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Abstract-Under general conditions, the inverse sample information matrix can be used to es- 
tablish a Cramer-R,ao lower bound of the covariance matrix of parameter estimates of a model, and 
the inverse asymptotic information matrix is the asymptotic covariance matrix of the parameter 
estimates. The paper does two things. First, it derives a recursive Kalman-filtering method for com- 
puting exact sample and asymptotic information matrices for timeinvariant, periodic, or generally 
time-varying Gaussian vector autoregressive moving-average (VARMA) models and samples. Sec- 
ond, it specializes the recursive method to a nonrecursive method for computing exact asymptotic 
information matrices for time-invariant or periodic VARMA models and samples 
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1. INTRODUCTION 

Under general conditions, maximum likelihood parameter estimates of Gaussian, stationary, and 

invertible, vector autoregressive moving-average (VARMA) models are known to be consistent 

and asymptotically normally distributed, with asymptotic covariance matrix equal to the inverse 

asymptotic information matrix [1,2, Chapter 71. Until recently, the asymptotic information ma- 

trix of the general Gaussian VARMA model has been stated only in terms of formulas involving 

integration over the frequency domain [2, pp. 428-430, 441-4421. More concise time-domain for- 

mulae, which do not require frequency-domain integration, have been derived only for univariate 

ARMA models [3, pp. 240-2421. Because the frequency-domain integrals can generally be com- 

puted only numerically, the information matrix has usually been approximated with analytical 

(if possible) or numerical derivatives of the likelihood function [4]. 

Recently, Zadrozny [5,6] d erived a recursive Kalman-filtering method for computing exact 

sample and asymptotic information matrices of Gaussian VARMA models. The method involves 

forming the Gaussian likelihood function with the Kalman filter and recursively computing ex- 

pected values of second-partial derivatives of the likelihood function. Iterating over the sample 

with the method produces the sample information matrix. Iterating until convergence produces 
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the asymptotic information matrix. The sample information matrix is of interest because it can 

be used to establish a Cramer-Rao lower bound of the sample covariance matrix of parameter 

estimates [7, p. 1281. More recently, Terceiro Lomba [8] stated a computationally less efficient 

version of this method. 

The present paper derives a more efficient version of the recursive Kalman-filtering method for 

computing sample and asymptotic information matrices for general Gaussian VARMA models. 

The method is applicable to time-invariant, periodic, or generally time-varying models and sam- 

ples. If the model and sample are time invariant or periodic and some common system-theoretic 

conditions hold, then the recursive computational equations and the matrices propagated by them 

converge to steady-state values or to periodic cycles. (Time invariant, time varying, and periodic 

models and samples are precisely defined at the end of Section 2.) If the model and sample are 

time invariant or periodic and the goal is to compute the asymptotic information matrix, then 

it is generally more efficient to directly solve the steady-state equations. Periodic models have 

recently begun to gain attention [9], in particular, as models of seasonal fluctuations [lo]. The 

sample is periodic if, for example, different variables are observed at different frequencies [ll]. 

The paper also extends the recursive method to a nonrecursive method for computing asymptotic 

information matrices for time-invariant or periodic models and samples. 

To our knowledge, the only other similar results for computing exact sample or asymptotic in- 

formation matrices are by Porat and Friedlander [7]. They describe a method, based on Levinson- 

Durbin filtering, for recursively computing the exact sample information matrix for univariate 

stationary linear dynamic models with possible exogenous variables. As examples, they work 

out details for some univariate ARMA models. Their method does not immediately extend to 

multivariate models. In effect, by replacing Levinson-Durbin filtering with Kalman filtering, the 

present method extends the method of Porat and Friedlander to multivariate models. 

The paper proceeds as follows. Section 2 introduces the model and rewrites it in a state-space 

representation. In part as a means of establishing notation, Section 3 reviews the computation of 

the Gaussian likelihood function with the Kalman filter. Section 4 derives the recursive method. 

Section 5 derives the nonrecursive method for time-invariant models and samples. Section 6 

extends the nonrecursive method to periodic models and samples. Section 7 concludes with 

remarks. 

