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We extend the Nielsen theory of coincidence sets to equalizer sets, the points where
a given set of (more than 2) mappings agree. On manifolds, this theory is interesting only
for maps between spaces of different dimension, and our results hold for sets of k maps
on compact manifolds from dimension (k − 1)n to dimension n. We define the Nielsen
equalizer number, which is a lower bound for the minimal number of equalizer points
when the maps are changed by homotopies, and is in fact equal to this minimal number
when the domain manifold is not a surface.
As an application we give some results in Nielsen coincidence theory with positive
codimension. This includes a complete computation of the geometric Nielsen number for
maps between tori.
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1. Introduction

The goal of this paper is to generalize the basic definitions and results of Nielsen coincidence theory to a theory of
equalizer sets for sets of (possibly more than two) mappings. For spaces X and Y and maps f1, . . . , fk : X → Y , the equalizer
set is defined as

Eq( f1, . . . , fk) = {
x ∈ X

∣∣ f1(x) = · · · = fk(x)
}
.

This generalizes the coincidence set Coin( f1, f2) = {x ∈ X | f1(x) = f2(x)} for two mappings.
Nielsen coincidence theory, see [3], estimates the number of coincidence points of a pair of maps in a homotopy invariant

way. Most of the techniques are a generalization of ideas from fixed point theory, see [6]. In coincidence theory, one defines
the Nielsen number N( f1, f2) of a pair of maps, which is a lower bound for the minimal coincidence number MC( f1, f2):

N( f1, f2) � MC( f1, f2) = min
{

#Coin
(

f ′
1, f ′

2

) ∣∣ f ′
i � f i

}
.

The above quantities are in fact equal when X and Y are compact n-manifolds of the same dimension n �= 2. In this paper
we extend this theory to equalizer sets.

The typical setting for Nielsen coincidence theory is for maps X → Y of compact manifolds of the same dimension.
For maps f1, f2 : X → Y in this setting, transversality arguments show that we can change the maps by homotopy so that
Coin( f1, f2) is a set of finitely many points. At each of these points we define a coincidence index which is then used to
define the Nielsen number. In the case of differentiable manifolds we can define the index in terms of the determinant of
the derivative maps at each coincidence point (see [7] for this approach).
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Fig. 1. Coincidence sets and equalizer points for Example 1.2.

When the dimension of X is greater than that of Y , the typical approach to the coincidence index breaks down. In
this case the derivative maps cannot be linear isomorphisms, and so their determinants cannot be used. A modified ap-
proach based on determinants is given by Jezierski in [5] which applies for maps into tori, but this is a fairly restrictive
setting.

In this paper we will show that the typical approach, expressible in terms of determinants, does indeed succeed in the
positive codimension setting when we admit more mappings to our theory, i.e. when we move from coincidence theory to
equalizer theory. In this sense equalizer theory would seem to be the most natural and straightforward Nielsen-type theory
in positive codimensions. Compared to the various approaches to positive codimension Nielsen coincidence theory (many
are surveyed in [3]), our equalizer theory is substantially simpler and much more closely resembles classical Nielsen fixed
point and coincidence theory.

Nielsen equalizer theory will require a specific codimensional setting. Attempting a homotopy-invariant study of equal-
izers in codimension zero immediately gives:

Theorem 1.1. If X and Y are compact manifolds of the same dimension, and f1, . . . , fk : X → Y are maps with k > 2, then these maps
can be changed by homotopy so that the equalizer set is empty.

Proof. Well-known transversality arguments show that we can change f2 by a homotopy to f ′
2 so that Coin( f1, f ′

2) is a
finite set of points. Similarly we obtain f ′

3 � f3 such that Coin( f1, f ′
3) is a finite set of points. These homotopies can be

arranged so that Coin( f1, f ′
2) and Coin( f1, f ′

3) are disjoint. Thus

Eq
(

f1, f ′
2, f ′

3, f4, . . . , fk
) ⊂ Coin

(
f1, f ′

2

) ∩ Coin
(

f1, f ′
3

) = ∅. �
Thus there is no interesting theory for counting the minimal number of equalizer points between compact manifolds of

the same dimension, since this number is always zero. In this sense, the equalizer equation f1(x) = · · · = fk(x) is “overde-
termined” when the dimensions of the domain and codomain are equal. In order to obtain an interesting theory we must
increase the dimension of the domain space. In particular, for equalizers of k maps, we will require X and Y to be of
dimensions (k − 1)n and n, respectively, for any n. Consider the following example:

Example 1.2. We will examine the equalizer set of three maps f , g,h : T 2 → S1 from the 2-dimensional torus to the circle.
Viewing the torus as the quotient of R

2 by the integer lattice, and S1 as the quotient of R by the integers, we will specify
our maps by integer matrices of size 1 × 2. Let the maps be given by matrices:

A f = (3 1), Ag = (0 2), Ah = (−1 − 1).

Let C f g = Coin( f , g), with C f h and C gh defined similarly, and we have

Eq( f , g,h) = C f g ∩ C gh ∩ C f h.

