 3) and D(k’, 4) = {00, 01,
10, 11}. Now note that C(k, 2) A D(k, 3) = {00} and C(k, 3) A Dk, 4) =
{00, 10, 01}, but C(k’, 2) A Dk, 3) = {00, 10} = C(k’, 3) A DK, 4). k is
preferable for («, 8) = (2, 3), but k' is preferable for (x, f) = (3, 4). In
general, we conjecture that a permutation k can be determined as a function
of « and 8 so that C(k, «) and D(k, ) will minimize | 4 N B |. If B equals or
is “slightly” less than a multiple of a product of certain chain sizes (where 8
divided by that product is as small as possible) let those chains be the right-
most components, decreasing in size from the nth toward the left. If other
chains can be chosen similarly for «, let those chains be the left-most compo-~
nents, decreasing in size from the left. The remaining chains, if any, occupy
the middle in some convex distribution. Details and conflicts in the above
procedure have yet to be resolved.

We now return to products of equal-length chains and analyze the accuracy
of |A|B]/|L|asalower boundon |4 A B].

THEOREM 5. Suppose L is a product of n chains of size k, 0 < o < k™,
0B <k Lot wmo B)=min{{AAB|:| 4] =« {Bl=P} and
e, a, B) = i, o, B) — aBfk™. If pk»t < o < (p + Dkr1and =+
mod %, then

0; p=0
s (X, = U M,——kn-,_ﬁ_:_pﬂ_{_p—l .
paln 00 B) = o (1 1, & — ph, 2 2] ?;o[ﬁk]];p>o
)
aln o, B) = & (n—l,a—pkn—l, [_ﬁ%’q])
d .
N r[l k;:“, 0<r<p o
(k—")jc’n‘; p<r <k

s82a/26/2-4
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Eurthermore,
eln, k" — a, k* — B) = en, o, B) o
paln, k" — o, k" — B) = paln, o, B) + k" — o — B (10)

and, finally,
0< an, o f) < 1)y

Proof. Before proceeding, we note some additional relations and boundary
values that are obvious. Namely,

/’Lk(n3 &, B) = tu‘k(na 187 O:),' e, /3: a) = &n, a, /8) (12a)
.‘u’k(n: 09 ﬁ) = O; lu’k(n’ kn’ B) = 18; Ek(}’l, O: /3) = Ek(n’ kn’ B) =0 (12b)

(7) is the recursion on which all of this analysis rests. Fiom theorem 4,
we have (1, o, f) = | Cyln, @) A Difn, B)]. Put E = C n D, and define
E,7 as usual, so that pk(n o, f) = 2;“_; | E,7|. We will establish the recursion
by determining the sets in E,7.

Recall E,} = C,’ A D,?, since C and D are ideals. If 0 <j < p, C, is the
entire sublattice on the first # — 1 components, with nth component j, so
Ej=CjJADj=2D, |DJ|=[(B—j)k], since the first element of
D,7 is encountered when S = j + 1, and thereafter one is added for every
increase of k in B. This yields the last term in (7). If j > p, E,’ = @ since C,?
is void. We need only show | E,? | = u(n — 1, o — pk*1, [B — p/k]). Again
we arein a copy of the sublattice, E,» = C,» A D2, | D,” | = [8 — p/k], but
now the only things in C,* are the “excess” after the first pk”—* elements.
They are the first « — pk™! elements in a copy of the sublattice. In fact
Cy =g /(Cn — 1, & — pk* ), D,/ = g,(Din — 1, [(8 — p)/k1)), which
gives us the recursion.

(8) follows from (7). Treating the summation in (7) as vacuously 0 if
2 =0, we have

uln, o B) = uln, o, ) — 35
=pk(n—1,&—pkn~1[ﬁ P])Jr;v;[ By %;g

-1

—a(r— 1ot [EZ2]) 4 ) 5%

T G pk"‘;)[(lﬁ p)/k] 06/3.

‘]
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We must evaluate the last three terms above. Suppose B = r - mk. We have
two cases. If 0 < < pthen [B — p/k] =mand ¥ {,8 JKl=r(m+ 1)+
(p — r)m = pm + r, so the last three terms sum to

(« —pk"Mym  ofr + mk) 3
pm T I (- )

On the other hand, suppose p <r <k. Now [ —p/k]=m -+ 1 and
Zt& [(B — j)/k] = p(m + 1), so those terms sum to

(o — pk*Y(m + 1) _ ol + mk) _

pm 4+ 1) + = e =k — 1) 5

Combining the cases, we have (8).

