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Let L be a lattice of divisors of an integer (isomorphically, a direct product 
ofchains). Weprovel~~l~l~~~l~~~~~for~yA,~C~,wh~re~~~ 
denotes cardinality and ,4 A B = {a A b : a E A, b G B]. 1 A A B 1 attains its 
minimum for fixed 1 A 1, 1 B 1 when A and B are ideals. 1 . I can be replaced by 
certain other weight functions. When the n chains are of equal size k, the elements 
may be viewed as n-digit k-ary numbers. Then for fixed 1 A/ , 1 I3 1, 1 A A B [ is 
minimized when A and B are the ] A ] and j B 1 smaIlest n-digit k-ary numbers 
written backwards and forwards, respectively. 1 A A B \ for these sets is deter- 
mined and bounded. ReIated results are given, and conjectures are made. 

1. IN~-RoOUCTI~N 

A lattice ,C is a partially ordered set (poset) where any two elements a, b 
haye a least upper bound a v b (“a join F’) and a greatest lower bound 
a A b (“u meet F’). An ideal (resp. filter) is a subset A of a lattice (or poset) 
which is closed downward (resp. upward). That is, if a F A, b 6 L, b < a 
(resp. b 2 a) then b G A. Note that the complement of an ideal is a filter. If 
A, 3 C ,K we write A A B for the set {a A b: a E A, b E &?}. Trivially, if B is an 
ideal, so is A A B. If A, B are both ideals, A A B = A n B. The cardinality of 
a sei C is denoted by 1 C 1 and its complement by c. [.x1 is the greatest 
integer < x, and 1x1 is the least integer 2x. 

Our objective is to study 1 A A B/. Let ,s(,!2), f(L) be the smallest real 
numbers S, t such that 

IAlIBI <slAnBl for all ideals A, B C L 

IAlIBI <flA~Bl for all subsets A, 3 C L. 
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For example, suppose L is the lattice on {a, b, c, d, e,A gj where a < b and 
each of (c, d, e,f} is greater than b and less than g. Then s(L) = 8 and f(L) = 
9, achieved by the ideals A = {a, b, c, d], B = {a, b, e, f], A n B = {a, b} 
and the subsets A = {b, c, d], B - {b, e,f}, A A B = {bl. Clearly we always have 

These functions have their origins in l-71, where it was proved that if L is a 
lattice of subsets of a finite set, then 

Trivially, if 1 A n B J is written as J B 1 - 1 A f~ B 1, (1) is eqkvth~ to 

The function s(L) was first defined in [2], and it has been shown that (1) 
holds in an arbitrary lattice iff .s(L) = [ L 1. That (I) holds for the divisors 
of an integer was proved by Anderson [IJ and independently by Greene 
and Kleitman [5]. As remarked by Welsh [8], the J?KG inequality easily 
shows that (2) holds when L is a distributive lattice, so then s(L) = / L 1. 

Most of our analysis applies to products of chains (linearly ordered sets). 
The size of a chain C is 1 C 1, its length is 1 C 1 - I. The direct product of B 
chains of sizes kl ,..., 1~~ is a lattice of cardinality klk2 ,..., Jz,~. There are 
three equivalent ways we may view the elements of such a lattice. They may be 
considered divisors of an integer N = p3-l *a* p$-‘, where pi are distinct 
primes. In this case a < b in the lattice iff a divides b (written a J b). Gr, they 
are multisets of a set, where the zth element appears at most ki - 1 times. 
Most often we will view an element a of the lattice as an n-tuple (al , a2 ,..., a%) 
of integers where 0 < az < ki - 1 for all 1 < i < n. The iattice consists of 
all such n-tuples. Two eIements a = (aI ,..., an) and b = (bl ,..,, bn) are 
related, a < b, iff ai < bi for all I < i < n. IVote that (a A b)z = min{ac, bJ 
and (a v b)i = max{a< , bJ. 

In section 2 we show that for a product of chains, t(L) = 1 L 1 and s(L) = 
t(L), and we extend the result to slightly more general weight functions than 
cardinality. In section 3 we find sets A and B that minimize 1 A A B 1 for 
fixed 1 A 1, / B 1 and discuss the value of this minimum. In section 4 we 
present two related results that depend primarily on (I) and (2). 
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2. GENERAL RESULTS CONCERNING A A B 

QLK first result is an inequality for 1 A A B 1. 

?~~EOREM I. If a lattice L is a product of chains and A, B are any subsets, 
then 

Py complementation, we also have 1 A 1 1 V 1 -G 1 L 1 1 A v B I. Phrased 
in terms of divisors of an integer, theorem 1 becomes: If A and B are families 
of divisors of an integer N, the proportion of divisors of N that are greatest 
common divisors (or least common multiples) of a member of A with a 
member of B is not less than the product of the like proportious for A and B. 