(Actually the equalizer set is the intersection of any two of these coincidence sets.)
It is straightforward to compute these sets. For example, C f g is the set of points (x, y) with 3x + y = 2y mod Z

2, which
is to say y = 3x mod Z

2. Similarly computing the sets C f h and C gh produces the picture in Fig. 1, where the torus is drawn
as [0,1] × [0,1] with opposite sides identified. We see in the picture that Eq( f , g,h) consists of 10 points (the nine points
where the lines visibly intersect, plus the intersection at the identified corners of the diagram).

In this paper we will define the Nielsen number N( f , g,h) which is a lower bound for the minimum number of equalizer
points when the maps are changed by homotopy. In Theorem 4.4 we give a simple formula for computing this quantity on
tori, which in this example gives

N( f , g,h) =
∣∣∣∣
(

0 2
−1 −1

)
−

(
3 1
3 1

)∣∣∣∣ = 10.

Thus these maps cannot be changed by homotopy to have fewer than 10 equalizer points.
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The construction of the theory is facilitated by a fundamental correspondence between Eq( f1, . . . , fk) and the coinci-
dence set of a pair of related maps. Let F , G : X → Y k−1 be given by

F (x) = (
f1(x), . . . , f1(x)

)
, G(x) = (

f2(x), . . . , fk(x)
)
. (�)

Since X and Y are compact with dimensions (k − 1)n and n respectively, the above F and G are maps between compact
manifolds of the same dimension, and Coin(F , G) = Eq( f1, . . . , fk). This correspondence is well-behaved under homotopy,
since changing the maps f i by homotopies corresponds in a natural way to a change of F and G by homotopies. As we shall
see, the homotopy-invariant behavior of Eq( f1, . . . , fk) is the same as that of Coin(F , G), and we may define Nielsen-type
invariants for the equalizer set in terms of the same invariants from the coincidence theory of (F , G).

In Section 2 we define the Reidemeister and equalizer classes which form the building blocks for our theory. In Section 3
we define the Nielsen number and in Section 4 we give some computational results for maps into Jiang spaces and maps of
tori. In Section 5 we give an application to Nielsen coincidence theory in positive codimensions, giving a full computation
of the “geometric Nielsen number” on tori.

2. Reidemeister and equalizer classes

Let X and Y be spaces with universal covering spaces (connected, locally path-connected, and semilocally simply con-
nected), and let X̃ and Ỹ be the universal covering spaces with projection maps p X : X̃ → X and pY : Ỹ → Y . For maps
f1, . . . , fk : X → Y , we wish to construct a Reidemeister-type theory for the equalizer points Eq( f1, . . . , fk), so that each
point has an algebraic Reidemeister class, and two equalizer points can be combined by homotopy only when their classes
are equal.

Our basic result is a generalization of a well-known result from coincidence theory which is stated in part (without
proof) as Lemma 2.3 of [2]. For the sake of completeness we give a full proof. The proof is similar to that of Theorem 1.5
in [6], which is the corresponding statement in fixed point theory. Throughout, elements of the fundamental group are
viewed as deck transformations on the universal covering space.

Theorem 2.1. Let f1, . . . , fk : X → Y be maps with lifts f̃ i : X̃ → Ỹ and induced homomorphisms φi : π1(X) → π1(Y ).

1. We have

Eq( f1, . . . , fk) =
⋃

α2,...,αk∈π1(Y )

p X Eq( f̃1,α2 f̃2, . . . ,αk f̃k).

2. For αi, βi ∈ π1(X), the sets

p X Eq( f̃1,α2 f̃2, . . . ,αk f̃k) and p X Eq( f̃1, β2 f̃2, . . . , βk f̃k)

are disjoint or equal.
3. The above sets are equal if and only if there is some z ∈ π1(X) with

βi = φ1(z)αiφi(z)−1

for all i.

Proof. For the first statement, take some x ∈ Eq( f1, . . . , fk) and some x̃ ∈ p−1
X (x). We have pY ( f̃ i(x̃)) = f i(x) = f1(x) for all i,

and thus the values f̃ i(x̃) all differ by deck transformations. That is, there are αi ∈ π1(Y ) with

f̃1(x̃) = α2 f̃2(x̃) = · · · = αk f̃k(x̃),

which is to say that x̃ ∈ Eq( f̃1,α2 f̃2, . . . ,αk f̃k), and so x ∈ p X Eq( f̃1,α2 f̃2, . . . ,αk f̃k) as desired.
Now we prove statement 3. First, let us assume that p X Eq( f̃1,α2 f̃2, . . . ,αk f̃k) = p X Eq( f̃1, β2 f̃2, . . . , βk f̃k). This means

that for any point x̃ ∈ Eq( f̃1,α2 f̃2, . . . ,αk f̃k), there is some deck transformation z ∈ π1(X) with zx̃ ∈ Eq( f̃1, β2 f̃2, . . . , βk f̃k).
Then we have

βi f̃ i(zx̃) = f̃1(zx̃) = φ1(z) f̃1(x̃) = φ1(z)αi f̃ i(x̃) = φ1(z)αiφi(z)−1 f̃ i(zx̃).