(9 follows by induction from (8). For n = 1, p(1, o, 8) = min{«, B).
So, l,k—o,k—fB) = mink—o, k—p) —k—~ )k - Bk =
mink — o, k—B —k+a-+B—ofk = min(e B) — Bk =
(1, o, B). Suppose n > 1, and p as before. Then (k — p) k1 > k" — o >
(k —p — 1) k*L If B =r mod k, then k" — B = (k — r) mod &. Suppose
first that o 5= (p + 1) k™% We use —|—x/k] = |(x + &k — 1)/k] = [x/k],
(8), and the induction hypothesis to show

exln, kv — o, k* — B)

:ek(n~—l,k”——oc~(k——p—1)kn~1,[kn“/3”‘(lf“l’—1)];)

o = ot et o+ | B

(kwr)(1—~k”Tji); O<k—r<k—p—1

%~®~0H£%%%; k—p—1<k—-r<k
= ¢ (n — 1, kmt — (& — pknY), kvt — l‘ B *k‘ p D

k—=n—4s pHl<r<k

k”’

4
rl=) o<r<p+1
@y, |
:fk(n——ljoc—_pkﬂ—l’[%g‘])_[r‘ r(l_ﬁ)’ 0<r<p
(kﬂr)%; p<r<k
:Ek(n,ot,ﬁ)_
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If, on the other hand, « = (p 4 1) k» 150 that k" — o = tk—~p—1 k1,
we use (12b) to find

e, k* — a, k" — B)
= o n— 1k, [Eizﬁ_l;_@“uj)

N (k’“”)(l““kl/—c;—?c—); O0<k—r<k—p—1
h— =X k—p—l<k—r<k
(k—)p}tl; p+2<r<k

=0+ 41
r(l—pk ); 0<r<p+2

o (r-nae £

r(l—P_II;I); O0<r<p+1

(!c——r)_~—p_;;1 ;

_{_
p+l<r<k.

For r=p-+41, (1 — (p + D)jk) = (k — r)(p - Dk, so the last line is
again &(n, o, B).
(10) follows directly from (9):

;“k(”, kn — o, ke — /9) — Gk(l’x', kn — a, kr — B) ‘f" (k” . oc]zq(fc"‘ —_ /8)
=l Bk — o f 2
= /"’k(n’ &, B) + k" — o — B

Finally, we come to (11). The lower bound on ¢, follows from theorem 1.
For the upper bound, we examine the additive term in (8). If 0 < r < p,

Ip<r<k,

(k—r)%g (k“P-kl)(er 0N

These are maximized when p (resp. p + 1) equals k/2, and never exceed k/4.
There are n such additive terms, since we may set €0, o, f) = 0, so
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edn, o, B) < knf4. When k is odd, integral p cannot equal £/2, and we have
the slightly sharper e(n, o, f) < (k — 1/km)f4. §

If B = r -+ mk, the derivation of (8) shows we can rewrite (7) and (8) as

 fum — 1, 0 — pk™tm) + pm -1 0<<r<p
y’k(”l, 0Ly ﬁ)— F"Ic(n— Loc_pkn-—l,m_}_ l)+pm+p’ p<l’<k (7a)
en — 1, @ — pk™1, m)+r(1~kn) 0<r<yp
€k(71,02,ﬁ):

efn — 1, o — pk»tm + 1) + (k — 1) 4 kn ; p<r<k

(8a)

(9) and (10) are not surprising, because of the duality between meets of

ideals and joins of filters. (11) is “asymptotically” best possible as a uniform

bound for all («. B), as seen in theorem 7. However, refinements to the basic
argument for (11) yield better bounds for particular pairs (e, 5).

