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The main purpose of this paper is to prove an existence theorem for the 
difference inclusion 

ui+I - 2ui + uip 1 E CiAUi +fi, i = 1, 2, . . . . 

240=X (1) 

sup{~ui( :i>O}<oo, 

where A is a nonlinear (possibly discontinuous and set-valued) m-accretive 
operator in a Banach space (X, 1. I), {ci} is a given sequence of positive 
numbers, and {fi } is a given sequence in X. 

This problem is of interest because it is the discrete analog of the quasi- 
autonomous incomplete Cauchy problem 

u”(t) E Au(t) +f( t), o<ttco 

u(0) = x (2) 

sup(~u(t)J:t~O}<cq 
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the solutions of which have several remarkable properties [7]. It is also 
related to an optimization problem [6, p. 1683. For more motivation and 
information on the problems (1) and (2) see [l-9] and the references 
mentioned there. 

Since our existence theorem is valid in all Banach spaces, it provides an 
affirmative answer to the question raised on p. 128 of [9], where X was 
assumed to have a strongly monotone duality map. We also include a new 
existence theorem for (a special case of) problem (2). 

We begin by quoting an existence result [9, p. 1231 for the boundary 
value problem 

ui+ I - 2ui + u, ~ 1 E CiAUi +fi, i = 1, 2, . . . . n 
(3) 

where n is a positive integer, {ci : 1 < i 6 n} is given finite sequence of 
positive numbers, and { fj : 1 6 i d H } is a given finite sequence of points in X. 

PROPOSITION 1. Let X be a Banach space and A c Xx X an m-accretive 
operator. Then for each x and y in X and {f, : 1 d id n} c X, the problem 
(3)hasauniquesolution {u,:O<i<n+l}cX. 

As already mentioned in [9], it is clear that in general the difference 
inclusion (1) has no solution even if A = 0 and {f,} E I ‘(XC). It turns out, 
however, that if (1) has a solution for one point x in X, then it has a 
unique solution for all x in X. 

THEOREM 2. Let X be a Banach space and A c Xx X an m-accretive 
operator. If problem (1) has a solution for some x in X, then it has a unique 
solution for all x in X. 

Proof: Let w= {w,: i=O, 1,2, . . . . 3 be a solution to (1) with wO= z and 
sup { I w, / : i 3 0) = K, and let x be another point in X. For each n >/ 1, there 
exists, by Proposition 1, a unique solution U’ to (3) with x = y. Set 
y, = yr = u:- wi, and let J denote the duality map of X. Since A is 
accretive, there is a functional jj E Jyi such that 

for all 1 didn. Hence I Y~I~(~/~)(IJ’,~,I+I?-‘,+~I), Iy,lG 
max 11 ~~1, I yrt+,l), and 

Iu:l<lxl+2K (4) 
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for all n>l and l<i<n. Now let n,<n,<n,, set z.=u~‘-u~~, 
0 < i < n, + 1, and for each such i, let the functional ji E Jz, satisfy 

Since 
(x-Y~x*-Y*)~(IxI-IYI)* 

for all x E X, y E X, x* E Jx, and y* E Jy, we lime 

(5) 

for all 1 < i 6 n, . Therefore 

i~~~lzil~lz~~~l)26~z*+1 -Zk,~k)~~flZk+l12-IZk12) 

for all n,,dk<n,, and 

f 5 (~z~l~Iz~-~l)2~~~z~~+~(2~2(lx~+2K)2~ 
k=no i=l 

It follows, in particular, that 

(n,-nO+l) 5 ((ziI-Izj~~l)2~2(~XI+2K)2. 
i= 1 

But 

(nI-nCl+l) f (Izil-Izi-II)* 
i=l 

=C(nI-nO+l)lnOlnO f (Izil-Izi-II)* 
i=l 

so that 

~L(nlFnO+l)/nO1[ f ~lzil~lzi-ll)]* 
i=l 

= Ch--o+ wb11z?zo12, 

I Zno I * < 2no(l x I + x)*/h - no + 1). 