Since the two lifts βi f̃ i and φ1(z)αiφi(z)−1 f̃ i agree at a point, they are the same lift, and thus

βi = φ1(z)αiφi(z)−1

as desired.
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For the converse in statement 3, assume that βi = φ1(z)αiφi(z)−1 for all i, and take x ∈ p X Eq( f̃1,α2 f̃2, . . . ,αk f̃k). Then
we have φ1(z)αi = βiφi(z) for all i, and so

f̃1(zx̃) = φ1(z) f̃1(x̃) = φ1(z)αi f̃ i(x̃) = βiφi(z) f̃ i(x̃) = βi f̃ i(zx̃).

Thus zx̃ = Eq( f̃1, β2 f̃2, . . . , βk f̃k), and so x ∈ p X Eq( f̃1, β2 f̃2, . . . , βk f̃k), and we have shown

p X Eq( f̃1,α2 f̃2, . . . ,αk f̃k) ⊂ p X Eq( f̃1, β2 f̃2, . . . , βk f̃k).

A symmetric argument shows the converse inclusion, and so the above sets are equal.
For statement 2, it suffices to show that if there is a point

x ∈ p X Eq( f̃1,α2 f̃2, . . . ,αk f̃k) ∩ p X Eq( f̃1, β2 f̃2, . . . , βk f̃k),

then the two sets of the above intersection are equal. For such a point x, there are x̃0, x̃1 ∈ p−1
X (x) with

x̃0 ∈ Eq( f̃1,α2 f̃2, . . . ,αk f̃k), x̃1 ∈ Eq( f̃1, β2 f̃2, . . . , βk f̃k).

Let z ∈ π1(X) with zx̃0 = x̃1. Then we have

βi f̃ i(zx̃0) = βi f̃ i(x̃1) = f̃1(x̃1) = f̃1(zx̃0) = φ1(z) f̃1(x̃0)

= φ1(z)αi f̃ i(x̃0) = φ1(z)αiφi(z)−1 f̃ i(zx̃0).

The above equality shows two lifts of f i agreeing at the point zx̃0, and so we have βi = φ1(z)αiφi(z)−1, which by statement 3
implies that

p X Eq( f̃1,α2 f̃2, . . . ,αk f̃k) = p X Eq( f̃1, β2 f̃2, . . . , βk f̃k)

as desired. �
Let R(φ1, . . . , φk) = π1(Y )k−1/ ∼ be the quotient of π1(Y )k−1 by the following relation, inspired by statement 3 above:

(α2, . . . ,αk) ∼ (β2, . . . , βk)

if and only if there is some z ∈ π1(X) with

βi = φ1(z)αiφi(z)−1

for all i ∈ {2, . . . ,k}. We call R(φ1, . . . , φk) the set of Reidemeister classes for φ1, . . . , φk .
Then the theorem above gives the following disjoint union

Eq( f1, . . . , fk) =
⊔

(αi)∈R(φ1,...,φk)

p X Eq( f̃1,α2 f̃2, . . . ,αk f̃k).

The above union partitions the equalizer set into Nielsen equalizer classes (or simply equalizer classes). That is, C ⊂
Eq( f1, . . . , fk) is an equalizer class if and only if there are αi with C = p X Eq( f̃1,α2 f̃2, . . . ,αk f̃k). Note that an equalizer
class can be empty. The equalizer classes are related to the coincidence classes of the pair (F , G) from Eq. (�) in the
following way:

Theorem 2.2. A subset C ⊂ Eq( f1, . . . , fk) is an equalizer class if and only if C is a coincidence class when regarded as a subset of
Coin(F , G). That is, C is an equalizer class if and only if there is a deck transformation A ∈ π1(Y k−1) with C = p X Coin( F̃ , AG̃) for
some lifts F̃ and G̃ of F and G.

Proof. First we assume that C is an equalizer class, and so we have lifts f̃ i of f i and αi ∈ π1(Y ) with C =
p X Eq( f̃1,α2 f̃2, . . . ,αk f̃k). Let F̃ and G̃ be given by

F̃ (x̃) = (
f̃1(x̃), . . . , f̃1(x̃)

)
, G̃(x̃) = (

f̃2(x̃), . . . , f̃k(x̃)
)
,

and let A : Ỹ k−1 → Ỹ k−1 be

A( ỹ2, . . . , ỹk) = (α2 ỹ2, . . . ,αk ỹk).