For example, instead of pk"' < o << (p + 1) k72, let us define p and ¢
by pk? < o << (p + 1) k%, where ¢ is the smallest possible. Writing « as a
backwards k-ary number with n digits, the largest component with a non-
zero entry is the (g -+ 1)sz, respresenting pk? Now we base the recursion on
that component, rather than the last. The same argument used for (7) leads to

p—1

o, B = o (g, 0 — e, [E=ZE0) 1 5 [EE22

Note that now p=0onlyif ¢ =0, « = I, in which case p =1, e = [ —
B/k™ so we may disregard that possibility. For an analogue to (8) let us
suppose 8 = r - mk»9, 0 < r < k"4, (7b) leads to

o @) = o (a0 — pie [EZEZT) 4 8 (Bl

kn—q =0 kr—e
I Gl PEI[(B — pk» -9k of
ke 2

The two cases we must consider in evaluatmg this are 0 < ¢ < pk™1-2 and
Pk™1=0 < p < k"~ In the former case let r* = [r/k»~1-2]. Then calculations
like those used to prove (8) yield

ek(nv o, B) = € (q: o — pkgs l‘""g';—_]'c%]g;ij])

%:7 ; 0 < r < pknie

n i (8b)
(k1 — 1) T : pkrlm < r < kre,

¥ —
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To obtain an analogue to (11), we bound the size of the additive terms
above.

o _pk—pt+ 1)

& k
(ke — ,)% 3 ——p)k(p + 1

The former is maximized by p = (k + 1)/2, the latter by p = (k — 1)/2, but
in either case the maximum is (k -~ 1)%/4k. We get a non-zero contribution to
« for each non-zero term in the k-ary expansion of «. Recalling (9) and (12a),
let 7,5 be the minimum number of non-zero components in the k-ary expan-
sions of «, B, k* — «, and k* — B. Then

ek(n, o, B) < (k + 2 "Z l/k) Nas (llb)

This bound is stronger than (11) when % << ak/(k -+ 2), and can be improved
for even values of k by dropping 1/k from the numerator.

Another bound can be obtained by examining the additive term in (7a). It
equals pm + min{r, p}. Doing the recursion successively for all components,
p <30 (pam; + p,), where p,, m; are p, m as determined when dropping
the ith component. Now, mkn+1~t < § for all i, and 3 ; pk = . Let
p(e) = ¥ p; be the sum of the components in the k-ary expansion of «. Then

p <Y pimkrikn + Y pi <Y pktBk™ 4 plo) = affkm 4 p(w).
If pys = min{p(c), p(B), p(k™ — o), p(k™ — B)}, then we have
€l @, B) < pus (11c)

In general, there is a lot of slack in this bound, since it yields a uniform bound
of (k — 1)n/2, which compares unfavorably with kn/4 unless & = 2. However,
it yields good results for particular cases, and could be especially useful for
applications to Boolean algebras (kX = 2), where as a uniform bound it is
best of the three bounds presented.

No examples have been found which achieve any of these upper bounds.
Theorem 6 discusses when the lower bound € = 0 given by theorem 1 can be
attained. Theorem 7 exhibits several classes of (n, «, ) with large ¢ , some of
‘which appeoach kn/4.

~ THEOREM 6. In the terminology of theorem 5, {n, «, ) = 0 if and only
if G) of is a multiple of k™ and k divides both « and B, or (i) trivially, « or B
is k" or 0,



MEETS BETWEEN SUBSETS OF A LATTICE 149

Proof. If aor Bisk®or 0, we apply (12). So assume 0 < k < k", 0 < B <
k. e(n, o, B) will vanish if and only if the recursive term and the additive
term in (8a) both vanish. The additive term vanishes iff § = mk and r = 0.

Assume it does. For #n = 1 this suffices to prove the claim. We proceed by
induction on 7. The induction hypothesis says the recursive term e(n — 1,
o — pk»-, m) vanishes iff k divides the last two arguments and k"~ divides
their product, or one of them is 0 or k*~1. As p is defined, « — pk™~* is never
zero. Ttis kn-1iff k»1 | wand k™ | of, since B = mk. mis O or k»*iff Bis O or
k». Finally, k|« — pk»1 iff k|«a, and k"% | (¢ — pk»Hm iff k*| (¢ —
pk Yy mk iff k7 | o«f. 1}

The result in [3] does not improve these results because of the way in
which 4 and B can be chosen to minimize | 4 A B|. If of > k® then
|Av B} =[L|and any derivable bounds are the same. On the other hand,
if of <<k® then |AAB|=1and |A]]|Bl/|Av B| is exact only when
|4dlor|B|is L