Since no is arbitrary, we see that uj = lim, _ oD ~7 exists for each i = 1,2, . . . . 
The sequence u = { ui : i = 0, 1, 2, . . . . } is bounded by (4) and solves (1) 
because A is closed. If u = {ui : i= 0, 1, 2, . ...} is another solution of (1) 
then 
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for all i >, 1. Since the sequence { 1 ui - II; I} is also bounded, it must be non- 
increasing. But uO = uO = x. Hence ui = vi for all i and the proof is complete. 

In view of Theorem 2, we can now improve upon Proposition 4 and 
Theorem 5 of [9]. 

PROPOSITION 3. Let X be a Banach space and A c Xx X an m-accretiue 
operator with 0 E R(A). Zf A ts coercive, { ci} is bounded away from zero, and 
(,f;) is bounded, the n problem (1) has a unique solution for all x in X. 

THEOREM 4. Let X be a Banach space and A c Xx X an m-accretive 
operator. Assume that each bounded closed convex subset of X has the fixed 
point property for nonexpansive mappings. If problem (1) has a solution, and 
(f,) and {cil are periodic of period N, then there is a solution of (1) which 
is also N-periodic. 

Turning our attention to the continuous problem (2), we first recall a 
known differentiation lemma and then present a new one. 

LEMMA 5. Let J : X-r X* be the duality map of a smooth Banach space 
X, u : [0, a) +X, and define p : [0, co) + [0, 00) by p(t) = (l/2)lu(t)12. Zfu 
is differentiable, then so is p and p’(t) = (u’(t), Ju(t)) for all t. 

LEMMA 6. Let J : X-, X* be the duality map of a smooth Banach space 
X. Suppose u: [,O, T] -+ X is continuously dtfferentiable, u’ is absolutelUy 
continuous, and U”F L’(0, T; X). Zfp(t) = (l/2)1 u(t)l* and q: [0, T] -+ R is 
defined by q(t) = (u’(t), Ju( t)), then 

(a) q is differentiable almost everywhere; 

(b) j~.q’(r)dr<q(t)-q(s)forallOds<tdT; 

(c) 2p(t)q’(t)>2p(t)(u”(t), Ju(t))+(q(t))*foralmostallt. 

Proof For parts (a) and (b), see the proof of [8, Lemma 2.5-J. To 
establish (c), we first note that by (5), 

IX+YI~-III*-~(Y, ~x)=2 J: (y,J(x+ry)-Jx)dr 

22 j : rC(lx+ryl- lx()/r]‘dr 

22 ‘rC(y,Jx)/lxI]2dr i 0 

= C(Y? JxMxl12 
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for all x (#O) and y in X Therefore 

and 

Hence 

and (c) follows. 

In general, the incomplete Cauchy problem (2) has no solution even if 
A = 0 and f~ W’~*(O, GO; X). We now present a positive result for the 
problem 

u”(t) = A,u( t) +f( t), o<t<cc 

#g = x (6) 

sup{(u(t)l: taO} < co, 

which is obtained from (2) by replacing A with its Yosida approximation 
A,, r > 0. In contrast with previous results in this direction [7, 81, we no 
longer assume that the Banach space X has a strongly monotone duality 
map. Therefore Theorem 8 partially answers the question raised on p. 528 
of [S]. To prove it, we need an existence result [7, p. 3871 for the 
boundary value problem 

u”(t) = A,u(t) +f(t), o<t<co 
(7) 

z&)=x, u(T) =y. 

PROPOSITION 7. Let X be a Banach space and A c X x X an m-accretive 
operator. Then for each x and y in X and f in L*(O, T; X) the problem (7) 
has a unique solution in W*,*(O, T; X). 

