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Abstract

There has been a marked increase in the use of the discrete element method (DEM) in geomechanics in recent years. The way in which DEM
simulations are set up can have a noticeable influence on the observed response. The conditions for quasi-static shearing in DEM simulations of
granular materials were studied here within the critical-state framework of the soil behaviour. Thirty-two constant-p0 triaxial simulations were
carried out from which the critical-state relationships were defined in the void ratio-mean effective stress and deviator fabric-mechanical
coordination number planes. Clear trends were observed for the void ratio, the coordination number, and the deviatoric fabric at the critical state
as the inertial number, I, was varied. The critical state relationships were aligned along distinct loci for each value of I. The critical state
framework was used to show that there is an upper bound to the I values below which the simulation is quasi-static and that the observed
behaviour is independent of the strain rate. The parameter I was shown to be a useful measure for assessing the quality of quasi-static DEM
simulations.
& 2016 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Significant, fundamental insight into the mechanics under-
lying the observed complex, non-linear response of granular
materials can be gained via numerical simulations using the
Discrete Element Method (DEM) (Cundall and Strack, 1979).
Under quasi-static conditions, there is no strain rate depen-
dency. Therefore, establishing general guidelines for the strain
rate and material properties required to accomplish this is
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important. Cundall and Strack (1979) suggested that in order to
achieve quasi-static conditions, a strain rate should be chosen
such that the inertial forces are smaller than the contact forces.
In practice, however, a parametric study is often carried out to
select the strain rate below which a consistent response is
obtained. Many published research studies do not clearly state
the value of the adopted strain rate. Hanley et al. (2013)
showed that there is a clear sensitivity of the stress–strain
response of constant-volume DEM simulations to the strain
rate; thus, it is evident that attention should be paid to this
matter.
The transition from the quasi-static regime, where the

inertial effect is negligible, to the dynamic regime, where the
inertial effect is significant, has been studied widely both num-
erically (MiDi, 2004; da Cruz et al., 2005; Hatano, 2007;
Elsevier B.V. All rights reserved.
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Notations

d particle diameter
D dilatancy D¼dεv/dεq
e void ratio
e0 initial void ratio
ecs void ratio at the critical state
G particle shear modulus
I inertial number
p0 mean effective stress
p00 mean effective stress after isotropic compression
q deviatoric stress
Zm mechanical coordination number
Γ intercept of the critical state line in the e� (p0/

pa)
0.7 space with axis p0 ¼0

_ε strain rate
ε1; ε2; ε3 major, intermediate and minor principal strains

(ε2¼ε3)
εν volumetric strain
η stress ratio η¼ (q/p’)
εq shear strain εq¼2/3(ε1�ε3)
λ slope of the critical state line in the ecs� (p0/

pa)
0.7 space

m inter-particle friction coefficient
ν particle Poisson’s ratio
ρ particle density
s01; s02; s03 major, intermediate and minor principal

stresses (s02¼s03)
(Φ1�Φ3) deviatoric fabric
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Fig. 1. Particle size distribution of numerical samples compared with
laboratory data for Toyoura sand.
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Agnolin and Roux, 2007; Peyneau and Roux, 2008; Koval
et al., 2009; Radjai and Dubois, 2011; Gimbert et al., 2013;
Azema and Radjai, 2014) and experimentally (Kuwano et al.,
2013). Many of these studies used a dimensionless parameter
called the inertial number, I ¼ _εd

ffiffiffi
ρ
p0

q
; to identify different flow

regimes, where _ε is the shear rate, d is the mean size of grains
in the assembly, ρ is the grain density, and p0 is the mean
effective stress (da Cruz et al., 2005). I quantifies the inertia
effects by considering the ratio of the inertial forces to the
imposed forces. Small values for I correspond to a quasi-static
regime, intermediate values for I indicate a dense flow regime,
and large values for I indicate a collisional dynamic regime (da
Cruz et al., 2005). Prior studies have focussed on determining
the characteristic values for I that separate these quasi-static,
dense flow, and dynamic regimes, often using plane shear
tests. For example, the boundary between the quasi-static
and the dense flow regimes varies between Io1e�4 and
Io1e�1 (Macaro and Utili, 2012; Kuwano et al., 2013). The
objectives of this study are to extend these findings from a soil
mechanics perspective by investigating the effect of I on the
critical state locus (CSL), at both macro and particle-scales,
and to propose an upper limit for I that defines the quasi-static
state regime when simulating soil mechanics element tests.