TuEOREM 7. Define sequences {ay,}, {bn}, {Cn}, {d,} as follows:

a = 1; Ay =2" —dypy, n=1
k1  kr—1 ko ki —1
=" b=t d=g (1)
Also let v, = (k — 2)/(k — 1) and s, = kf(k — 1). Then
n 1 —1)
E‘z‘("aaaLn/zJ,an):§“§‘§~ (92)n (13
2
&, by s by) = rn + 1t — k>2 (4
_(k=Dn 1 I
Ek(n:» C'n5cn)_ 4 +4"‘“3“l€1;‘, kodd (15)
kn 52 82
ex(n, dn’d")zrkT+"£““Z“]zi; k even. (16)

Proof. (13)«(16) were derived by using the method of generating func-
tions to solve the recursion relations that arise.. Once known, however,
they are much more easily verified by induction. When n == 0, the 1ight sides
above all vanish, so the theorem holds trivially. For the induction hypothesis,
we assume it holds for smaller values of n,

Let us first consider (13). {a,.} is a well-known sequence whose applications
are referenced in {8]. We have four equivalent recursive definitions of a, :

an == 2” = an_]_ == 2”_1 + an_z :"an__l ‘{“‘ Zaﬂ_z = Zan_.l + (“' I)'ﬂ'
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To prove the last from the third, for example, we have by induction a,.; =
2a,_, + (=11, Substituting 2a, , = a,y — (—1)*? in a, =a,,+
2a,_, yields the desired result. We note that 271 < g, <2 for n > 1 and
every a, is odd. Furthermore,

9,y — 327+ 2(—=1)" = 6(ayy — 2*Y) + 3a,, + 2(—1)"
= —6a, 5 + 3@, -+ 2(—1)"
= 3(—D 1+ 2(=)" = ~(=1)"

and
fosge] - ot
[azmz—— 1 ] _ [ 20501 + (2——1)2'" —1 1 — .

We claim &, aons > a,) = &n — 1, @y (n-1)s2) » Ay1) - @nyf2". This
follows from (8) and the above whether # is even or odd.

&(2m, dopm , Qo)

= € (2m — 1, gy — 281, [azmz" 1 -D 1 22m2‘2;na2m

Aom—1
= (2m — 1, Gy 5 a2m-—1) 4+ *"215;”— .

&(2m + 1, Gy, » dami1)

= € (2m, Aoy, — 0 - 22m-1) [ a2?£+1 ]) + 2‘21::1‘:1

= 62(217’1, Aoy, 5 a2m) + 22mtl

Now we complete the induction.

an—l
€(N, apnys) ) = &1 — 1, aytu-1)/2; » @) + on

n—1 1 (=1rt | ay,
3T T g v om

n 1, —3:2" +2(=D"+ 9,4
=z+35+ 5 m

n 1 (—=Dr

3797920
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(14), (15), and (16) are verified in the same manner as (13), but with fewer
preliminaries. In each case, we show that the recursive term arising from (8)
is just the preceding term in the sequence, after which computation completes
the induction.

Consider (14). b, =k — Dk —DH +1=1-+ VoK. We note
k1 < b, <2k*so p=1, also b, — k"' =b,,, b,=2 mod k, and
(b, — V/k] = b,_1(k > 2). We shall also need

(k— 2 by —(k—Dr2 =k — 1+ k—1—k-42) = rke.

Now to complete the induction,
b,
€, by, br) = (n — 1, by, byy) + k—12) =

732 b,
=nln— 1)+ rd— b k-2

k—Dr2 | (k—2b,
N

r;f
= Pyt - 1 — o

k

2 _ T
jrkn"{‘rk —'—‘]%7;.

Consider (15). ((k — 1)/ kLt < (k" — D2 < ((k + 1)/2/ k*, 50 p =
(k — D2 (6" — D)2 = (k — D2 Tig K, 50 ¢, — (k — D2 kn' = cpy
and ¢, = (k — 1)/2 mod k. Also [(¢, — (k — 1)/2)jk] = ¢nq, SO We can
complete the induction with

&m e, cn) =en—1,0,4,¢, + (_ZC:_.l_)( _ cn)

2 &
_(k—=Dmr—=D 1 1 k— 1y kn+1
= 2 ti- gt o))
sk=Dn 1 1 k=1 k=1
4 4 4k» 4 4
k—1 1
T (H"_En")

Similarly for (16). d, = k/2((k*» — Dk — 1)) = —%—Z::? ki, (k[ k1 <
dy < (k2 + D kY, so p = k2. Also, we have d, — (/D k"t =d,,,

dy = (k/2) mod k, and [(d, — k/2)/k] = d,_, . We shall need the following
computation.
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%(1__@_) kK k-1