Then we have
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Eq( f̃1,α1 f̃2, . . . ,αk f̃k) = Coin( F̃ , AG̃),

and so C = p X Coin( F̃ , AG̃) as desired.
Now for the converse we assume that C is a coincidence class of (F , G), which means there are lifts F̃ and G̃ of F and

G with a deck transformation A ∈ π1(Y k−1) such that C = p X Coin( F̃ , AG̃). Since F̃ and G̃ are lifts of F and G , we can write

F̃ (x̃) = (
f̃ 2

1 (x̃), . . . , f̃ k
1 (x̃)

)
, G̃(x̃) = (

f̃2(x̃), . . . , f̃k(x̃)
)

where each f̃ i
1 is a lift of f1, and f̃ j is a lift of f j for j � 2. Similarly we may factor A as A = α1 × · · · × αk for αi ∈

π1(Y ).
Each of the f̃ i

1 may be different, but there is a single lift f̃1 of f1 with deck transformations βi such that βi f̃1 = f̃ i
1. Then

we have

Coin( F̃ , AG̃) = Coin
(
(β2 f̃1, . . . , βk f̃1), (α2 f̃2, . . . ,αk f̃k)

)
= Coin

(
( f̃1, . . . , f̃1),

(
β−1

2 α2 f̃2, . . . , β
−1
k αk f̃k

))
= Eq

(
f̃1, β

−1
2 α2 f̃2, . . . , β

−1
k αk f̃k

)
and so C = p X Coin( F̃ , AG̃) is an equalizer class. �

The equalizer classes can be described nicely in terms of paths in X and their images under the f i :

Theorem 2.3. Two points x, x′ ∈ Eq( f1, . . . , fk) are in the same equalizer class if and only if there is some path γ : [0,1] → X from x
to x′ such that f1(γ ) and fi(γ ) are homotopic as paths with fixed endpoints for all i.

Proof. Our points x, x′ are in the same equalizer class if and only if they are in the same coincidence class of the pair
(F , G). A standard result in coincidence theory shows that this is equivalent to the existence of a path γ in X from x to x′
with F (γ ) � G(γ ). This is equivalent to

( f1, . . . , f1)(γ ) � ( f2, . . . , fk)(γ ),

which is equivalent to f1(γ ) � f i(γ ) for each i. �
3. The equalizer index and the Nielsen number

Let Eq( f1, . . . , fk, U ) = Eq( f1, . . . , fk) ∩ U , and let Coin( f , g, U ) = Coin( f , g) ∩ U .
Our index for equalizer sets will be defined in terms of the coincidence index i. We first review some properties of the

coincidence index. Let f , g : M → N be maps between compact orientable manifolds of the same dimension. The coincidence
index i( f , g, U ) is an integer valued function defined for open sets U with Coin( f , g, U ) compact. It satisfies the following
properties:

• Homotopy: Let f ′ � f and g′ � g , by homotopies Ft and Gt , such that the set{
(x, t)

∣∣ x ∈ Coin(Ft, Gt , U )
} ⊂ M × [0,1]

is compact (such a pair of homotopies is called admissible). Then i( f , g, U ) = i( f ′, g′, U ).
• Additivity: If U1 ∩ U2 = ∅ and Coin( f , g, U ) ⊂ U1 ∪ U2, then

i( f , g, U ) = i( f , g, U1) + i( f , g, U2).

• Solution: If i( f , g, U ) �= 0, then Coin( f , g, U ) is not empty.

We wish to define a similar index in the equalizer setting. Let X and Y be compact orientable manifolds of dimensions
(k − 1)n and n, respectively, with maps f1, . . . , fk : X → Y . We call ( f1, . . . , fk, U ) admissible when Eq( f1, . . . , fk, U ) is
compact.

Let F , G : X → Y k−1 be the maps as in (�). These are maps between compact orientable manifolds of the same dimen-
sion. When ( f1, . . . , fk, U ) is admissible, then Coin(F , G, U ) = Eq( f1, . . . , fk, U ) is compact, and thus the coincidence index
i(F , G, U ) is defined. We define the equalizer index ind( f1, . . . , fk, U ) to be i(F , G, U ).

This equalizer index satisfies the appropriate homotopy, additivity, and solution properties. If ( f1, . . . , fk, U ) and
( f ′

1, . . . , f ′
k, U ) are admissable and f i � f ′

i with homotopy Hi , we say that (Hi) is an admissible homotopy of ( f1, . . . , fk, U )

to ( f ′
1, . . . , f ′

k, U ) when the set{
(x, t)

∣∣ x ∈ Eq
(

H1
t , . . . , Hk

t , U
)} ⊂ X × I

is compact.
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Theorem 3.1. Let f1, . . . , fk : X → Y be maps of compact orientable manifolds of dimensions (k − 1)n and n respectively, and let
U ⊂ X be open with ( f1, . . . , fk, U ) admissable.

Then the equalizer index ind( f1, . . . , fk, U ) is defined and satisfies the following properties:

• Homotopy: If ( f1, . . . ,kk, U ) is admissibly homotopic to ( f ′
1, . . . , f ′

k, U ), then ind( f1, . . . , fk, U ) = ind( f ′
1, . . . , f ′

k, U ).
• Additivity: If U1 ∩ U2 = ∅ and Eq( f1, . . . , fk, U ) ⊂ U1 ∪ U2 , then

ind( f1, . . . , fk, U ) = ind( f1, . . . , fk, U1) + ind( f1, . . . , fk, U2).

• Solution: If ind( f1, . . . , fk, U ) �= 0, then Eq( f1, . . . , fk, U ) is not empty.