DEM simulations of triaxial tests under a range of initial
densities and confining pressures were performed. In each simula-
tion, I was maintained constant throughout the shearing stage.
Critical state lines in the e� (p0/pa)

α plane were identified for each
I value considered. The critical state relationships were also
explored at the particle scale by considering the coordination
number and the deviatoric fabric.
2. DEM simulations

Three-dimensional simulations were conducted with a modified
version of the open-source code LAMMPS (Plimpton, 1995). The
particle size distribution (PSD) of the numerical assemblies (given
in Fig. 1) approximates that of Toyoura sand (Huang et al., 2014a).
An initially non-contacting cloud of 10,624 particles, enclosed by
periodic boundaries, was generated and then isotropically com-
pressed to various combinations of void ratio and stress state, as
summarised in Table 1. The initial density was controlled by
changing the inter-particle friction coefficient (m) during the
isotropic compression stage. After the target isotropic stress had
been reached, the specimen was then subjected to numerical
cycling until p0 and the number of contacts became constant,
indicating equilibrium. μ was subsequently changed to 0.25 which
is the value used during shearing. Additional cycles were
performed in order to ensure equilibrium before shearing was
commenced. Four samples were created at confining pressures
ranging from 100 kPa to 5000 kPa with the void ratio ranging
from loose to medium dense.
Following isotropic compression, the samples were sheared

under constant p0 conditions which gave a constant value for I



Table 1
Summary of constant-p0 triaxial simulations.

Strain rate (1/s) , dε1/dt and dε3/dt for different I and p0

p' (kPa) e0 I¼5e�1 I¼1e�1 I¼5e�2 I¼1e�2

dε1/dt min dε3/dt max dε3/dt dε1/dt min dε3/dt max dε3/dt dε1/dt min dε3/dt max dε3/dt dε1/dt min dε3/dt max dε3/dt

100 0.616 500.7 �898.1 �264.2 100.1 �182.3 �50.4 50.1 �88.6 �24.6 10.0 �18.1 �4.9
1000 0.611 1583.2 �2938.8 �830.8 316.6 �572.2 �153.8 158.3 �289.5 �77.0 31.7 �55.4 �15.3
2500 0.649 2503.3 �4488.4 �596.6 500.7 �858.1 �140.9 250.3 �430.7 �73.6 50.0 �89.2 �14.9
5000 0.596 3540.2 �6145.9 �1884.4 708.0 �1228.1 �358.2 354.0 �621.7 �178.6 70.8 �121.4 �35.9

I¼2.5e�3 I¼1e�3 I¼7.5e�4 I¼5e�4

dε1/dt min dε3/dt max dε3/dt dε1/dt min dε3/dt max dε3/dt dε1/dt min dε3/dt max dε3/dt dε1/dt min dε3/dt max dε3/dt

2.5 �4.6 �1.2 1.0 �1.8 �0.5 0.8 �1.4 �0.4 0.5 �0.9 �0.2
7.9 �13.4 �3.8 3.2 �5.8 �1.5 2.4 �4.1 �1.1 1.6 �2.9 �0.8
12.5 �22.3 �3.8 5.0 �8.7 �1.5 3.8 �6.4 �1.1 2.5 �4.4 �0.8
17.7 �30.1 �9.0 7.1 �12.4 �3.6 5.3 �9.1 �2.7 3.5 �6.1 �1.8

*dε1/dt constant during shearing stage. **dε3/dt variable during shearing stage.

