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a b s t r a c t

Performance-based payments are widely seen as a promising tool for Reduced Emissions
from Deforestation and forest Degradation (REDD+) in tropical forests. Despite great
advances in international REDD+ negotiations, there is a lack of consensus around the
development of business-as-usual (BAU) reference scenarios or baselines to derive and
quantify net carbon emission reductions. In this paper, we explore a novel approach for
developing baselines (point forecasts) using exponential smoothing. Further, we introduce
the concept of probabilistic BAU scenario ranges developed using this approach. We
compare predictive performance with the linear trend and historical averages approaches
conventionally used in policy proposals and REDD+ pilots.

We empirically test the relative performance of all three approaches by forecasting BAU
baselines and scenario ranges in 36 sites (consisting of 20 countries and 8 Amazonian states
with and 8 countries without REDD+ schemes). Based on two predictive performance
measures (the root mean squared error and mean absolute percentage error), we find
that exponential smoothing outperforms the linear trend and historical average models
at predicting forest cover changes. In addition, we show how prediction intervals based on
a desired confidence level generated through exponential smoothing can be used in novel
ways to determine likely baseline scenario ranges. In this way it is possible to quantify the
degree of variability and uncertainty in datasets. Importantly, this also provides a statistical
measure of confidence to determine if REDD+ interventions have been effective.

By generating robust probabilistic baseline scenarios, exponential smoothing models
can facilitate the effectiveness of REDD+ payments, support a more efficient allocation of
scarce conservation resources, and improve our understanding of effective forest conser-
vation investments, also beyond REDD+.
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1. Introduction

Mechanisms to incentivise global conservation and tackle climate change based on payment-for-performance
approaches have attracted increased attention, due in large part to the perceived failure of conventional regulation in
tackling cross-boundary challenges and environmental externalities (Simpson and Sedjo, 1996; Ferraro, 2001; Ferraro and
Kiss, 2002; Ferraro and Simpson, 2002). To be successful, such approaches require a methodology for adequately measuring
and verifying performance (Ferraro and Pattanayak, 2006), and this requires a baseline against which performance can be
measured. This baseline needs to be defined in a way that is perceived as fair by relevant stakeholders, meaning it needs to
be transparently, consistently, and comparably set across sites or countries to provide equitable incentives to those asked
to participate (Grassi et al., 2008). Crucially, the baseline methodology needs to provide accurate prediction of what would
occur under a BAU scenario (defined as the most likely scenario without implementation of an incentive system) so as to
ensure that meeting or outperforming it represents additional positive outcomes (Angelsen, 2008; Olander et al., 2008).

Most prominent among the payment-for-performance systems are a variety of approaches for Reduced Emissions from
Deforestation and forest Degradation (REDD+) (Ebeling and Yasué, 2008). REDD+ has become an important part of the
broader international climate change debate as forest cover loss accounts for up to 15% of global greenhouse gas (GHG)
emissions (Van der Werf et al., 2009). A REDD+ mechanism under the United Nations Framework Convention on Climate
Change (UNFCCC), or via bilateral agreements, or though the voluntary carbonmarketswould reward countries, sub-national
jurisdictions, or projects for reducing GHG emissions associated with forest loss (Angelsen, 2008; Olander et al., 2008).
REDD+ policies require a sequence of activities including measurements of the carbon density of different types of forests,
establishing a plausible BAU baseline for forest cover loss patterns and associated GHG emissions, implementing measures
to reduce forest cover loss, andmonitoring actual forest cover loss and GHG emissions through time. Incentive payments, for
example, through the market-based sale of emission reduction units would be based on avoided GHG emissions compared
to the BAU baseline (Angelsen, 2008; Ebeling and Yasué, 2008).

Determining a credible methodology for measuring and verifying performance remains one of the most significant
challenges for performance-based conservation schemes such as REDD+. For example, determining a forest baseline against
which actual outcomes as a result of policy interventions can be compared, is challenging due to the sheer number of
interacting drivers operating across scales that affect future forest cover change. Further, new drivers or factors often create
surprises in the form of abrupt and non-linear forest cover loss through time (Ghazoul et al., 2010; Angelsen et al., 2012;
Sloan and Pelletier, 2012; Müller et al., 2014). A variety of options for predicting the ‘most credible’ baseline have been
proposed and these are variably used in existing REDD+ pilot schemes. These can be roughly grouped into three types of
modelling approaches for baseline setting: (i) extrapolated historical; (ii) forward looking; and (iii) adjusted historical (see
below for limitations of each approach).

Currently, most project-based REDD+ mechanisms in voluntary markets, such as the Verified Carbon Standard (VCS), or
negotiated multi- and bi-lateral schemes aim to set forest baselines based on extrapolated historical of BAU GHG emissions.
For example, The Forest Carbon Partnership Facility Carbon Fund, the Norway–Guyana REDD+ Investment Fund, and the
Norway–Amazon Fund favour the use of some sort of historical averages at either regional or global scales. The latter uses
a rolling average method among states (Chagas et al., 2013) whilst the VCS uses linear regressions. Ongoing negotiations
at the Conference of the Parties (COP) of the UNFCCC suggest that negotiators are leaning towards a mixture of approaches
for setting REDD+ baselines (see Griscom et al., 2009 for limitations of baseline setting approaches being proposed under
UNFCCC, including Compensated Reductions, Joint Research Center Proposal, Terrestrial Carbon Group, Corridor Approach,
Combined Incentives, The Stock Flow approach).