Proof. The proofs of these properties all follow from the same properties of the coincidence index of the pair F , G as
in (�). �

For an equalizer class C , we define the index of C , written ind( f1, . . . , fk, C), as ind(F , G, U ), where U is an open set
with Coin(F , G, U ) = C (such an open set will always exist because coincidence classes are closed and X is compact).

At this point we take a slight diversion to give a note on the computation of the index of differentiable maps in terms
of their derivatives. When X and Y are differentiable manifolds and each of f i is differentiable, the maps F and G will also
be differentiable, and the derivative maps D Fx, DGx : R

(k−1)n → R
(k−1)n are defined at each point x ∈ X .

Let x ∈ Eq( f1, . . . , fk) be an equalizer point. We say that x is nondegenerate when DGx − D Fx is nonsingular. In this case
there is a neighborhood U around x containing no other coincidence points of F and G , and thus no other equalizer points,
and the index can be computed by the well-known formula from coincidence theory:

ind( f1, . . . , fk, U ) = i(F , G, U ) = sign det(DGx − D Fx).

The definitions of F and G give the following formula in terms of the f i .

Theorem 3.2. Let f1, . . . , fk : X → Y be maps of compact orientable manifolds of dimensions (k − 1)n and n respectively, and let
x ∈ Eq( f1, . . . , fk) be nondegenerate.

Then there is a neighborhood U of x with Eq( f1, . . . , fk, U ) = {x} such that

ind( f1, . . . , fk, U ) = sign det

⎛
⎝df2 − df1

...

dfk − df1

⎞
⎠

where all derivatives are taken at the point x (each row in the above is an n × (k − 1)n block matrix, so that the whole matrix has size
(k − 1)n × (k − 1)n).

Now we discuss the index theory for the nonorientable case. For the coincidence theory of maps f , g : M → N of
compact (perhaps nonorientable) manifolds of the same dimension, an integer-valued coincidence index cannot in general
be defined. There is a related semi-index (see [2]) which plays a similar role.

The semi-index, which we denote |i|, is defined not for arbitrary open sets, but only for coincidence classes, and satisfies
properties similar to those of the coincidence index. Let C ⊂ Coin( f , g) be a coincidence class with C = p Coin( f̃ ,α g̃). Then
if f � f ′ and g � g′ , these homotopies will lift, producing maps f̃ ′ � f̃ and g̃′ � g̃ which are lifts of f ′ and g′ respectively.
Thus D = p Coin( f̃ ′,α g̃′) is a coincidence class of ( f ′, g′), and we say that D is “related to C” with respect to the pair of
homotopies.

If f , g : M → N are maps of compact manifolds of the same dimension and C is a (possibly empty) coincidence class,
then |i|( f , g, C) is defined and satisfies:

• Homotopy: If f ′ � f and g′ � g , and D is the coincidence class of ( f ′, g′) which is related to C with respect to these
homotopies, then |i|( f , g, C) = |i|( f ′, g′, D).

• Solution: If |i|( f , g, C) �= 0, then C is not empty.
• Naturality: If M and N are orientable, then |i|( f , g, C) = |i( f , g, C)|, the absolute value of the usual coincidence index.

In the setting of equalizer theory for maps f1, . . . , fk : X → Y of compact (possibly nonorientable) manifolds with an
equalizer class C , we define the equalizer semi-index as in the orientable case: let (F , G) be as in (�), and we define
|ind|( f1, . . . , fk, C) = |i|(F , G, C). Given homotopies f ′

i � f i , the “relation” between equalizer classes of ( f1, . . . , fk) and
( f ′

1, . . . , f ′
k) is defined exactly as in coincidence theory.

The following has routine proofs similar to those for Theorem 3.1.

Theorem 3.3. Let f1, . . . , fk : X → Y be maps of compact (possibly nonorientable) manifolds of dimensions (k − 1)n and n respec-
tively, and let C ⊂ Eq( f1, . . . , fk, U ) be an equalizer class.

Then the equalizer semi-index |ind|( f1, . . . , fk, C) is defined and satisfies the following properties:
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• Homotopy: If f i is homotopic to f ′
i for each i and D is the equalizer class of ( f ′

1, . . . , f ′
k) which is related to C , then

|ind|( f1, . . . , fk, C) = |ind|( f ′
1, . . . , f ′

k, D
)
.

• Solution: If |ind|( f1, . . . , fk, C) �= 0, then C is not empty.
• Naturality: If X and Y are orientable, then

|ind|( f1, . . . , fk, C) = ∣∣ind( f1, . . . , fk, C)
∣∣,

the absolute value of the usual equalizer index.

An equalizer class is called essential if its index (or semi-index in the nonorientable case) is nonzero.

Definition 3.4. The Nielsen [equalizer] number N( f1, . . . , fk) is defined to be the number of essential equalizer classes of
( f1, . . . , fk).

From Theorem 2.2 and the definition of the index of a class, we see that N( f1, . . . , fk) is equal to the Nielsen coincidence
number of the pair (F , G). Since the Nielsen equalizer number is so closely related to a coincidence number, we can obtain
a Wecken-type theorem for the minimal number of equalizer points. Let ME( f1, . . . , fk) be the minimal number of equalizer
points, defined as

ME( f1, . . . , fk) = min
{

#Eq
(

f ′
1, . . . , f ′

k

) ∣∣ f ′
i � f i

}
.