Theorem 1 can be proved independently, but we omit the proof for several 
reasons. Phrased in the terminology of the introduction, theorem 1 is equiva- 
lent to t(L) = 1 L 1 for a product of chains. Since theorem 2 will show 
~$5) = f(L) in this case, and since s(L) = 1 L ] f or any distributive lattice [8], 
theorem 2 will imply theorem 1. Also, theorem 1 is a special case of theorem 3. 
Finahy, since the writing of this paper, one of the authors has obtained a 
stronger result than theorem 1 by a different method of proof. In [3] we find 
thatalatticeisdistributiveiff~~[[B~~~~vBi[~~B~.~i~ce~~v I< 
1 L 1 and a product of chains is a distributive lattice, theorem 1 follows again 
as a corollary. Using the result in [3] instead of theorem 1 does not significant- 
ly strengthen our later results concerning error bounds, so we will continue 
to use the bound 1 A A B 1 > 1 A 1 1 B/l L 1 given by theorem lS As we will 
see9 it is sometimes strict. 

~'HEOREM 2. If a lattice L is a prodzxt qf chains and A3 B are any mbsets 
with 1 A ; = a3 1 B 1 = /3, then n&z] A A B 1 can be attained when A andB are 
ideals. 

J+Qo$ Without changing the size of A or B, we will transform them to 
make the tirst component of their elements as small as possillle. In doing so 
we will never increase 1 A A B 1, Doing this successively on each component, 
we will transform A and B into ideals, which suffices to prove the theorem. 

We now define operators to formalize this transformation. For c E L> 
define Q by 

@*C)< = ; ’ 
1. 

for i # p 
for i = p, C~ = 0 

ct- I; for i = JV9 C$ > 0. 

For CC L, let f*C = {c: c E C, a9c E C) U {?ipc: c E cj 8,~ $ Cl and a&’ = 
limm+xJnm(C). Clearly f m attains a limit and S9 is well-defined. 8D wherever 
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possible replaces an element c of a set C with a lattice element c’ < c not in C 
which agrees with c everywhere but in the pth component. Viewing the lattice 
as divisors of an integer, SD takes a subset of divisors and divides out thepth 
prime as much as possible without producing equality of elements. We have 

cE8&onlyif(c1 ,..., c~-~,~,c~+~ ,..., c~)E8$foral10<j<c9 (4) 

and 
IWI = ICI. (5) 

We claim 

&A A 2&B) c &(A A B). 65) 

Suppose c G (apA A apB) with cP = j. Take a E aDA, b E &,B such that a A b = 
c. min{aU , bg] = j, so (4) guarantees that a9A and therefore A has at least 
j + I elements that agree with a in everything but a9 , similarly for b in B. 
Call these sets of elements G and 6. Take the element in Z u 6 with largest 
pth component; we may assume it is a. Form {a} A 6. This yields at least 
j + 1 elements in A A B which agree with c in the other components. (4) then 
ensures c E 8D(A A B), which establishes (6). 

By (5) and (6) we may replace A, B by apA, apB and have ] apA A 6pB 1 < 
1 &(A A B)/ = 1 A A B 1. 

For any C C L, let us now define a sequence of sets Ci generated by pushing 
down on successive components. That is, let C0 = C, Ci = &C+r for 
1 < i < n. We wish to show Cn = C* is an ideal. Suppose c G C*, c’ < c. 
If the first component where c and c’ differ is the (n - Qth, (4) and the fact 
that & changes nothing outside the 1th component establishes a simple 
induction on i to show c’ E C*. Applying this to any A and B, A* and B* will 
be ideals having the same cardinality, such that 1 A* A B* 1 < 1 A A B 1. # 

By a complementary argument, we could construct filters A*, B* to 
minimize 1 A v B 1. Note that theorem 2 does not extend to distributive 
lattices. Consider the lattice a < b < {c, cl] c e, and let n! = /3 = 2. Here 
{b, c} A {b, d] = {b}? which has cardinality 1. {a, b} is the only ideal of size 2, 
and {a, b] A {a, bl = {a, bj still has size 2. However, {b, c] and {b, d] are 
compact sets, where a set S is compact if x, y G S, x < z < y implies z E S. In 
other words, S is the intersection of a filter and an ideal. We conjecture that 
if[A[ = a! and 1 B 1 = ,l3, then [ A A B / is minimized by certain compact 
sets. If this does not hold for all lattices, it may still be true of distributive 
lattices. 

For products of chains we now have three equivaIent inequalities, (I), (2) 
and (3). The next theorem shows that in those inequalities we can replace 
cardinality by a more general weight function. First we must prove a lemma 
about sequences of real numbers. 
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3-T s 

(iii) x ~+~q+~ < x Ajs . 
<SO +r 

PPOO$ (i) is obvious. For (ii) we have three cases. 

For (iii) we proceed by induction on s - T. If P = 3, usva = As3 . If ,s - T = 1 
we have (ii). Suppose x - r > 1 and the Iemma is true for smaller values of 
,s - r. Using (i) and (ii), we have 

TaOREM 3. Suppose L is a product of n chains Choose non-negative real 
numbers wl , w2 ,..., We as “weights”. For a EL, let w(a) = I$=l wp. For 
A C L, Zet w(A) = xaEA w(a). Then for all A, B c L, 

w(A)w(B) < w(L)w(A /, B). 

ProoJ We proceed by induction on TZ, the number of chains, by “factoring 
out” the part of the weight due to the nth chain. For ~2 = 0 we may say 
w(A) = I for all A C L, so theorem holds trivitily. Put x = We and let k be 
the size of the nth chain. Suppose TZ > 0 and the theorem holds for smaller 
values of a. 