All three baseline setting approaches for REDD+ have limitations. For example, the extrapolated historical methodology
assumes that history is the bestmarker to the future (or its best approximation), and therefore simply extrapolates historical
forest cover change data into the future. This applies to historical averages, or a simple linear trend, or exponential
smoothing—the focus of this paper. The main issue with extrapolated historical is that it ignores dynamic non-linear
interactions among drivers or cannot predict new drivers. For example, the use of linear regression models, as applied
in the voluntary markets, with extrapolation to values beyond the observed time periods (also called forecasting in time
series modelling) can lead to verymisleading and potentially erroneous results (Wood, 2006; Moore et al., 2009). The risk in
extrapolation is that the fitted linear trendmaywrongly imply a linear future trend (see for example Tatem et al., 2004), and
abrupt changes may occur before or within the forecasting period. This can also have severe impacts on prediction intervals
associated with forecasted values (Hyndman and Athanasopoulos, 2014).

The second approach proposed for baseline setting, forward looking approach, suggests that the only way to understand
future emissions is tomodel the drivers of land use change. Spatially explicit forward lookingmodels have been the preferred
options among those involved in REDD+ at the UNFCCC negotiations (Huettner et al., 2009). However, like extrapolated
historical models, forward-looking models cannot predict new drivers nor model the complex and changing interactions
among drivers (Sloan and Pelletier, 2012). Further, such models are complex and require various data inputs creating
the risk that both the tool and datasets may be inconstantly used by different REDD+ countries or projects. They can
also be problematic if the data requirements are too onerous or if the underlying modelling is too complicated and lacks
transparency (Huettner et al., 2009). Further, empirical evidence suggest that even sophisticated spatially explicit models
have limited ability to anticipate forest-cover change due to non-linear and complex interactions among drivers (Sloan and
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Pelletier, 2012). The authors analysing such an approach recommended moving from sophisticated, spatially explicit to
‘‘simpler, relatively coarse scale, retrospective baselines’’ (Sloan and Pelletier, 2012, pp. 1).

The third approach, adjusted historical model, assumes that history is an imperfect marker for the future, and therefore
adjusts historical data to improve its predictive capability. For example, UNFCCC decisions to date indicate that baselines
would ‘‘take into account historic data, and adjust for national circumstances’’ (UNFCCC, 2009, 2013). It is unclear, however,
what such adjustment would involve. One suggestion has been to set a baseline relative to a global average to accommodate
countries of varying deforestation rates and reward performance relative to both national and international trends (see
(Griscom et al., 2009)). However, a historical baseline would still be needed.

In this paper, we explore the use of ‘exponential smoothing’ as a novel approach to extrapolated historical baselines
and range of scenarios. Exponential smoothing is a time-series modelling approach and is widely used in industry (e.g.,
forecasting annual electricity consumption) and economics (e.g., predicting financial returns) because of its ability to produce
robust predictions (Hyndman and Athanasopoulos, 2014) with only limited amounts of data (see Section 2.2). Exponential
smoothing also allows for the assignment of confidence levels around prediction intervals, which is a key advantage over
reporting ‘point forecasts’ – defined here as a single projected value at a future point – which are often interpreted as
predictions rather than projections. Such probabilistic outputs have great potential in the context of REDD+ as it gives
the range of likely baseline scenarios in the absence of an incentive REDD+ mechanism under different confidence levels,
using historical trends as a marker for the future. A very large range of baseline scenarios (the prediction interval for the
forecast) under a specified confidence level would suggest a large amount or variability in the projected outcomes.

There has been much effort in improving the statistical foundation for the exponential smoothing model in the last
25 years (De Gooijer and Hyndman, 2006). In particular, for evaluating its performance using two techniques: (1) the use
of a range of forecast accuracy measures—e.g., the mean absolute percentage error (MAPE) (see review in De Gooijer and
Hyndman, 2006) and; (2) the development of probabilistic forecasts, such as a forecast using a probability density function, a
prediction interval, or some quantile of interest (De Gooijer andHyndman, 2006). The development of probabilistic forecasts
is a response to risk analysts, who needs to consider the many different directions in which a process may evolve whilst
constraining these processes within a range of probabilities. Forestry data is often presented as a time series and data of this
type can be quite non-linear due to abrupt changes from political or economic changes. Exponential smoothing methods
are commonly applied to data with such characteristics; providing robust forecasts and prediction intervals (Gardner,
1985, 2006; Hyndman et al., 2008). In this paper, we (i) first assess the potential application of exponential smoothing by
forecasting baselines and comparing results tomore ‘conventional’ approaches (linear trend and averagemodels). Secondly,
we (ii) examine the role of prediction intervals in estimating the range of baseline scenarios and how this can be used as a
standardised way for determining uncertainty in predictions. Lastly, (iii) using the best performingmodel and its prediction
interval, wemeasure and discuss how successful new policies put into place in the Brazilian Amazon since 2004 contributed
to avoided forest cover loss. To do so, we use annual time series on forest cover loss obtained from 36 sites (consisting of
28 countries: these include 20 REDD+ countries; 8 non-REDD+ countries; and 8 sub-national REDD+ regions in Brazilian
Amazon). Note that we use baseline in the context of forest loss and not GHG emissions, given the scientific aims of the
paper (for a review of converting forst area loss to GHG emissions, see Gibbs et al., 2007).