Fig. 2. Representative sample under loading conditions for constant p’
simulations.
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throughout the shearing process, where I was calculated using
the strain rate applied in the direction of the major principal
stress (_ε1). _ε1 was specified to give eight different values for I
ranging from 5e�4 to 5e�1, as shown in Table 1. A servo-
control algorithm was implemented that determined the _ε3
needed to maintain constant-p0 conditions; and thus, _ε3 varied
during the shearing stage. The minimum and maximum strain
rates in the direction of s03(_ε3) are also included in Table 1. If
_ε3 were considered in the definition of I (i.e., the absolute
value for _ε3), it would not be possible to keep I constant
throughout the shearing stage. In previous contributions (i.e.,
MiDi, 2004; da Cruz et al., 2005), the definition for shear rate
corresponds to the strain rate in the loading direction (_ε1), as is
adopted in the present study. The loading conditions applied to
the system are shown in Fig. 2. A simplified Hertz–Mindlin
contact model was used with a shear modulus (G) of 29 GPa, a
particle Poisson’s ratio (ν) of 0.12, and particle density (ρ) of
2650 kg/m3. A local damping coefficient of 0.1 was used in all
the simulations and gravity was not considered in these
periodic cell simulations.

The input values adopted for the shear modulus and Poisson’s
ratio are consistent with the range in elastic properties for quartz
(Simmons and Brace, 1965). Similar values for Poisson’s ratio
have been used in other studies (Ng, 2009; Huang et al., 2014a).
For real quartz particles, the friction values are in the range of
0.12–0.35, as was observed by Senetakis et al. (2013). Further-
more, it was reported by Huang et al. (2014b) that using an
interparticle friction coefficient higher than 0.5, together with a
simplified Hertz–Mindlin contact model, will result in a non-
physical response.

One of the key assumptions of DEM simulations is that particles
are treated as rigid bodies, which are allowed to overlap with other
particles at the contact points. Therefore, all overlaps should be
small in relation to the particle sizes; and thus, a maximum overlap
ratio of 5% can be considered as an appropriate limit, as suggested
by the Itasca Consulting Group (2007).
3. Overall response

Fig. 3(a) and (b) shows the variations in stress ratio η¼q/p’ (q is
the deviatoric stress) and volumetric strain εv, respectively, with the
major principal strain (ε1) for a representative set of simulations
with p0 ¼100 kPa and an initial void ratio (e0) of 0.616. All of
these simulations indicate a material response typically representa-
tive of dense or medium-dense samples. At a given strain level,
both εv and η vary systematically with I. After an initial contraction
during the first 5% of axial strain, samples sheared at higher strain
rates (large I) tend to dilate more. For the case of I¼5e�1, there



Stress ratio against major principal strain ( p’ = 100 kPa, e0 = 0.616) 
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Fig. 3. Overall response of the numerical sample for various values of I.
(a) Stress ratio against major principal strain (p0 ¼ 100 kPa, e0 ¼ 0.616).
(b) Volumetric strain against major principal strain (p0 ¼ 100 kPa, e0 ¼ 0.616).
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is no initial contraction and the samples dilate throughout shearing.
Samples sheared with Ir2.5e�3 give indistinguishable volu-
metric responses reaching the same value of εv at the critical state.
Referring to Fig. 3(a), both the peak and critical state values for η
decrease as I decreases. Although some fluctuations are present,
samples sheared with Ir2.5e�3 show a very similar response in
η both at the initial peak and at the critical state. A similar
dependence of εv upon I was found for all other p0 values.
However, the response characteristics at higher stress levels were
close to those of loose samples.
Fig. 4 presents the variation in η with dilatancy (D¼dεv/dεq) for
the case of p’ ¼100 kPa and e0¼0.616 in Fig. 4(a) and for the
case of p’¼5000 kPa and e0¼0.596 in Fig. 4(b). D was calculated
from the total strain using a central-difference approach (Been and
Jefferies, 2004) and considering the elastic strain components to be
negligible. The figures show a consistent response with higher η
attained at negative values of dilatancy regardless of I. For the two
levels of p’ considered, the stress–dilatancy relationships are
indistinguishable for simulations with Ir2.5e�3.