By the solution properties of the index and semi-index, every essential equalizer class must contain an equalizer point,
and so

N( f1, . . . , fk) � ME( f1, . . . , fk).

These two quantities are in fact equal in most cases, as the following theorem shows.

Theorem 3.5. Let f1, . . . , fk : X → Y be maps of compact manifolds of dimensions (k − 1)n and n respectively. If (k − 1)n �= 2, then

ME( f1, . . . , fk) = N( f1, . . . , fk).

In the case of “proper” equalizer theory (when k > 2), the result holds for all k and n except (k,n) = (3,1), which is to say equalizer
theory of three maps from a compact surface to the circle.

Proof. The second statement is simply a consequence of k,n being natural numbers with (k − 1)n �= 2, so we focus on the
first statement.

Let (F , G) be defined as in (�), and we have N( f1, . . . , fk) = N(F , G). The maps F , G are maps between compact mani-
folds of dimension (k−1)n. By our hypothesis this dimension is not 2, and so the Wecken theorem for coincidences (see [3])
gives maps F ′ � F and G ′ � G with #Coin(F ′, G ′) = N(F , G). A result of Brooks in [1] shows that in fact there is a single
map G ′′ � G with Coin(F ′, G ′) = Coin(F , G ′′), and thus #Coin(F , G ′′) = N(F , G).

Our map G ′′ is a map of X → Y k−1, so it can be written as G ′′(x) = (g2(x), . . . , gk(x)) with gi � f i . Now we have

#Eq( f1, g2, . . . , gk) = #Coin
(

F , G ′′) = N(F , G) = N( f1, . . . , fk),

and so ME( f1, . . . , fk) � N( f1, . . . , fk) as desired. �
4. Some computations

4.1. Jiang spaces

One setting in which the fixed point and coincidence Nielsen numbers are easily calculated is for maps on Jiang spaces.
See [6] for the definition and basic results in fixed point theory. The class of Jiang spaces includes topological groups,
generalized lens spaces and certain other homogeneous spaces, and is closed under products. The main result (see [3]) from
coincidence theory concerning Jiang spaces is the following:

Theorem 4.1. If f , g : M → N are maps of compact orientable manifolds of the same dimensions and N is a Jiang space, then every
coincidence class has the same index.

Our theorem concerning Jiang spaces is the following result, which is facilitated by the coincidence theory of the maps
(F , G) as in (�).
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Theorem 4.2. If f1, . . . , fk : X → Y are maps of compact orientable manifolds of dimensions (k − 1)n and n respectively and Y is a
Jiang space, then every equalizer class has the same index.

Proof. Let F , G : X → Y k−1 be given as in (�):

F (x) = (
f1(x), . . . , f1(x)

)
, G(x) = (

f2(x), . . . , fk(x)
)
.

Since Y is a Jiang space, then Y k−1 is a Jiang space. Thus by Theorem 4.1 all coincidence classes of F , G will have the
same coincidence index. But the equalizer classes of f1, . . . , fk are the same as the coincidence classes of F , G , with the
same indices, so all equalizer classes of f1, . . . , fk will have the same equalizer index. �

Define the Reidemeister number and Lefschetz number as: R( f1, . . . , fk) = #R(φ1, . . . , φk) (this quantity may be infinite)
and L( f1, . . . , fk) = ind( f1, . . . , fk, X). Then we obtain:

Corollary 4.3. If f1, . . . , fk : X → Y are maps of compact orientable manifolds of dimensions (k − 1)n and n respectively, and Y is a
Jiang space, then:

• If L( f1, . . . , fk) = 0 then N( f1, . . . , fk) = 0.
• If L( f1, . . . , fk) �= 0 then N( f1, . . . , fk) = R( f1, . . . , fk).

Proof. By the additivity property, L( f1, . . . , fk) is the sum of the indices of each equalizer class. By Theorem 4.2 all classes
have the same index, thus L( f1, . . . , fk) = 0 means that all classes are inessential and so N( f1, . . . , fk) = 0. If the Lefschetz
number is not zero then all classes are essential and so the Nielsen number is simply the number of classes, which is the
Reidemeister number. �
4.2. Tori

We can give a very specific formula for the Nielsen number of maps f1, . . . , fk : T (k−1)n → T n on tori. We will view T m

as the quotient of R
m by the integer lattice, and consider maps which are induced by linear maps on R

(k−1)n → R
n taking

Z
(k−1)n to Z

n . We can think of such a map as an n × (k − 1)n matrix with integer entries, which we call the “induced
matrix”.

We now prove the formula which was used in the computation of Example 1.2. The result generalizes the well-known
formula for the Nielsen coincidence number on tori which was proved in Lemma 7.3 of [4]: if f1, f2 are given by square
matrices A1 and A2, then N( f1, f2) = |det(A2 − A1)|.