2. Materials and methods

2.1. Overview of historical average and simple linear trend models

Let yt be the forest cover loss, indexed by sequential time points: t = 1, . . . , T where T is the total number observations
in the data, and let xt be the year corresponding to time point t . A typical example of these time series data is given in the
following data matrix below, where we have yt as the forest cover loss (km2) in, say, Brazilian Amazon from 1989 to 2012:

xt yt
1989 21 050
1990 17 770

...
...

2012 4656

 .

Now, suppose we want to predict future values of forest cover loss at future time points T + 1, T + 2, . . . . That is, we
would like to predict yT+1, yT+2, . . . , also commonly referred to as forecasting. Then, the historical average model takes the
average for each observed yt , that is, ȳ =

T
t=1 yt is used as future prediction values for each yT+1, yT+2, . . . .

The simple linear trend model uses xt as predictors in a regression model:
yt = β0 + xtβ1 + ϵt

where β0 is the intercept parameter, β1 is the slope parameter and ϵt are independent and normally distributed errors. The
model parameters β0 and β1 can be estimated by using least squares, and future predicted values for yT+1, yT+2, . . . are
given as ŷT+1 = β̂0 + xT+1 β̂1, ŷT+2 = β̂0 + xT+2 β̂1, etc. where β̂0 and β̂1 are the regression model estimates.

Prediction intervals for the historical average and simple linear trendmodel can also be easily obtained (see Section 10.1
of Moore et al., 2009).
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2.2. Exponential smoothing: methodology, application and potential for REDD+

Exponential smoothing is a forecasting technique that is applied to time series data (Gardner, 1985, 2006; De Gooijer
and Hyndman, 2006; Corberán-Vallet et al., 2011). In contrast to the historical average model, which is commonly used
for REDD+ forecasts, where the past observations are weighted equally, exponential smoothing assigns exponentially
decreasing weights to observations further in the past (see Hyndman et al., 2008; Hyndman and Athanasopoulos, 2014).
As discussed below, a collection of exponential smoothing models are available. To illustrate a simple example, we use
same notation as in Section 2.1 and follow Hyndman and Athanasopoulos (2014). Again, suppose we want to predict future
values for each yT+1, yT+2, . . . . For the exponential smoothing model, we now write:

ŷT+1 = αyT + α (1 − α) yT−1 + α (1 − α)2 yT−2 + · · ·

where the smoothing parameter 0 ≤ α ≤ 1 is introduced in themodel to control for the rate at which the weights decrease.
For large α more weight is placed to more recently observed yt , and for small α more weight would be placed for points in
the distant past. The value for α can be set a priori to model fitting; however in most cases α is estimated in a robust and
objective manner using the observed data, for example, using the sum of squared errors (see Section 7.1 of Hyndman and
Athanasopoulos, 2014).

The above technique was first suggested by Robert Goodell Brown in 1956, and then expanded by Charles C. Holt in 1957
(De Gooijer and Hyndman, 2006). Brown first developed the simplest form of exponential smoothing, also known as an
exponentially weighted moving average. Since then, there has been a lot of progress in developing more complex models
to capture the underlying structure in the data. For example, trend and/or seasonality components can be added in the
forecasting function (see Section 7.6 of Hyndman and Athanasopoulos, 2014). A trend is usually added if there is a long term
trend in the data, of which there are four different types to consider: additive, damped additive, multiplicative, and damped
multiplicative. A seasonal component is also usually added if the data is influenced by seasonal factors, of which there are
two types: additive and multiplicative. Further details and full descriptions of the statistical formulae for the ‘taxonomy’ of
exponential smoothing models are given in Table 7.8 of Hyndman and Athanasopoulos (2014) or Table 1 of Gardner (2006).

The analysts canpotentially fit any of thesemodels subjectively; however it ismore common to performamodel selection
procedure using the observed data, and thus obtain the best model. A common model selection approach that is routinely
applied in practice is Akaike’s Information Criterion (AIC, Burnham and Anderson, 1999); it has excellent properties when
predicting or forecasting on new data (Shibata, 1980; Hyndman et al., 2008).