4. Critical state response

4.1. Macro-mechanical response

Fig. 5(a) illustrates the variation in the critical state η value
with I; each η value was obtained from a set of five
simulations, each set having different p’ values. It is clear that
when I41e�2, η increases as I increases; however, η is not
sensitive to I for values of Ir1e�2. These data agree with
prior 2D (da Cruz et al., 2005) and 3D planar shear simulations
(Azema and Radjai, 2014). Fig. 5(b) shows the variation in ecs
(the void ratio at the critical state) with I for the p’ values
considered. For a given p’, the value of ecs remains almost
constant when Ir2.5e�3. However, ecs increases with I
when I42.5e�3. Fig. 5(c) gives the ecs� (p’/pa)

0.7 relation-
ship; the data for each I value are seen to follow the linear
relationship suggested by Li and Wang (1998), i.e., ecs¼Γ�λ
(p’/pa)

α, where Γ is the intercept of CSL, λ is the slope of the
CSL, pa is atmospheric pressure (101.325 kPa), and the α
value of 0.7 suggested for Toyoura sand by Li and Wang
(1998) is used. Note that each data point was taken as the
averaged value for e and p’ over the last 10–20% of axial strain
due to the fluctuations in the load–deformation response. The
CSLs move downwards with decreasing I when IZ2.5e�3,
and the CSLs do not vary noticeably when Ir2.5e�3. The
CSL parameters, Γ and λ, are presented in Fig. 5(d) for the
different sets of simulations. Both Γ and λ decrease with I and
constant values for Γ, and insignificant variations in λ can be
observed for samples sheared at Ir2.5e�3.

4.2. Micro-mechanical response

In an attempt to understand the physical basis for the
variation in sensitivity of the overall load–deformation
response to I, two particle-scale parameters were analysed.
The structural anisotropy (fabric), using the fabric tensor
defined by Satake (1982), is

Φij ¼ 1
Nc

XNc

1

ninj ð1Þ

where Nc is the total number of contacts and ni is the unit
contact normal. The largest, intermediate, and smallest eigen-
values of the fabric tensor are denoted as Φ1, Φ2, and Φ3

respectively. The deviatoric fabric, Φ1�Φ3, describes the
degree of structural anisotropy. A second parameter is the
mechanical coordination number (Zm) defined as the average
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Fig. 4. Stress–dilatancy relationships (a) Stress-dilatancy relationship
(p0 ¼ 100 kPa, e0 ¼ 0.616). (b) Stress-dilatancy relationship (p0 ¼ 5000
kPa, e0 ¼ 0.596).

J.C. Lopera Perez et al. / Soils and Foundations 56 (2016) 152–159156
number of contacts per particle excluding “rattlers” with zero or
one contact (Thornton, 2000). As reported by Thornton (2000),
samples at the same stress level with differing initial densities
tend towards a unique Zm at large strain levels. For this data
set, (Φ1�Φ3) tends towards a unique critical value at large
strain levels; this is in line with the observations of Guo and
Zhao (2013). Fig. 6(a) shows (Φ1�Φ3) against Zm at the
critical state for different values of I. A linear relationship
between (Φ1�Φ3) and Zm is observed in all cases of I. It is
also evident in Fig. 6(a) that the loci move downwards with
decreasing I, converging towards the same values at
Ir2.5e�3. These data indicate that when the structural
anisotropy is higher, fewer load-bearing contacts exist in the
system. The product of (Φ1�Φ3) and Zm gives an indication of
the intensity of the contacts acting in the orientation of the
major fabric relative to that of the contacts oriented in the
minor fabric direction (Maeda et al., 2010). Fig. 6(b) shows
that this deviator fabric intensity depends on I. The data show
that the deviator fabric intensity increases with I when
IZ1e�2. A more constant response of the deviator fabric
intensity (Zm*(Φ1�Φ3)), regardless of p’, is observed when
Ir2.5e�3 showing a critical state structure independent of
the strain rate.