For C C L define Cij = {c G C: ci = j}. Define,h(C) as before, so w(C~~) = 
x%(*f;ycnj)). 
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In particular9 if v = w(L~O) is the weight of the sublattice obtained by drop- 
ping the last chain, 

k-l k-1 k-l 
w(L) = x w&,q = x xjw(fy&q) = v z xj. 

j=O j=o j=O 

Now, let D = A A B and put 

for j = 0, l,..., k - 1, so that 
k-l k-l k-l 

w(A) = 1 UjXj w(B) = x vjxj w(A A B) = z z#. 
j=O j=o j=o 

D%j is composed of meets between elements of A and B, where the minimum 
of the two nth components isj. The tith component of the other element may 
also be decreased to j without changing the meet, That is, 

Everything in the last expression has nth component j, so they are embedded 
in a sublattice on fewer chains. By the induction hypothesis, we have Ujvi < 
VZ~ and U~IJ~ < V.Z~ for all j & i < k. 

In fact9 for all 0 <j < s < k we have 

Ajs = lIlaX{Z&Vi, Up7 ;j < i 6 S) < VZj 

Lemma 1 and the equations above allow us to bound w(A)w(B). 
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3. SETS THAT MIN%GIZE 1 A A B 1 

In this section we exhibit sets that minimize 1 A A B 1 on products of chains 
of equal length. Also, we analyze the sharpness of 1 A 1 1 B 1 / 1 I, 1 as a lower 
bound on that minimum. Intuitively, one would expect that restricting the 
weight of elements in the two sets as much as possible to different components 
will result in meets with very low rank, of which there are comparatively few* 
Theorem 4 formalizes this idea. 

T~OREM 4. Suppose L is a product of u chains of equai size k The 
elements oj’L may be viewed as the set of n-digit k-ary numbers. .62x 1 A 1 = O! 
and 1 B 1 = ,l3. Thea rninl A A B 1 is attained by letttig B be the /3 smallest 
n-digit k = ary numbers and A the E smalIest written backwards. 

Proof. For any element c G L we define a forward and a backward value 
by v(c) = xrzI kn-$ and G(c) = zFzI k+lc; , respectively. v and G evaluate 
elements as k-ary numbers when the components are written in order or in 
reverse order. We aIso define an insertion operator gJ by gij(a) = (aI , aZ ,..., 
aiF1 ,I, ai ,,.., a,J. It sticks a j in the ith place and pushes every subsequent 
integer one component to the right. 

Let C&z, CX) and &(P.z, fi) be the prescribed sets of size oz and /I. Note that 
C = {e EL: E(c) < O+ and D = {c EL: v(c) < /!I]. C and D are clearly 
ideals, as required by theorem 2. For IZ = 1 and k arbitrary, C and D must 
minimize 1 A A B 1 since they are the only ideals of size LX and & We proceed 
by induction on n. 

Suppose 1 .A A 3 1 is minimal over all 1 A 1 = cx and 1 B 1 = ,L3, but I3 + 
D&z, fi) or A # &(n, LX). Then we can find X, y G L with x $ B, y E & 
V(X) < u(y) or x $ A, y E A, E(X) < E(y). x and y may disagree in every 
component, or they may agree somewhere. 

Suppose first that x and y agree in the iti component. Define PQ, I$$, and 
J!Q = (A A .B)i as before. Since A and Bare known to be ideals (by theorem 2), 
we have Bto 3 &Bil 3 ..* 3 8~-1B~V1 and Ato 3 &At1 3 a*. 3 8fV1&‘. This 
means Aij A B6j contains &j A Bj+’ and Ai+T A .&j for all 0 < Y x k - j, so 
j&j z & ,y J&j. 

Fixing i, the component where x and y agree, put CJ~ = } A$j 1 and ,& = 
1 I?$ I= Minimize 1 Atj A BE?’ 1 subject only to the values aj and pj . This will 
minimize 1 E / subject to those values if when we put the results for all j 
together to form A and I3 we still have ideals. For a givers value ofj, mini&zing 
1 A$ A B$ / is a meet minimization problem OXI a sublattice with fewer 
chains. By induction, we replace Aij by gij(CTc(n - 1, CQ)) and B$ by 
gif(D& - 1, ,Q)) for all j. Since a,, < aI < **. < zkeI and /3,, < /3x < -6. 4 
/3kVI , the new A and B are also ideals. Recalling the pair (x3 y), y now appears 
in the repIacement set only if x does also. 
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This replacement procedure strictly decreases &,EB o(b) or xaEA c(a), 
whichever generated the pair (x, y), without increasing 1 A A B 1. Since 
A = C&z, 0~) minimizes zaGA 6(a) and B = Q(n, /!) minimizes J&= r@), 
it follows that repeating the procedure a finite number of times leads to one of 
the following situations. I) A and B become C&z, a) and D&z, ,6) without 
increasing 1 A A B 1. 2) Whenever U(X) < u(y), x $! B, y E B or r?(x) < i?(y), 
x 6 A, y G A, x and y differ in every component. 