The statistical package forecast in the R statistical software (Hyndman and Athanasopoulos, 2014; R: Development
Core Team, 2015) has been designed to fit exponential smoothing models and subsequently give forecasts with prediction
intervals. The forecast R-package estimates the smoothing parameter(s) α, and uses AIC for model selection to select
the exponential smoothing model that best fits the data, starting from the simplest model (e.g., no trend or seasonal
components), to more complex models (e.g., multiplicative trend and additive)—both procedures are built-in operations
in the forecast R-package. The historical average model is also considered as a candidate model in the model selection
procedure within forecast. If no clear structure is evident in the data and no weighting is considered, then the historical
average model may give the lowest AIC; in this case forecast will select the historical average model as the final model. This
R-package facilitates application by non-experts; furthermore prediction intervals can be easily generated, see Section 2.7
of Hyndman and Athanasopoulos (2014).

Using the statistical package forecast in the R statistical software, we compared the performance of exponential
smoothing with two main conventional approaches used in REDD+, which includes the linear trend and average historical
model types.

2.3. Data

We used data for 28 countries (see Table 1), 20 of these countries are participating in one or more REDD+ initiatives
(UN-REDD, UNFCCC-REDD, Forest Carbon Partnership Facility Carbon Fund, Guyana–Norway bilateral etc.). For all of
these REDD+ countries, data was available on forest cover loss from 2001–2013 from the Global Forest Watch database
(http://www.globalforestwatch.org/countries). In addition,we also included8non-REDD+ countries selected from the same
database; there was no specific reason why these highly deforested countries were chosen other than they each have over
1.8 Mha of total tree cover loss from 2001 to 2013 (http://www.globalforestwatch.org/countries/overview). These data are
based on the analysis of a collection of Landsat satellite images by Hansen et al. (2013), such that they capture natural
disturbances which are inherently stochastic, and therefore can introduce large variation in measurement of performance.
However, we do note that the use of the Hansen et al. (2013) data at local to regional scale is problematic due to the sheer
complexity of fine scale validation issues of a global model. However, so far, this is the only dataset available with enough
temporal points.

For these 28 countries, we forecast baselines for each model type for 2010–2013 (i.e., 4 years of forecasting). For this
forecast, the first 9 points of observed data (2001–2009) were our training data and we validated each model with the test
data (2010–2013), see Section 3.2 for further details. We chose 4 years of forecasting as this was approximately 31% of the
available data. The sample size of the training data considered here is small, although this is generally not an issue when
using the forecast R-package; for example, see case studies in Section 7.1 of Hyndman and Athanasopoulos (2014). For small

http://www.globalforestwatch.org/countries
http://www.globalforestwatch.org/countries/overview
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Table 1
Assessment of the predictive performance for the three model types using root mean squared error (RMSE) and mean absolute percentage error (MAPE)
for 28 countries. Forecasting is conducted for h = 4 years (from 2010–2013). Values in bold indicate the lowest RMSE/MAPE. Note that the exponential
smoothing model gave better overall forecasts.

Country RMSE MAPE
REDD+ Lin. trend Hist. ave. Exp. Smooth. Lin. trend Hist. ave. Exp. Smooth.

Belize 9520 9780 9780 36 38 38
Bolivia 122270 136338 136338 42 34 34
Brazil 532885 818185 625338 15 35 19
Cambodia 80438 130197 86231 36 64 41
Cameroon 18377 23083 20703 32 36 34
Cen. African Rep. 10630 13780 13781 19 25 25
Colombia 85425 47375 47375 49 24 24
Costa Rica 11525 5054 5054 129 55 55
Dem. Rep. of the Con. 197190 260054 260055 24 29 29
Ecuador 21680 15365 16314 50 19 37
Guyana 3223 3541 3541 25 26 26
Indonesia 739086 549980 509061 51 23 36
Madagascar 59414 88572 88572 30 27 27
Malaysia 156314 142761 111766 34 24 22
Mexico 91617 17418 65144 52 8 37
Nigeria 21873 16812 16148 49 34 32
Papua New Guinea 11872 13961 13961 19 17 17
Paraguay 96610 173890 173890 21 34 34
Suriname 5985 7656 6029 27 43 30
Vietnam 34091 72411 27782 22 44 17
Mean 115501 127311 111843 38 32 31
Median 46752 35229 37578 33 31 31

Non-REDD+ Lin. trend Hist. ave. Exp. Smooth. Lin. trend Hist. ave. Exp. Smooth.

Argentina 171896 119956 119955 38 23 23
Australia 69124 84407 84408 41 50 50
Canada 318193 352900 352900 9 10 10
China 365622 127679 122499 68 22 18
Finland 58553 13821 13821 37 7 7
Russia 1862002 1820665 1820664 38 38 38
Sweden 80905 32801 32801 34 12 12
United States 494346 431663 431663 26 22 22
Mean (includes REDD+) 204667 197504 186271 38 29 28
Median (includes REDD+) 80 671 78409 74776 35 26 28

sample sizes, a simpler exponential smoothing model will typically be selected. This does not mean the analysis is either
unreliable or misleading; rather the resulting forecasts will be less informative (Hyndman and Athanasopoulos, 2014).