Theorem 4.4. If f1, . . . , fk : T (k−1)n → T n are maps on tori with induced matrices Ai , then

N( f1, . . . , fk) =
∣∣∣∣∣∣det

⎛
⎝ A2 − A1

...

Ak − A1

⎞
⎠

∣∣∣∣∣∣ .

Proof. Let F , G : T (k−1)n → T (k−1)n be as in (�). Then the induced matrices of F and G will be given by block matrices

A F =
⎛
⎝ A1

...

A1

⎞
⎠ , AG =

⎛
⎝ A2

...

Ak

⎞
⎠ ,

and so the formula for the Nielsen coincidence number on tori gives

N(F , G) =
∣∣∣∣∣∣det

⎛
⎝ A2 − A1

...

Ak − A1

⎞
⎠

∣∣∣∣∣∣ .
But N(F , G) = N( f1, . . . , fk), and so the result is proved. �

We further note that since tori have the Wecken property for coincidence theory, we can drop the dimension assumption
of Theorem 3.5.

Theorem 4.5. Let f1, . . . , fk : T (k−1)n → T n be maps of tori. Then

ME( f1, . . . , fk) = N( f1, . . . , fk).
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Proof. Let (F , G) be as in (�), and then since tori have the Wecken property there is a map G ′′ � G with #Coin(F , G ′′) =
N(F , G). We finish the argument as in the last paragraph of the proof of Theorem 3.5. �
5. Coincidence theory with positive codimension

We end with an application to coincidence theory with positive codimension, which typically requires much more diffi-
cult techniques than those of this paper. In this setting we consider maps f1, f2 : X → Y of compact manifolds of dimensions
m and n with m > n and try to minimize by homotopies the quantity #π0(Coin( f1, f2)), the number of path components
of Coin( f1, f2).

There is no coincidence index in the positive codimension setting, and so the problem of judging essentiality of classes
is more complicated. A coincidence class C ⊂ Coin( f1, f2) is removable by homotopy when there is some pair of homotopies
f i � f ′

i such that C is “related” (in the sense of Theorem 3.3) to the empty class. When a class is not removable by
homotopy, it is called geometrically essential. The number of geometrically essential classes is called the geometric Nielsen
number, which we denote NG( f1, f2).

Any two coincidence points which can be connected by a path of coincidence points will be in the same coincidence
class. Thus each class is a union of path components of Coin( f1, f2), and so NG( f1, f2) � #π0(Coin( f1, f2)). Since NG( f1, f2)

is homotopy invariant, in fact it is a lower bound for the minimal number of path components of the coincidence set when
f1 and f2 are changed by homotopies.

We begin with a simple result which in some cases can demonstrate that a coincidence class is geometrically essential.

Theorem 5.1. Let f1, . . . , fk : X → Y be maps of spaces of dimension (k − 1)n and n respectively, and let f i, f j be any two of these
maps. Then each equalizer class of ( f1, . . . , fk) is a subset of some coincidence class of ( f i, f j), and any coincidence class containing
an essential equalizer class is geometrically essential.

Proof. To show that each equalizer class is a subset of a coincidence class, let C be an equalizer class. Then there are lifts
f̃ i and deck transformations αi with

C = p X Eq(α1 f̃1,α2 f̃2, . . . ,αk f̃k) ⊂ p X Coin(αi f̃ i,α j f̃ j),

and the right side above is a coincidence class.
Now let D ⊂ Coin( f i, f j) be a coincidence class containing some essential equalizer class C ⊂ D . If D were removable by

a homotopy as a coincidence class, then necessarily C would be removable by a homotopy as an equalizer class, which is
impossible since C is essential. Thus D is geometrically essential. �

We can state the above in terms of Nielsen numbers:

Corollary 5.2. Let f1, f2 : X → Y be maps of spaces of dimension (k − 1)n and n respectively. If there are maps f3, . . . , fk with
N( f1, . . . , fk) �= 0, then NG( f1, f2) �= 0.

Proof. If N( f1, . . . , fk) �= 0 then there is an essential equalizer class of ( f1, . . . , fk), which by Theorem 5.1 is contained in a
geometrically essential coincidence class of ( f1, f2). The existence of this coincidence class means that NG( f1, f2) �= 0. �

Now we focus on tori, for which we can be much more specific about the value of NG( f1, f2). As we will see, Corol-
lary 5.2 is strong enough to give a complete computation of NG( f1, f2) based on the matrices which specify the maps, even
in the case where the domain dimension is not a multiple of the codomain dimension.

Theorem 5.4 below, computing the value of NG( f1, f2) on tori, is proved by Jezierski in [5]. Most of the argument follows
exactly the proof in the codimension zero case given in [4]. The key novel step in the positive codimension setting is the
following lemma.

Lemma 5.3. Let f1, f2 : T m → T n be maps of tori with induced matrices A1, A2 . If A2 − A1 has rank n, then NG( f1, f2) �= 0.

Jezierski proves this by using the fact that, for m > n, we can consider T n as a subspace of T m and then note that
the restrictions of f1, f2 will have a nonremovable coincidence class. Jezierski’s approach effectively decreases the domain
dimension in order to apply the classical codimension zero theory.