If the former occurs, we are finished. Suppose the latter occurs for B (the 
case for A follows by symmetry). The u-smallest y E B belonging to such a 
pair satisfies ZJ( y) = D(X) + 1 for some such X. This occurs with disagreement 
in every component only when x = (j - 1, k - 1, k - l,..., k - I) and 
y = CL 0, %.., 0) for some j, x 6 B, y 6 B. We claim the only v-larger elements 
which can appear in B are Yr e {j, 0, 0 ,..., 0, i): 0 < i < r], where 0 <r < 
k - 1. (‘j, 0, 0 ,..., 0, k - I) agrees with x in the last place, so it cannot be in 
B. If o(j, 0, 0 ,..., 0, r + 1) < o(j, 0, k - I,..., k - l), z agrees with (j, 0, 
0 3**-5 0, r + 1) in the second place and must also avoid B. Now every digit 
has appeared in the third through (n - 1)st component of some element not 
in B, so no z with v(z) > (j, 0, k - I ,..., k - 1) can lie in B. By similar 
reasoning, the only v-smaller elements which can amid being in B are 
X8 = {(j - I, k - I, k - l,..., k - 1, i): s < i < k - I}, where r < s < 
k-l. 

We are reduced to the case ,B=jk+l+r+k-l-s, O<r<s< 
k - 1, B = D&z, /3 + k - s) - Xl . We now claim that t = (j, 0 ,,.., 0, r) 
can be replaced in B by w = (j - I, k - I ,..., k - I, s) without increasing 
1 A A B 1. For any a E A, consider elements that might be added by the 
replacement, namely z = a A w. If z K w, we have z E B, so z = a A z is 
already present in A A B. The remaining possibility is a A w = w, in which 
case a > w. Since r < s, c(i) < $1~) < C(a). Applying the argument of the 
preceeding paragraph symmetrically to A and fi, we see that for this to 
happen A must have some element u with u > t. That guarantees t E A A B, 
since t = u A t. Replacing t by w in B replaces t by w in A A B, resulting in 
no net change. Repeating this procedure k - s times transforms B into 
Dk(n, /3), which completes the proof. fl 

We note that theorem 4 can be proved by another argument in which 
elements of B are “pushed” towards elements of the same rank but smaller 
lexicographic value, while those of A are pushed toward Iarger lexicographic 
values. Always this is done without increasing 1 A A B 1. This efficacy of 
both proof by induction and proof by “pushing” toward the desired set 
occurs frequently in extremal set theory. 

Now, suppose we have an arbitrary product of chains with sizes k = (kl ,..., 
k,J By convention, put k,, = kn+l = 1. If we let vk(c) = ~~Z1(~~~Z~l kT) cl 
and fik(c) = ~~=1(~~~~ ky) et , we can still define C(k, a) and D(k, /3) as the u 
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and ,B elements of the Iattice with smallest values under 17 and ZP , respectively9 
When the ki are all equal, these reduce to the definitions in theorem 4. Most 
of the argument of theorem 4 holds in this more general setting. Elements 
differeing by one under 0 still differ in every place only when x = (j - 1, 
k2 - 1, k2 - l,..., km - 1) and y = (j, O,..., 0). creating sets YP and XS as 
before, it is still possible to replace the largest element of YP by the smallest 
element of XS without increasing A A B. However, d8erent orderings of the 
ki may produce different values of 1 C(k, a) A I@, @I. This fouls up the 
induction step. Depending on a and /I, the best ordering of the chains may 
vary. The simplest example has n = 2, & = 2, & = 3. Here C(k, 2) = 
{OO, 101, C(k, 3) = {OO, 10, 011, Qk, 3) = {OO, 01, 021, and D(k, 4) = 
{{OO, 01, 02, IO]. If on the other hand ki = 3 and ,%h = 2, then C(k’? 2) = 
C(k, 21, C(k’, 3) = {OO, 10, 201, LI(k’, 3) = C(k, 3) and Qk’, 4) = {OO? 01 9 
IO, 111. Now note that C(k, 2) A II(k, 3) = {OO] and C(k, 3) A D(k, 4) = 
{@, 10, 011, but c(k’, 2) A L)(k’, 3) = {OO, 101 = C’(k’, 3) A D(k', 4). k is 
preferabie for (a, /3) = (2, 3), but k’ is preferabIe for (a, fi) = (3, 4). In 
general, we conjecture that a permutation k can be determined as a fnnction 
of a and @ SO that C(k, E) and II(k, /3) wiI1 minimize [ A n B 1. IfsB equals or 
is “slightly” less than a multiple of a product of certain chain sizes (where /3 
divided by that product is as small as possible) let those chains be the right- 
most components, decreasing in size from the &h toward the Ieft. If other 
chains can be chosen similarly for a, let G&e chains be the @-most compo- 
nents, decreasing in size from the left. The remaining chains, if any? occupy 
the middie in some convex distribution. Details and conflicts in the above 
procedure have yet to be resolved. 