We performed the same exercise at a sub-national scale for the Brazilian Amazon and at a regional scale for 8 states
within the Brazilian Amazon (see Table 2). For cover change data from INPE (Instituto Nacional de Pesquisas Espaciais) have
been generated using high resolution images which can potentially give more accurate annual historical data (1988–2012)
(Olander et al., 2008; INPE, 2013) than the Hansen et al. (2013) dataset. For both the Brazilian Amazon and its 8 states,
we forecast baselines for 5 years from 1998 to 2002, using 1988–1997 as training data. We exclude data after 2004 since
REDD+ activities (defined here as the introduction of new significant forest conservation activities) were implemented at
this time.

2.4. Validation

Weused twowell-known statistical measures to assess themodel’s forecast performance, both of which require training
and test data. Suppose that our data consists of t = 1, . . . , n time series observations, we first partition the data into a
training dataset (t = 1, . . . , T ) and a test dataset (t = T + 1, . . . , n), thus h = n − T is the number of future time points

that we consider for forecasting. The root mean squared error (RMSE) is given by: RMSE =


(1/h)

h
i=1(ŷT+i − yT+i)2 and

the mean absolute percentage error (MAPE) is given by: MAPE = (1/h)
h

i=1 |100× {(ŷT+i − yT+i)/yT+i}| where ∥ denotes
the absolute value. Both measures quantify the difference between observed (our test data) and forecasted values—e.g., the
RMSE is calculated by taking the deviation (also called prediction error) from the predicted and the observed, squaring the
deviation and then taking the mean (followed by a square root). In our context, the MAPE is a more appropriate measure
to use over the RMSE, since it allows comparisons to be made on the same scale. For example, we can compare model
performance for countries with large forest areas, such as Russia, with smaller countries like Guyana because the MAPE is a
calculated as a scaled percentage.
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Table 2
Assessment of the predictive performance for the three model types using root mean squared error (RMSE) and mean absolute percentage error (MAPE)
at state levels within the Brazilian Amazonia and for the whole of the Brazilian Amazon. Forecasting is conducted for h = 5 years (from 1998 to 2002).
Values in bold indicate the lowest RMSE/MAPE. Note that once again the exponential smoothing model gave better overall forecasts.

5 years from 1998–2002 RMSE MAPE
Brazilian Amazon state Lin. trend Hist. ave. Exp. Smooth Lin. trend Hist. ave. Exp. Smooth.

Acre 164 168 168 22 19 19
Amazonas 138 260 260 20 37 37
Maranhão 891 91 91 82 7 7
Mato Grosso 944 1488 1488 13 18 18
Pará 1494 1265 1266 17 13 13
Rondônia 889 410 410 36 12 12
Roraima 149 104 86 51 66 44
Tocantins 377 333 146 143 140 33
Brazilian Amazon (all states) 1656 2395 2397 5 9 9

Mean 745 724 701 43 36 21
Median 889 333 260 22 18 18

Fig. 1. Forecasting baselines for 28 countries for h = 4 consecutive years (from 2010 to 2013) using 2001–2009 as (training) historical data. The solid
black line represents the observed data, the red line and red stars represent the fittedmodel and point forecasts for the linear trendmodel respectively, the
green line and green squares represent the fitted model and point forecasts for the historical average model respectively, and the blue dots represent the
point forecasts for the exponential smoothing model. The dark grey area represents the 80% prediction interval, while the light grey is the 95% prediction
interval for the exponential smoothing model. Plots were generated using the forecast R-package. Note that, exponential smoothing, followed by the
historical average were the best performing models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

When taking overall RMSE/MAPE measures across all countries considered, we found that for some influential countries
several RMSE/MAPE valueswere eithermuch smaller ormuch larger for somemodel types. These outliers can bemisleading
as they skew the overallmeasure; therefore in addition to themeanwe also included themedian as amore robustmeasure to
account for such outliers in the analysis. In addition, we also constructed prediction intervals at the 95% and 80% confidence
levels using the exponential smoothing model (see for example, Fig. 1); these confidence levels are often used in practice
when forecasting.

2.5. Effectiveness of REDD+ policies in the Brazilian Amazon

Finally, based on the best performingmodel,we estimated the impact of the implementation of REDD+policies thatwere
put into place as from2004on forest conservation outcomes in BrazilianAmazon.We selected 2004 as a ‘‘simple’’ cut-off date
to differentiate REDD and non-REDD activities, recognising that forest conversation activities in Brazil date to amuch longer
period, since in 2004, Brazil implemented (for the first time) a real-time system for Detection of Deforestation (DETER) to
identify forest cover loss hotspots and alert authorities to intervene (Assunção et al., 2012). Thiswas followed by institutional
changes to enhance law enforcement through the use of legal instruments for the punishment of environmental crimes in
the subsequent years (Assunção et al., 2012), as well as range of other policies (see later). We discuss the effectiveness of
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the policies at avoiding forest cover loss at sub-national and state levels based on the reduction achieved from the ‘‘most
likely’’ BAU baseline and whether these reductions were located outside the 80% prediction interval generated as the BAU
range of baseline scenarios.