We take the opposite approach of increasing the domain dimension by taking a product with circles and introducing
additional maps f3, . . . , fk which allow us to apply Corollary 5.2. While Jezierski’s approach is simpler for this particular
argument, it relies strongly on the fact that there is a standard embedding of T n inside T m . Since we do not use this fact,
we hope that our strategy may be useful in other settings.

Proof of Lemma 5.3. First we consider the case where m = (k − 1)n for some k. In this case we can choose matrices
A3, . . . , Ak so that
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det

⎛
⎝ A2 − A1

...

Ak − A1

⎞
⎠ �= 0,

and so there are maps f3, . . . , fk with N( f1, . . . , fk) �= 0. By Corollary 5.2 this implies that NG( f1, f2) �= 0.
For general m, let k > 2 be an integer with (k − 1)n � m. Then define g1, g2 : T (k−1)n → T n as gi = f i ◦ σ , where

σ : T (k−1)n → T m is the projection onto the first m coordinates (viewing the torus as a product of circles). Let Bi be the
(k − 1)n × n integer matrix representing gi . As a matrix, Bi is simply Ai with columns of zeros added, and so the rank of
A2 − A1 is the same as that of B2 − B1.

Our assumption that A2 − A1 has rank n means that B2 − B1 has rank n, and so by our first case we have NG(g1, g2) �= 0,
and we have a geometrically essential coincidence class D ⊂ Coin(g1, g2). Let f̃ i be lifts of f i , and let g̃i = f̃ i ◦ σ̃ , where σ̃
is the projection onto the first m coordinates of T̃ (k−1)n = R

(k−1)n . Then g̃i is a lift of gi , and so there is some α ∈ π1(T n)

with

D = p Coin(g̃1,α g̃2).

Let x ∈ σ(D), so there is some y with σ(y) = x and a lift ỹ = p−1(y) with g̃1( ỹ) = α g̃2( ỹ), and thus f̃1(σ̃ ( ỹ)) =
α f̃2(σ̃ ( ỹ)). Since p(σ̃ ( ỹ)) = σ(y) = x, we have x ∈ p Coin( f̃1,α f̃2). This set C = p Coin( f̃1,α f̃2) is a coincidence class of
( f1, f2), and we have shown that σ(D) ⊂ C .

Recall that we are trying to show that NG( f1, f2) �= 0. For the sake of a contradiction, assume that NG( f1, f2) = 0, so
that each class (in particular the class C ) is removable by homotopy. This means there are maps f ′

i � f i with lifts f̃ ′
i � f̃ i

such that

p Coin
(

f̃ ′
1,α f̃ ′

2

) = ∅. (1)

Let g′
i = f ′

i ◦ σ and g̃′
i = f̃ ′

i ◦ σ̃ . Then g′
i � gi and g̃′

i � g̃i . Since D is geometrically essential, the related class
p Coin(g̃′

1,α g̃′
2) must be nonempty. Take some y in this class and a point ỹ ∈ p−1(y) with g̃′

1( ỹ) = α g̃′
2( ỹ). Then we

have f̃ ′
1(σ̃ ( ỹ)) = α f̃ ′

2(σ̃ ( ỹ)), and so

σ(y) ∈ p Coin
(

f̃ ′
1,α f̃ ′

2

)
,

which contradicts (1). �
The above provides the key step in the proof of the following complete computation of the geometric Nielsen number

on tori. The argument in codimension zero given in [4] carries without modification in arbitrary codimension, except for
this step. Jezierski presents the details, along with a different argument substituting for Lemma 5.3 in [5].

Theorem 5.4. Let f1, f2 : T m → T n be maps of tori with induced matrices A1, A2 . If A2 − A1 has rank n, then

NG( f1, f2) = #π0
(
Coin( f1, f2)

) = #coker(A2 − A1),

where coker(A2 − A1) = Z
n/ im(A2 − A1), the cokernel of A2 − A1 when viewed as a homomorphism Z

m → Z
n.

As a brief illustration, we compute the geometric Nielsen coincidence numbers for the maps f , g,h : T 2 → S1 from
Example 1.2.

Example 1.2. (Continued.) Recall our maps were given by matrices:

A f = (3 1), Ag = (0 2), Ah = (−1 − 1).

For each pair of matrices the rank assumption of Theorem 5.4 holds.
It is straightforward to compute the required cokernels. We have A g − A f = ( 3 −1 ), and so im(Ag − A f ) = Z, since

gcd(3,−1) = 1. Thus the cokernel is trivial and so NG( f , g) = 1. A similar computation shows that NG(g,h) = 1. For ( f ,h),
we have Ah − A f = (2 − 2), and so im(Ah − A f ) = 2Z. Thus the cokernel is Z/2Z, and so NG( f ,h) = 2.

By Theorem 5.4 these Nielsen numbers should agree with the number of path components of the coincidence sets.
Counting components in Fig. 1 indeed gives #π0(Coin( f , g)) = #π0(Coin(g,h)) = 1 and #π0(Coin( f ,h)) = 2.
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