We now return to products of equal-length chains and analyze the accuracy 
of ~ A 1 1 B \/I L 1 as a lower bound on 1 A A B 1. 
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and, finally, 

0 < c&z, cx 2 /3) < kc 
‘4 

- 

ProojI Before proceeding, we note some additiona reIations and boundary 
values that are obvious. Namely, 

(7) is the recursion on which all of this analysis rests. From theorem 4, 
we have ,u&, CL, ,8) = 1 C&r, a) A D.&z, @I. Put E = C A D, and define 
ETj as usual, so that TV&, LY, /3) = 2;:: 1 Eni 1. We will establish the recursion 
by determining the sets in E%j. 

Recall Enj = C%j A Dnj, since C and D are ideals. If 0 <j <p, C&j is the 
entire sublattice on the first n - I components, with ndz component j, so 
Enj = CSj A D%j = D%j. 1 DBj / = [(/3 -j)/k], since the first element of 
Dni is encountered when /3 = j + 1, and thereafter one is added for every 
increase of k in /3. This yields the last term in (7). If j > p, Eni = !a since Cnj 
is void. We need only show 1 Enp / = &n - 1, LX - pk*-I, [@ - p/k]). Again 
we are in a copy of the sublattice, Em P = CmP A Dmp, 1 Dap 1 = [/3 - p/kl, but 
now the only things in Cnp are the “excess” after the first pk*-1 elements. 
They are the first a - pkn-l elements in a copy of the sublattice. In fact 
C%j = gni(Ck(n - 1, ti - pk+l)), Dni = gaj(Dk(n - 1, I@ - p)/kj)), which 
gives us the recursion. 

(8) follows from (7). Treating the summation in (7) as vacuously 0 if 
p = 0, we have 



MFiETS BETWEEN SUBSETS OF A LATTICE 145 

We must evaluate the last three terms above. Suppose /3 = r i- mk. We have 
two cases. If 0 < r < p then l/3 -p/k] = m and ZyIi #I - j/k] = r(m -i- 1) + 
(p - r)m = pm + r, so the last three terms sum to 

pm + r + (a - +‘+Y BT - 4r ;tmQ = 
km-1 !, (1 - $T). 

0n the other hand, suppose p < r < k, Now [fl -p/k]=m+l and 
zyzi f(,& - j)/k] == p(m + l), so those terms sum to 

Combining the cases, we have (8). 
(9) follows by induction from (8). For rz = 1, ,&l, !x, p) = rnin(a> ,Q. 

So, 4L tk - CL, k -/3) = min(k - CL, k - /3) - (k - a)(k - /9)/k = 
min(k - CX, k - /3) - k + a + /3 - a/I/k = tin(~~, fi) - @k = 
~~(1, LX, /3). Suppose n > 1, and p as before. Then (k - p) k%-l > kn - CY > 
(k - p - 1) k+-l. If /3 = r mod k, then kn - ,I3 s (k - r) mod k. Sugose 
tist that E # (p + 1) ks-l. We use --[-x/k] = 1(x + k - 1)/k] = [x/k], 
(8), and the induction hypothesis to show 

(k - r) (1 - k’kT CL J; O<k-r<k-p-1 

[k - (k - r)] t knkT cx ); k-p- l<k--r<k 
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If, on the other hand, cx = (p + 1) k-l so that !P - E = (k - p - 1) k+1, 
we use (12b) to find 

Q<k-r<k-p-1 

k-p-l<k-r<k 

p+2<r<k 

r(I-q-q; o<r<p+2 

+ 
i”(l-+.); 0<r<p+1 

(k - r) * ; p+l<r<k. 

For r = p + I, ~(1 - (p + 1)/k) = (k - r)(p + 1)/k, so the last line is 
again ek(n, fx, p). 

(10) follows directly from (9): 

~~(79, k@ - N, k* - /9) = c7&7, kn - a, k* - ,!3) + (kn - &likn - F) 

4 = 4~ a, PI + .ks - c-i - ,b + F 

= p&z, a, /!I) + kR - cx - ,8. 

Finally, we come to (11). The lower bound on Q follows from theorem 1. 
For the upper bound, we examine the additive term in (8). If 0 < r < p, 

Ifp <r ck, 

(k - rj 5 < Uc - P - l)(P + 1) 
k? k 

These are maximized when p (resp. p + I) equals k/2, and never exceed kf4. 
There are E such additive terms, since we may set ~(0, a, p) = 0, so 
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C&Z, CX, /3) < kn/4. When k is odd, integral p cannot equal k/2, and we have 
the shghtly sharper &z, a~, p) < ((k - l/k)~1.)/4. 

If ,l3 = Y + mk, the derivation of (8) shows we can rewrite (7) and (8) as 

(9) and (10) are not surprising, because of the duality between meets of 
ideals and joins of filters. (1 I) is “asymptotically” best possible as a uniform 
bound for all (IX. /3), as seen in theorem 7. However, refinements to the basic 
argument for (11) yield better bounds for particular pairs (a, /3). 