3. Results

3.1. Best performing model for point forecasts

Among the 20 REDD+ countries analysed, the exponential smoothing model gave the lowest mean RMSE and
mean/median MAPE values, whereas the historical trend model gave the lowest median RMSE (Table 1). Note that the
historical average model was selected for several datasets in the analysis (e.g., Bolivia, Colombia, Madagascar and Papua
New Guinea) yielding either exact or very similar RMSE and MAPE values as given by the exponential smoothing model
(Table 1, Fig. 1).

For the full set of 28 countries (REDD+ and non-REDD+ countries), once again the exponential smoothing model gave
better overall predictions (lowest mean/median RMSE and mean MAPE values) compared with the other model types
(Table 1, Fig. 1). The historical average model gave the lowest median MAPE, whereas the linear trend model was by far
the poorest performing model type. Note that we are measuring the overall predictive performance across all countries
considered rather than specific countries—i.e., we consider model performance based on means and medians across all
countries. Our reasoning for this is that some countries perform similarly across model type (e.g., Belize, Guyana, Canada
and Russia; Table 1), and so these differences are only marginally distinguishable. Also, for several countries, some model
types were clearly superior compared to the others (e.g., Indonesia andMexico for the historical averagemodel; Table 1), on
the other hand somemodel types performed very poorly compared to others (e.g., Costa Rica and China for the linear trend;
Table 1). When examining results for specific countries, we note that exponential smoothing models was only considerably
marginally better than the best performing model in only 5 of 28 countries—i.e., the MAPE for the exponential smoothing
model differed by more than 10% from the best performing model. These 5 countries were Australia, Ecuador, Indonesia,
Mexico and Paraguay; see Table 1.

At the sub-national scale in Brazilian Amazon, exponential smoothing, followed by the historical average model, also
gave better predictions for the h = 5 years of forecasting baselines (1998–2002) prior to policy change (Table 2, Fig. 2).
Critically, the RMSE values for the exponential and historical average models were comparatively small, thereby indicating
closer location proximity between forecasted and observed values (Table 2).

3.2. Reliability of prediction intervals generated from the best performing model (exponential smoothing)

Using the test data, we verified the reliability of the prediction interval (defined as the range of baseline scenarios)
generated from the training data for the 28 countries analysed.We observed that approximately 68% of the validation points
were locatedwithin the 80%prediction interval of the exponential smoothingmodel, approximately 15%within the 80%–95%
prediction interval, with the remaining 17% outside this range (Fig. 1). At the sub-national scale for Brazilian Amazon, more
reliable results were achieved: with 90% of the validation points being within the 80% prediction interval and 10% within
the 80%–95% prediction interval (Figs. 2–3).

3.3. Effectiveness of policies in Brazilian Amazon according to best performing model

Our estimation of the effectiveness of REDD+ policies since 2004 within the 8 Brazilian Amazon states is based on forest
loss since 2004 and beyond, and is compared with the baselines generated from the best performingmodel for the period of
2004 and beyond. The results indicate that most Amazonian states had achieved a positive forest conservation outcome as
observed forest loss was located below the BAU baseline generated from exponential smoothing or historical averages, but
that only Acre, Mato Grosso, and Para managed to reduce forest cover loss outside of the 80% prediction interval (defined as
the range of baseline scenarios) given by the exponential smoothing model (see Fig. 3).

4. Discussion

Our analysis shows that among the historical extrapolated approaches, exponential smoothing models (overall)
outperformed other model types in the 36 case studies considered in our empirical study (Tables 1 and 2). This is a
‘comparative analysis’, and thuswe do notmake any claim for decision-makers as towhat is an acceptable level of prediction
error for a best performing model. Exponential smoothing is instead evaluated comparatively from the overall mean (and
median) RMSE and MAPE results against two standard methods (all based on extrapolated historical approaches) used in
REDD+ schemes.We examined thesemodel forecast performances on both national and sub-national levels, and forecasted
on both short (e.g., h = 5) to moderate (e.g., h = 8) annual time periods. To visually compare and summarise the accuracy
of our results, we plot the baseline point forecasts (i.e., MAPE values) for each country and each Brazilian Amazon state in
Fig. 4(a).
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Fig. 2. Forecasting baselines on a sub-national and regional scale for 8 states within the Brazilian Amazon and for the whole of the Brazilian Amazon for
h = 5 consecutive years (from1998 to 2002) in the period prior to REDD+ policy implementation.We use 1988–1997 as historical (training) data. The solid
black line represents the observed data, the red line and red stars represent the fitted model and point forecasts for the linear trend model respectively,
the green line and green squares represent the fitted model and point forecasts for the historical average model respectively, and the blue dots represent
the point forecasts for the exponential smoothing model. The dark grey area represents the 80% prediction interval for the exponential smoothing model,
while the light grey is the 95% prediction interval. Note that, exponential smoothing, followed by the historical average were the best performing models.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Unlike the historical average model which under the UNFCCC requires countries to potentially select the length of the
sequence, exponential smoothing uses the entire historical data and assigns decreasing weights to observations further in
the past (see Hyndman et al., 2008; Hyndman and Athanasopoulos, 2014). This removes any arbitrariness to cherry-picking
of historical data periods, and allows formore recent, and potentiallymore informative events to have a greater influence on
the projection. The greater accuracy of exponential smoothing thusmake thesemodels preferable for forecasting short-term
baselines, or at best, a historical average model which is still a subset of the exponential smoothing model, see Section 2.2.