/20 A M i
e e k=)
k-1 dk—1D T Ax=D
R Kk—2)_ sik—1)  kn
Tk —D k=1 4 T4

Finally, to complete the induction

k
Qlt, du, ) = el — 1, dyy, dy) + - (1 — L)

kn
_k(n—1) 52 52 k d,
=t G by (L )
__kn st s stk 1) kr Kk d,
=gt gt (-
kn S K7

Note that for k=3, b, =3, so by (9 & b, ., b,) = &(n, ¢, , c).
Similarly, for k =4, b, +d, = 4" and (n, b, , b,) = e,n, d, , d,). {cn}
and {d,} are attempts to realize the worst case behavior described in the proof
of (11). As k and n become large they achieve it asymptotically. When k = 2
and we have the lattice of subsets of a set, there seems to be some essential
difference. It would be interesting to know if, in fact, the values of « and S
for which ¢, is maximized are {a,} (k = 2), {¢,} (k odd), and {d,} (k even,
k> 2).

4. RELATED RESULTS

In this section we obtain two related results. They follow from the inequali-
ty (1) of the introduction and can be subjected to analysis like that of the
preceding section. '

Hilton [6] proved that if 4 and B are subsets of a Boolean algebra each
containing no element and its complement, and if no element of 4 is related
to any element of B, then | 4 U B| < ] L |. We generalize this, giving a proof
different from his. We shall need a lemma about intersections of filters and
ideals, for which we introduce additional notation.

For a subset C of a lattice, let #C and IC denote the filter and the ideal
generated by C. That is, uC ={cel:Ja < ¢, acC}, IC={cel:Ja>c,
ae C}. Clearly, C CuC N IC and in fact uC N IC is the smallest compact set
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containing C. By a polarity o of a lattice we mean an order-reversing bijection
whose square is the identity. That is, a < b implies ¢b < oa and o(0a) = a.
Complementation, for example, is a polarity. We may call oq the “polar
image” of a.

LEMMA 2. Suppose L satisfies (1) and has a polarity o. Then for any CC L,
| C| < uCnu(C)| | C| < {ICN (o)

Proof. We first note | u(cC)| = | IC |, since {oC) = {a:a = o¢, c€ C} =
{a: oa < ¢, ¢ € C} = {a: oa € LC}. Using (1) and (2), we then have

ILIICl<ILiluCnIC| <[uC|]IC|
= |uC || u(cC) < |L!{uC N u(cC)

and similarly for | IC N l(cC)|. |
This leads to

THEOREM 8. Suppose L is a finite lattice with a polarity o, in which (1}
holds. Let 7 be the number of nontrivial orbits of o (i.e., unordered pairs
{e, oe} where e £ ce). If A and B are subsets of L each containing no element
and its polar image, and if no element of A is related to any element of B, then

|AVB| <7 <3 L

Proof. Let 7; be the set of non-trivial orbits under o which have i elements
in A U B, Clearly,

m=|m | |+ m

fAVB| = |m]|+ 2] m|

s0 to prove the theorem it suffices to show | 7, | < | m, |. Let C be the subset
of A whose polar images lie in B, and let D be the subset of B whose polar
images lie in 4. Clearly D = ¢C. By lemma 2, it suffices to show that | C | =
| mg}and | uC N uD | < | m, |. Each element of C is contained in exactly one
pair in 7, , and every element (pair) of m, contains exactly one element of C,
so|m|=|C|=|D].

To prove | uC N uD | << | my | we will exhibit a distinct pair in 7, for each
element of uC N uD. If dcuC then there is an g ¢ C with ¢ < 4, and then
od < oac D CB. Since no elements of 4 and B are related, d¢ B and
od ¢ A. For the same reason we cannot have ¢ < d = od < oq, s0 d # od.
Similarly, if d e uD, then d ¢ A, od ¢ B, d # od. Thus if d is in both »C and
uD, then {d, od} is in . Now suppose d, d’ € uC N uD both give rise to the
same pair in 7, . That is, d 5 d’ but ¢d = d’. d, od € uC implies there are
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@, , a3 € Cwith a; < d and a, < od. This leads to a, < od < oa, € D, which
contradicts the hypothesis about relations between elements of 4 and B.
This proves | uC N uD | < | m, | and establishes the theorem. J