For example, instead of pk%-l c a < (p + 1) k+l, let us define p and q 
by pka -C a < (p + 1) kg, where q is the smallest possible. Writing cx as a 
baclcwards k-ary number with n digits, the largest component with a non- 
zero entry is the (q + l)~& respresenting pkq. Now we base the recursion on 
that cumponent, rather than the last. The same argument used for (7) leads to 

Note that now p = 0 ody if q = 0, a = 1, m which case p = 1, .S = I - 
,6/kn so we may disregard that possibility. For an analogue to (8) let us 
suppose p = r + rnk+q, 0 < r -=c k+Q. (7b) leads to 

+ (a - pkqN@ - pkn-l-qYkn-al $ 
kq 

The two cases we must consider in evaluating this are 0 < r <pk”-l-‘~ and 
pk%-1-q c r < kn-q. In the former case let r* A [r/kN-l-*j. Then calculations. 
like those used to prove (8) yield 

r*-2%. + k* ’ 

(k--q - r) -$- ; 
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To obtain an analogue to (II), we bound the size of the additive terms 
above. 

The former is maximized byp = (k + 1)/2, the latter by p = (k - 1)/2, but 
in either case the maximum is (k + l)z/4k. We get a non-zero contribution to 
E for each non-zero term in the k-ary expansion of E. Recalling (9) and (12a), 
let qEfl be the minimum number of non-zero components in the k-ary expan- 
sions of CX, /3, kn - CY, and kn - /3. Then 

This bound is stronger than (1 I) when T < nk/(k + 2), and can be improved 
for even values of k by dropping l/k from the numerator. 

Another bound can be obtained by examining the additive term in (7a). It 
equals JVB + min{r, pj. Doing the recursion successively for all components, 
J.L < ZTzl(pirni + pi), where pi , rn$ are p, m as determined when dropping 
the ith component. Now, rniks+l-$ < fl for all i, and ~~clpik~-l = a. Let 
p(a) = z,p< be the sum of the components in the k-ary expansion of CX. Then 

If pa5 = min{p(c$ p(p), p(kB - IX), p(k= - /3)], then we have 

In general, there is a lot of slack in this bound, since it yields a uniform bound 
of(k - l)rz/2, which compares unfavorably with kn/4 unless k = 2. However, 
it yields good results for particular cases, and could be especially useful for 
applications to Roolean aIgebras (k = 2), where as a uniform bound it is 
best of the three bounds presented. 

No examples have been found which achieve any of these upper bounds. 
Theorem 6 discusses when the lower bound G = 0 given by theorem 1 can be 
attained. Theorem 7 exhibits several classes of (n, CX, p) with large Q , some of 
which appeoach knl4. 

THEOREM 6. In the terminology oj” theorem 5, q&, rx, j?j = 0 if add only 
$(i) ap is a multiple of k* and k divides both E and & or (ii) trivially, E or ,B 
is kn or 0. 
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ProoJ If a or p is kn or 0, we apply (12). So assume 0 < k < kn, 0 < p < 
k%. ~(n, R, p) will vanish if and only if the recursive term and the additive 
term in (8a) both vanish. The additive term vanishes iff /3 = mk and r = 0. 

Assume it does. For n = 1 this suffices to prove the claim. We proceed by 
induction on E. The induction hypothesis says the recursive term &z - 1, 
a - pk+1, m) vanishes iff k divides the last two arguments and kn-l divides 
their product, or one of them is 0 or kn-l. Asp is defined, u - pkn-l is never 
zero. It is k+1 iff k*-1 1 ti and k” 1 a& since ,i3 = mk. m is 0 or k&-l iff F is 0 or 
kn. Finally, k 1 o! - pk+l ifF k 1 a, and k%-l] (a - pkn-l)rn iff kn 1 (a - 
pk+l) mk iiI ke \ e&l. 1 

The result in [3] does not improve these results because of the way in 
which A and B can be chosen to minimize 1 A A B 1. If a/3 > kn then 
1 A v B 1 = [ ,C, 1 and any derivable bounds are the same. 0n the other hand, 
if @ < ka then 1 A A B 1 = I and 1 A 1 1 B //I A v B 1 is exact only when 
lAlor/B]isl. 

THEOREM 7. De$ne sequences {a%], {bJ, {c-j, {d%] as follows: 

a0 = 1; a% = 2N - anvl , n > I 

kQ - I en = 2 
b n ~ kn-1 

k-l +’ d%=$-t;;;]. 

Aho Zet rk = (k - 2)/(k - 1) Grid So = k/(k - I). Then 

ProofI (13)-( 16) were derived by using the method of generating func- 
tions to solve the recursion relations that arise. Qnce known, however, 
they are much more easiIy verified by induction. When n = 0, the light sides 
above all vanish, so the theorem holds trivialIy. For the induction hypothesis, 
we assume it holds for smaller values of n. 

Let us first consider (13). {an} is a we&known sequence whose applicaticms 
are referenced in [8]. We have four equivalent recursive definitions of aa : 
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To prove the last from the third, for example, we have by induction ati+ = 
2anwz + &-I)+1. Substituting 2asvx = a+l - (-1)%-l in am = a+l + 
2anwz yields the desired result. We note that 2%-l < an < 2n for n > 1 and 
every an is odd. Furthermore, 

9an-l - 3 * 2m + 2(-l)% = 6(amvl - 2+l) + 3anvl + 2(- l)a 
= -6a+z + 3anel + 2(-l)% 
= 3(-1)+1 + 2(-l)n = -(-l)n 

and 

IVe him 46 a2bd , a%) = c2(n - 1, azL(n-luz~ , an-d + an-l/2n. This 
follows from (8) and the above whether n is even or odd. 