The connectivity, C, which reflects the number of contacts
possessed by each particle (e.g., Shire and O’Sullivan, 2013)
was also considered for all tests. The minimum value of C for
a particle to be considered (statically) mechanically stable in a
frictional system is four (Zhang and Makse, 2005). For this
study, particles with Cr3 are considered unstable. Fig. 7(a)
illustrates the frequency of C for various I with p’ ¼100 kPa
and e0¼0.616. Fig. 7(b) shows the probability of the
occurrence of unstable and stable particles against I for various
values of p’. For I42.5e�3, the proportion of uns-
table particles increases with increasing I. The distribution of
C values is not very sensitive to I for Ir2.5e�3. Thus, it
seems that as I increases beyond 2.5e�3, the mechanical
redundancy of the system is diminished and more particles are
accelerating (i.e., the unbalanced forces / inertial effects are no
longer negligible); and thus, they are not in a state of static
equilibrium.

5. Conclusions

This research has added to previous studies by considering
the sensitivity of the material response to the inertial number
(I) within the critical state soil mechanics framework. Thirty-
two triaxial test simulations were performed in order to define
an upper limit of I for quasi-static simulations independent of
the strain rate. I has been systematically controlled by
specifying different values for the mean effective stress (p’)
and strain rate (_ε), allowing the effect of I to be established.
The data presented here can be used in DEM analyses to help
make informed decisions about the appropriate strain rate for
running DEM simulations of soil mechanics element tests.

A clear dependency of the dilatancy on I was found for
I41e�2, while an indistinguishable response was observed
for the cases of Ir2.5e�3. Considering the macro-
mechanical critical state relationships, only those tests per-
formed at values of Ir2.5e�3 showed a response which is
independent of the strain rate (same CSL in the ecs� (p’/pa)

α

plane). For higher I values, the CSL position depends on I. In
terms of the micro-mechanical parameters, (Φ1�Φ3) and Zm,
the samples again exhibited a response independent of the
strain rate for values of Ir2.5e�3. The data plotted in the
(Φ1�Φ3)�Zm plane showed a linear relationship. A critical
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state structure, as noticed from the deviator fabric intensity,
was also found to be independent of the strain rate from values
of Ir2.5e�3. Similarly, there was a marked decrease in the
number of particles that are statically redundant, i.e., that have
four or more contacts when I42.5e�3.

From the above-described results, it is reasonable to propose a
conservative upper limit for quasi-static simulations of I¼2.5e�3
that includes a strain-rate independent response from both macro-
and micro-mechanical perspectives. This contribution has clearly
demonstrated the sensitivity of the observed stress-deformation
response to the applied strain rate in DEM simulations,while
highlighting the usefulness of considering I as an indicator of
quasi-static conditions when selecting a suitable strain rate.
Choosing a strain rate based on I is more theoretically justifiable
than a trial-and-error procedure that consists of varying the strain
rate until a consistent response is achieved.
The upper limit proposed for quasi-static simulations is con-

sistent with that found in some of the available literature (MiDi,



Frequency plots of connectivity for p’ = 100 kPa, e0 = 0.616 
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J.C. Lopera Perez et al. / Soils and Foundations 56 (2016) 152–159158
2004; da Cruz et al., 2005; Koval et al., 2009; Azema and Radjai,
2014). This newly-acquired data, combined with the existing data
in the literature, seems to indicate that the critical I proposed to
maintain quasi-static conditions is independent of the initial
density, the type of test, and the number of particles. For drained
and constant volume tests, in which p’, and consequently I, vary,
attention should be paid so that the value of I does not exceed the
limit proposed. Guo and Zhao (2014a, 2014b) chose a strain rate
for DEM simulations by considering a value of I below the limit
proposed in this study. As a guidance for conducting conventional
triaxial tests using DEM, it is suggested that the strain rate applied
in the direction of loading should be carefully chosen based on the
Ir2.5e�3 criterion using the expected minimum p’ (i.e., p’0 in a
conventional drained simulation or p’ at the phase transformation
for undrained simulations).
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