We note however two important challenges in our datasets that could result in large RMSE or MAPE (prediction error)
values for all model types. Firstly, we assume that the datasets for all the 28 countries provided by Hansen et al. (2013) via
the Global Forest Watch database were comparable and consistent. However, validation of annual allocation of change by
Hansen et al. (2013) showed that this was variable among biomes. As a result, we do not know the degree to which some of
the large RMSE or MAPE values could be due to data quality issues. However, the INPE dataset is probably of better quality
being extracted fromhigh resolution satellite images (Olander et al., 2008), and herewe find, that the exponential smoothing
still worked best overall. Secondly, model validation is based on the flawed assumption that none of these countries, except
from 2004 for the Brazilian Amazon, had put into place significant forest conservation activities (REDD+ policy) in the
period for which we used the training or validation data. Implementation of important forest conservation policies that
were ‘‘game-changes’’ in forest conservation would impact our prediction errors (MAPE or RMSE) between forecast and
actual outcomes. For example, low forest cover loss in the period after 2007 are apparent in four countries (Bolivia, Colombia,
Costa Rica and Mexico) which may be due to important forest conservation policies in this period.

4.1. Usefulness of prediction intervals

Hyndman and Athanasopoulos (2014) lamented that ‘‘many decision making processes today cannot yet take
probabilistic inputs, so the most commonly used forecasting output form is still point forecast’’. The use of probabilistic
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Fig. 3. Evaluating effectiveness of REDD+ policies for 8 states within Brazilian Amazon and for the whole of the Brazilian Amazon. We forecast baselines
for h = 8 consecutive years (from 2005 to 2012) using 1988–2004 historical (training) data for the linear trend and historical average models. The solid
black line represents the observed data, the red line and red dots represent the fitted model and point forecasts for the linear trendmodel respectively, the
green line and green dots represent the fittedmodel and point forecasts for the historical averagemodel respectively, and the blue dots represent the point
forecasts for the exponential smoothing model. The dark grey area represents the 80% prediction interval for the exponential smoothing model, while the
light grey is the 95% prediction interval. The results indicate thatmost states achieved below the historical averages or the exponential smoothing forecasts.
In particular, the states of Acre, Mato Grosso and Para achieved below the 80% prediction interval. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

outputs (or scenarios) is critical in the context of REDD+ due to the high level of surprise in forest cover loss, being
characterised by rapid rates of change, abrupt changes, complex feedbacks, and new drivers (Ghazoul et al., 2010; Angelsen
et al., 2012; Sloan and Pelletier, 2012; Müller et al., 2014). Indeed, there have already been several calls for probabilistic
projections in the context of REDD+ already (cf. Kindermann et al., 2006; Grassi et al., 2008; Sloan and Pelletier, 2012). In
our study, we found the probabilistic scenario range estimation from the prediction interval to be a useful guide whether
the validation data fell within this range. For example, at the country level (n = 28), we found that 83% of the validation
data were within the 80%–95% prediction intervals whilst increasing to 100% for state levels (n = 8).

Prediction intervals based on a desired confidence level generated from the exponential smoothing model can be used
in novel ways to determine the likely baseline scenario ranges. These inform on the degree of variability and uncertainty in
datasets. Inversely, they provide a statisticalmeasure of confidence if REDD+ interventions have been effective. For example,
in Fig. 4(b) we compared the range of baseline scenarios for each individual country and Brazilian Amazon state—these
were obtained by standardising each dataset (i.e., subtract the mean and divide by the standard deviation), constructing
(scaled) prediction intervals, and then calculating averages of the range of each interval across each future time point. The
comparison indicated high variability in the Maranhão and Tocantins dataset; however we note that there is additional
model uncertainty since different exponential smoothing model types can be selected for each country, see Section 2.2.