= cz(2m - 1, azmw2 , a2d + * . 

Now we complete de induction. 

-3 .2m + 2(- l)* + 9a+l z=z-- 
37+ 9 - 2n 
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(l4), (15), and (16) are verified m the same manner as (13), but with fewer 
preliminaries. In each case, we show that the recursive term arising from (8) 
is just the preceding term in the sequence, after which computation completes 
the induction. 

Consider (14). b,, = (k% - l)/(k - I) + 1 = 1 -+ x:L: ki. We note 
kn-l < b% < 2k - nlsop= 1, also bm - k+i = bs-I , bn = 2 mod k, and 
Wn - l)/kl = b&k > 2). We shall also need 

(k - 2) bn - (k - 1) $ = &km - 1 -t k - 1 - k + 21 = rkk%. 

Now to complete the induction, 

Consider (15). ((k - 1)/2) k-l < (km - 1)/2 < ((k + 1)/2/ km-l, so p = 
(k - 1)/2. (km - 1)/2 = (k - 1)/2 x;:; kt, so C~ - ((k - 1),/2) kn-l = ~n-~ 
and cfi ZE (k - I)/2 mod k. Also I(c~ - (k - 1)/2)/k] = cfiMl, so we can 
complete the induction with 

+ 

Similarly for (16) dm = k/2(@? - l)/(k - 1)) = +gLi P. (k/2) k*--l x 
da < (k/2 + 1) k*--l, so p = kJ2. Also, we have dm - (k/2) km--l = dB-.I, 
dn = (k/2} mod k, and J(dn - k/2)/k] = dsWI . We shall need the following 
computation. 
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kz k2 
= 

2k(k - 1) 
- 4kn(k - 1) 4(k - 1) + 4(k - I) 

k2 k(k - 2) 
= 4k*(k - 1) + 4(k - 1) = 

sk2(k - 1) 
4kn +L5 4 

Finally, to, complete the induction 

Note that for k = 3, b% = 3%, so by (9) &z, bTh, b,J = &z, cn , en). 
Similarly, for k = 4, bn + dn = 4% and +z, bm , b,J = q(n, dn , dJ. {c~} 
and {d,J are attempts to realize the worst case behavior described in the proof 
of (11). As k and a become large they achieve it asymptotically. When k = 2 
and we have the lattice of subsets of a set, there seems to be some essential 
difference. It would be interesting to know if, in fact, the values of CE and /3 
for which + is maximized are {a@} (k = 2), {en) (k odd), and {&} (k even, 
k >2). 

4. RELATED RESULTS 

In this section we obtain two related results. They follow from the inequali- 
ty (1) of the introduction and can be subjected to analysis like that of the 
preceding section. 

Hilton [6] proved that if A and B are subsets of a Boolean algebra each 
containing no element and its complement9 and if no element of A is related 
to any element of B, then 1 L! u .Z3 1 < $1 L 1, We generalize this, giving a proof 
different from his. We shall need a lemma about intersections of filters and 
ideals, for which we introduce additiona notation. 

For a subset C of a Iattice, let UC and IC denote the filter and the ideal 
generated by C. That is, UC = {c EL: Ela < c, a E C}, K’ = {c c L: Eta > c, 
a E Cl. Clearly, C C UC n 1C and in fact UC n 1C is the smallest compact set 
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containing C. 3y a polarity CJ of a lattice we mean an order-reversing bijection 
whose square is the identity. That is, a < b implies ub < ua and u(ga) = a. 
Complementation, for example, is a polarity. We may call Da the “polar 
image” of a. 

LEMMA 2. Suppose L satis5e.s (I) and has apolarity u. Then for any C C L, 

1 c 1 < 1 UC r-3 u(uC)j \ c J sz 1 zc n Z(uC)l 

Proof. We first note 1 24(0C)J = 1 1C 1, since u(&) = {a: a > uc? c 6 Cl = 
{a: ~0 < c, c 6 Cl = {a: ua E LC]. Using (1) and (2), we then have 

I~IICI <lLlluCn~Cl ~lucllzcl 
= 1 UC 1 1 u(uC)I < 1 L 1 1 UC n u(uC)] 

and similarly for 1 iC n l(uC)j. 1 

This leads to 

THEOREM 8. Suppose L is a jinite lattice with a polarity u, in which (1) 
holds. Let r be the number of nontrivial orbits of u (i.e,, unordered pairs 
{e, uej where e + ue). If A ad B are subsets of L each containing no element 
and its polar image, and if no element of A is related to any element of B, then 

FrooJ Let iri be the set of non-trivial orbits under cx which have i elements 
in A u B. Clearly, 

57 = I ro I + I =I I + I r2 I 

so to prove the theorem it suffices to show 1 r2 1 < ] 7r,, 1. Let C be the subset 
of A whose polar images lie in B, and let D be the subset of & whose polar 
images he in A. clearly D = oC. By lemma 2, it suffices to show that 1 C 1 = 
i rs J and 1 UC n &I 1 < J r. 1. Each element of C is contained in exactly one 
pair in zz, and every element (pair) of rz contains exactly one element of C, 
so[7r2l=~C[=[Dj. 