THEOREM 8. Let X be a smooth Banach space, A c X x X an m-accretive 
operator, and fs Lf,,(O, co; X). Zf problem (6) has a solution in 
C( [O, 00); X) n WF;z(O, co; X) for some x in X, then it has a unique solution 
for all x in X. 
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Proof. Let w be a solution to (6) with W(O) = z and 
sup{lw(t)l: t>O}=K, and let x be another point in X. For each n3 1, 
there exists, by Proposition 7, a unique solution U, E W2,2(0, n; X) of 
problem (7) with T = n and x =y. Let J denote the duality map of X and 
set u(t) = u,(t) = u,,(t) - w(t), 0 B t d n. Since the Yosida approximation A, 
is accretive, we can apply Lemma 6 to u(t) and conclude that 1 a( is 
convex. Hence It(t)\ <max{Iu(O)(, Iu(n)I} and 

lun(t)l G 1x1 +x (8) 

for all n>,l and Obtbn. Now let T<m<n and set p(t)= 
(l/2)1 u,(t) - u,(t)12, 0 d t <m. Using Lemmata 5 and 6, we see that 

6 t j; (p’(s))’ ds 6 2t j-i p(s) p”(s) ds 

< 2tp(t) p’(t). 

Hence p(t)d2tp’(t) and jy (p(t)/t) dt <2p(m). Since p is convex and 
p(0) = 0, it is nondecreasing on [0, m]. Therefore 

and, by (81, 

PC T) h&n/T) d Mm 1 

I u,(t) - dt)12 d 8(l xl + W2110s(mlT) 

for all 0 d t < T. Thus u(t) = lim,, ~ u,(t) exists uniformly in every 
bounded interval [0, T]. The function U: [0, 00 ) -+ X is bounded by (8) 
and solves (6) because A, is continuous. If v is another solution, then the 
function I u(t) - u( t)l* is convex by Lemma 6. Since it is also bounded, it 
must be non-increasing. Hence u = v and the proof is complete. 

The case f = 0 of Theorem 8 shows that if 0 E R(A ), then (in the notation 
of [8, Sect. 31) the semigroup (S,),,, can be defined in all smooth Banach 
spaces. 

Finally, we mention the following partial improvement of [7, 
Theorem lo]. It is also a consequence of Theorem 8. 

THEOREM 9. Let X be a smooth Banach space and A c X x X an 
m-accretiue operator. Assume that each bounded closed conuex subset of X 
has the fixed point property for nonexpansive mappings. if problem (6) has 
a so!ution and f is periodic of period T, then there is a solution of (6) which 
is also T-periodic. 



412 REICH AND SHAFRIR 

REFERENCES 

1. V. BARBU, “Nonlinear Semigroups and Differential Equations in Banach Spaces,” 
Noordhoff, Leyden, 1976. 

2. R. E. BRUCK, Periodic forcing of solutions of a boundary value problem for a second order 
differential equation in Hilbert space, J. Murh. Anal. Appl. 76 (1980), 159-173. 

3. E. MITIDIERI, Some remarks on the asymptotic behavior of the solutions of second order 
evolution equations, J. Math. Anal. Appl. 107 (1985), 211-221. 

4. E. MITIDIERI AND G. MOROSANU, Asymptotic behavior of the solutions of second order 
difference equations associated to monotone operators, Namer. Funct. Anal. Opfim. 8 
(1986) 419434. 

5. G. MOROSANU, Second order difference equations of monotone type, Numer. Funct. Anal. 
Optim. 1 (1979), 441450. 

6. G. MOROSANU, “Nonlinear Evolution Equations and Applications,” Reidel, Dordrecht, 
1988. 

7. E. I. POFFALD AND S. REICH, A quasi-autonomous second-order differential inclusion, in 
“Nonlinear Analysis,” pp. 387-392, North-Holland, Amsterdam, 1985. 

8. E. I. POFFALD AND S. REICH, An incomplete Cauchy problem, J. Math. Anal. Appl. 113 
(1986) 514-543. 

9. E. I. POFFALD AND S. REICH, A difference inclusion, in “Nonlinear Semigroups, Partial 
Differential Equations and Attractors,” pp. 122-130, Lecture Notes in Mathematics, 
Vol. 1394, Springer, Berlin, 1989. 