A large prediction level at any confidence level (say 95%, 80%, etc.) for the baseline generated indicates large uncertainty
in anticipating forest-cover change. In such cases, it is also likely that other approaches such as spatially explicit forward
looking models will also have limited ability to anticipate forest-cover change (Sloan and Pelletier, 2012). Alternatively, for
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Fig. 4. A visual comparison and summary of the accuracy of our results.We plot: (a) the predicted baseline point forecasts (i.e., MAPE values); and (b) range
of baseline projection scenarios using prediction intervals for each individual country and Brazilian Amazon state—these were obtained by standardising
each dataset (i.e., subtract the mean and divide by the standard deviation), constructing the (scaled) prediction intervals, and then calculating averages of
the range of each interval across each future annual time point. The diagram indicates higher overall accuracy for the exponential smoothing. Further, the
prediction intervals indicate large variation for the Maranhão and Tocantins dataset.

datasets with smaller prediction intervals due to historically low forest cover loss—e.g., Belize, achieving a REDD+ outcome
outside the 80% prediction interval could not only be feasible, but if achieved it would indicate that we can be 80% confident
that a (true) reduction of forest cover loss has been achieved outside the range of baseline scenarios (see Fig. 3). It would
be interesting to explore whether the use of premiums achieved below the point forecast baseline and outside the range
of baseline scenario (prediction interval) could be potentially a fair reward and incentive for countries or projects with
historically low deforestation.

Importantly, when using either historical average or linear trend models on time series data, prediction intervals can be
similarly obtained (see Section 10.1 of (Moore et al., 2009)). However, it is well-known (both theoretically and empirically)
that prediction intervals from linear regression models on time series data can be biased due to temporal autocorrelation—
i.e., if the influence of previous forest cover change values in the current time point is strong, prediction intervals from linear
regression models can be much broader than they should be (Hyndman and Athanasopoulos, 2014). This occurs because
historical average and linear trend models are constructed under the assumption that observations are independent of one
another; in the case of forest cover change, these values are not independent. In contrast, the exponential smoothing model
(and the associated prediction interval) appropriately accounts for this dependence in the model structure, providing more
reliable and correct prediction intervals.
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4.2. Effectiveness of REDD+ policies in the Brazilian Amazon

In the Brazilian the Amazon, a reduction in forest cover losswas achieved below the forecasted baseline generated (Fig. 3).
In addition, these reductions were located outside the 80% prediction interval of the range of baseline scenarios from the
first year of the implementation of the policy in 2005 (Fig. 3). Thus we can be 80% confident that this represents additional
positive outcomes compared to the range of baseline scenarios. It is indeed generally known that Brazil recognised the
complexity of deforestation and put into place since 2004 a combination of incentives for enhancing forest conservation,
disincentives to prevent land-use change, and enabling conditions through cross-sectoral policy reform to reshape forest
use (Kissinger, 2015). For example, Brazil established the Action Plan to Prevent and Control Deforestation in the Amazon
in 2004, in order to control illegal activities, and identify solutions for regulation and monitoring (Assunção et al., 2012).
Later in 2006, Brazil set a ban on the commercialisation of soy grown in the Amazon, which was set to expire in 2013
but has since been renewed, (Gibbs et al., 2015)). Further, during the same time, the Bank of Brazil, as a disincentive
measure, refused agricultural credit for soy farmers who planned cultivation in newly cleared forest (Kissinger, 2015). In
parallel, intensification practices through the use of double cropping in soy croplands and pastures put into place could have
encouraged investment in deforested lands rather than promoting new deforestation (DeFries et al., 2013).

At the Brazilian Amazon state level, reductions in forest cover loss below the baseline levels were also achieved for
most states. However, these reductions were located outside the 80% prediction interval only in Acre, Mato Grosso and Pará
(Fig. 3), which we assume here relates to far better forest conservation activities there. Our objective here is more of a case
example to demonstrate that the prediction intervals can serve as a strong guide both in understanding uncertainty, or vice
versa, confidence in forest conservation outcomes located not only below the baselines but also outside the range of baseline
scenarios (prediction interval).

5. Conclusion

In this paper, we have demonstrated the value of introducing exponential smoothing for setting REDD+ baselines and
developing ranges of baseline scenarios. Moreover, we argue that this method is broadly applicable to any conservation
performance scheme and for assessing the effectiveness of conservation inteventions. Exponential smoothing provides a
baselinemethodology that can be applied transparently, consistently, and comparably across sites. In contrast to commonly
used alternative approaches, this can be done irrespective of chosen reference time periods. The method also accounts for
uncertainty through the use of prediction intervals and generates comparativelymore robust results. Exponential smoothing
can ensure that meeting or outperforming baselines represents real additional positive outcomes of a REDD+ intervention.
The proposed approach allows conservation actors to acknowledge the substantial uncertainties inherent in forest cover
change predictions and focus on scenario ranges rather than point trajectories. Perhaps most importantly, being able to use
this improved approach for comparing actual impacts of given policies and interventions can support the design of more
effective and efficient conservation policies and REDD+ mechanisms.

We propose that future scientific work should incorporate further types of spatial information (e.g., generating spatial
datasets constrained to counterfactual areas or areaswith similar conservation approaches, both in intensity and timing) and
further investigate the predictive performance of exponential smoothing among those. Although exponential smoothing is
known to be quite robust (Hyndman and Athanasopoulos, 2014) it would be interesting to examine how sensitive it is to
break years betweenmodel training and validation periods. Finally, we encourage researchers to use the forecast R-package;
this software is user friendly and point forecasts alongwith prediction intervals are easily obtainablewithminimal computer
coding required. All materials presented in this manuscript are reproducible and R-code is available upon request.
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