To prove J UC n UD 1 < 1 v. 1 we will exhibit a distinct pair in z-~ for each 
element of UC I-I uD. If d E UC then there is an a G C with a < d, and &XI 
ud < ua ED C B. Since no elements of A and B are related, d+ B and 
ud # A. For the same reason we cannot have a < d = csd < ua, SO d # ud. 
Similarly, if de &I, then d $ A, ud # B, d # ud. Thus if d is in both UC and 
uD, then {d, ud] is in no. Now suppose d, d’ e UC n uD both give rise to the 
same pair in no . That is, d # d’ but ud = d’. d, ud E UC implies there are 
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al , a2 E C with al < d and a2 < gd. This leads to a2 < od < oaI E D, which 
contradicts the hypothesis about relations between elements of A and B. 
This proves 1 UC n uD 1 < J v. 1 and establishes the theorem. 8 

We may form a set A by taking one element from every non-trivial orbit 
under 0, so that J A J = rr. Taking this A and B = @ shows that the theorem 
is best possible. When L is a Boolean algebra and G is complementation, we 
have Hilton’s result. He exhibits other sets which achieve the bound. If A 
consists of all subsets of cardinality at most h containing the element j and B 
has the subsets of cardinahty at least h not containingj, then A and B satisfy 
the conditions of the theorem and 1 A 1 + 1 B 1 = zfZi(%~‘) + ~~I~(~‘) = 
2%-l. As in the preceding section, we can ask several questions: for tied 
1 A 1 = a how big can B be satisfying the conditions of the theorem, what A 
and B achieve this maximum, for which E is their union of size z-, and for 
which a is their union farthest from 7r ? 

For our final result we return to products of chains. The restriction of this 
theorem to a Boolean algebra was proved by Hilton as corollary 2 of his 
result in [6]. We define a binary operation + on elements of such a lattice to 
be their sum as vectors, a + b = (aI + bI ,..., an + b,J. Let ki be the length 
of the ith chain. Note that a + b E L if ai + b< < ki for ah i. If on the other 
hand, aI + bI > ki for all i, we say that the pair {a, b] escapes L. We have 
the following 

THEOREM 9. Suppose A is a subset of a product of chains L and the sum of 
any two eIements of A neither Iies in L nor escapes L. Then 1 A 1 < # L 1. 

ProoJ Viewing the lattice as a multiset with bounded multiplicities k: 
define the complement a of an element a = (aI ,..., a%) by Z = (kI - aI ,..., 
km - a& We claim neither uA nor IA can contain both a and a for any a. 
If a, Z E uA, then for any aI , a2 G A with aI < a and a2 < 2, (aI + aa lies in 
L. Similarly, if a, Z E IA, then for any aI , a2 E A with aI > a and a2 > a, 
(til + aJ escapes L. Complementation is a polarity, so ] UA ] < 4 1 L 1, 
1 IA 1 < # L 1. Applying (1) we have 

as required. a 

A product of chains of lengths kI ,..., kn is isomorphic to the lattice of 
divisors of an integer N = p$p% a.* p?, where the pi are distinct primes. 
a + b in the lattice of multisets corresponds to a * b in the lattice of divisors. 
a + b EL means ab 1 N and a + b escapes L means N2]ab 1 N. So, the 
theorem states that a collection A of divisors of N for which ab f N, N2/ab f’ N 
whenever a, b E A contains at most one-quarter of the divisors of N. 

If there is only one chain, A can have no elements. If there are two or more 
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chains and at least two have odd length, say i and j, then theorem 9 is best 
possible, Le., the bound is achievable. A may include, for example, all 
eiements 0 with Us c kJ2 and u$ > kJ2. If there is exactly one chain of odd 
Length, the theorem is almost best possible. Order the chains so that kl is odd, 
ks < ks < .‘* < kTx are even. For all i with 2 < i < n, let & = {LZ E L: @I < 
kJ2, CQ > kJ2, and LZ~ = kJ2 for all 2 <j < ij, and let A = uyZ2 & . Then 
A satisfies the conditions and 

Computation shows this to be close to & 1 L. \ = 4 nTzl(ki + I). Another 
possibility would be a maximum-sized subset such that for all u E A, (i) ul < 
kJ2, (ii) xysZ .LZ~ 2 4 sZZ ki , and (iii) (a1 , kz - a2 ,..., kB - an) 4 A. When 
N is a square we do not know the best bound for 1 A4 J. Perhaps it can be 
generated as in one of the examples above, with one set of components 
providing high values and the remainder providing low values. 

The case of theorem 9 in which N is square free has been proved in different 
ways by LOVE&~, by Seymour, and by Sch6nheim (see [5]). Also, that case has 
been generalized in different directions by Anderson [l] and Franked [3]. 
FinaIly, if the lattice is of subsets of a set, cz + b $I L means a n b + B ~ 
while cz + b not escaping L is the same as a u b # {l,..., IZ>~ For a product of 
arbitrary ‘chains, let us say a intersects b if a + b $ L, and a self-fntemecting 
family is a subset A where G + b .$ L whenever a, b E A. It would be interesting 
to generalize [7] to products of arbitrary chains and determine in that setting 
the maximal size of the union of k self-intersecting families. 
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