We may form a set 4 by taking one element from every non-trivial orbit
under o, so that | 4 | = 4. Taking this 4 and B = & shows that the theorem
is best possible. When L is a Boolean algebra and o is complementation, we
have Hilton’s result. He exhibits other sets which achieve the bound. If A4
consists of all subsets of cardinality at most # containing the element j and B
has the subsets of cardinality at least % not containing j, then 4 and B satisfy
the conditions of the theorem and | 4]+ | B| = 22‘;3("; H 4 21:,3(";,‘1) =
271 As in the preceding section, we can ask several questions: for fixed
| 4| = o how big can B be satisfying the conditions of the theorem, what 4
and B achieve this maximum, for which « is their union of size =, and for
which « is their union farthest from = ?

For our final result we return to products of chains. The restriction of this
theorem to a Boolean algebra was proved by Hilton as corollary 2 of his
result in [6]. We define a binary operation -+ on elements of such a lattice to
be their sum as vectors, @ + b = (a; + by ..., a, + b,). Let k; be the length
of the ith chain. Note that a + b € L if a; + b; < k; for all i. If on the other
hand, a; + b, > k; for all i, we say that the pair {a, b} escapes L. We have
the following

THEOREM 9. Suppose A is a subset of a product of chains L and the sum of
any two elements of A neither lies in L nor escapes L. Then | A | < }| L|.

Proof. Viewing the lattice as a multiset with bounded multiplicities X;
define the complement @ of an element @ = (4 ,..., 4,) by @ = (k1 — @y 5.1,
k, — a,). We claim neither 4 nor /4 can contain both ¢ and a for any a.
If @, @ € uA, then for any a, , a, € A with @, < a and a, < a, (a; + a,) lies in
L. Similarly, if a, @ €4, then for any a,, a,€ 4 with a4, > @ and a4, >> a,
(@ -+ a,) escapes L. Complementation is a polarity, so |ud|<<3|L|,
114 | < %] L|. Applying (1) we have

AL <ludnlA]|L| < ud||lAd] <z L]

as required. J

A product of chains of lengths ky ,..., k, is isomorphic to the lattice of
divisors of an integer N = pFipke - pf», where the p; are distinct primes.
a -+ b in the lattice of multisets corresponds to a - b in the lattice of divisors.
a--belL means ab|N and a + b escapes L means N%ab| N. So, the
theorem states that a collection 4 of divisors of N for which ab t N, N%/ab+ N
whenever a, b € A contains at most one-quarter of the divisors of N.

If there is only one chain, 4 can have no elements. If there are two or more
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chains and at least two have odd length, say 7 and j, then theorem 9 is best
possible, i.e., the bound is achievable. A may include, for example, all
elements a with a; < k;/2 and a; > k;/2. If there is exactly one chain of odd
Iength, the theorem is almost best possible. Order the chains so that k; is odd,
ky <k, < <k,areeven. Foralliwith2 <i<n,let 4, ={aelig <
k2, a; > k;J2, and a; = k;/2 for all 2 <j < i}, and let A = {J;_, 4;. Then
A satisfies the conditions and

n n

Al =T 4=y BIL KT e,

=2 2 Je=g—1

Computation shows this to be close to 3| L|= }TI,s(k; - 1). Another
possibility would be a maximum-sized subset such that forall ae 4, () ¢, <
ky2, (i) Yo a; > 130 ok, , and (i) (@, ky — ay ..., ky, — @) ¢ A. When
N.is a square we do not know the best bound for | 4 |. Perhaps it can be
generated as in one of the examples above, with one set of components
providing high values and the remainder providing low values.

The case of theorem 9 in which N is square free has been proved in different
ways by Lovdsz, by Seymour, and by Schénheim (see [5]). Also, that case has
been gen¢ralized in different directions by Anderson {1] and Frankel [3].
Finally, if the lattice is of subsets of a set, g + £¢ L means anb % o,
while a 4 b not escaping L is the same as a U b 5= {1,..., n}. For a product of
arbitrary chains, let us say a intersects b if a -+ b ¢ L, and a self-intersecting
family is a subset A where a -- b ¢ L whenever a, b € 4. It would be interesting
to generalize [7] to products of arbitrary chains and determine in that setting
the maximal size of the union of k self-intersecting families.
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