2. STATE-SPACE REPRESENTATION 
OF AN ARMA MODEL 

Let u(t) be an m x 1 vector generated by the stationary and invertible ARMA@, 4) model 

A(L) u(t) = B(L) e(t) fort=l,...,N, (2.1) 

where A(L) = I, - 5 Ak L”, B(L) = 5 Bk L”, L is the lag operator, I,,, is the 
k=l k=O 

m x m identity matrix, and e(t) is an m x 1 Gaussian white-noise disturbance vector with zero 

mean and constant covariance matrix. The distributional assumptions on e(t) are denoted by 

e(t) N NIID[O, I=,], h w ere & = E e(t) e(t)T (the superscript T denotes transposition). The 

model is, respectively, stationary and invertible if the characteristic equations IA(z)1 = 0 and 
IB(z)) = 0 have all roots outside the unit circle. There is redundancy (an identification problem) 
between Bo and Xc,. Accordingly, we adopt the normalized parameterization, Bo = lower tri- 

angular and & = I,. This parameterization is convenient for maximum likelihood estimation 

because, when all elements on the principal diagonal of Bo are nonzero, the model implies a 
nonsingular probability distribution for the observations. 

Following Ansley and Kohn (see [12]), let x(t) be the n x 1, state vector of the form 

x(t) = [x&)T, *. * ,XT(t)TIT, where T = max(p, q + 1) and xk(t) for k = 1, . . . , r, is m x 1, 

so that n = mr. Let the law of motion of x(t) be 

x(t) = F x(t - 1) + G e(t), (2.2) 
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Ak = 0 for k > p, Bk = 0 for k > q, the zero and identity matrices in F are all m x m, and e(t) 

is the m x 1 disturbance vector from (2.1). 

Associated with the state equation (2.2) is the observation equation 

y(t) = D x(t) + C(t), (2.3) 

where D = [I, 0,. . . ,O] is the m x n selection matrix which picks xi(t) out of x(t), and C(t) 
is an optional vector of observation errors distributed as C(t) N NIID[O, EC], where EC > 0 
(positive semidefinite). It is convenient to reparameterize EC to R, where R is lower triangular 
and satisfies EC = R RT, and, thereby, automatically impose Xc 2 0. Observation errors are an 
integral part of the Kalman filter and specifying even a small amount of observation error can 
significantly improve the numerical stability of the computations [13]. 

As stated, the model, (2.2), and the sample, as characterized by the sampling scheme (2.3), 
are both time invariant. If the model and sample are time varying, then the system matrices 
in (2.2) and (2.3) vary over the sample and are written as F(t), G(t), D(t), and E,(t). If the 
model and sample are periodic, then, these matrices vary periodically with t, with some overall 
periodicity p. 

LIKELIHOOD 

Let 

3. COMPUTATION OF THE 
FUNCTION WITH THE KALMAN FILTER 

8 = [vec(Ai)T,. . . , vec(A,)T,vech(Bs)T, vec(Bi)T,. . . ,vec(B,)T]T 

be the a x 1 vector which collects the unnormalized parameters of (2.1), where vet(.) vectorizes 
a matrix columnwise and vech(.) vectorizes the lower-triangular part of a matrix columnwise 
(including elements on the principal diagonal). Xc (or its reparameterization R) is not included 
in 8 because Bs and EC are not both identifiable. We assume that Xc is set according to relative 
precision of data and that Bc is estimated. 

Let Y(t) = {I>:=,, such that Y(N) = {y(t)}Ei is the full sample of observations. Then 
E(t) = y(t) - E[y(t) 1 g(t - l)] is the innovation of y(t) and M(t) = E r(t) r(t)T is its covariance 
matrix. Ignoring terms which are independent of 0, -2 times the Gaussian log-likelihood function 
can be expressed as 

L(N) = 2 {In IW)l + t(tJT M(t)-’ C(t)} . (3.1) 
t=1 

Given the data, the model in state-space form, and values of its parameters, the discrete-time 
Kalman filter provides a way of recursively computing t(t) and M(t), for t = 1,. . . , N [12,14,15]. 

Let x(t 1 t - 1) = E[x(t) I Y(t - l)] be the prediction of the state vector one period ahead, with 
associated error, Z(t) = x(t) - x(t 1 t - l), and error covariance matrix, V(t) = E[%(t) Z(t)T]. 

Then, given initial values x(1 ] 0) and V(l), the following Kalman-filtering equations recursively 
compute e(t) and M(t), for t = 2,. . . , N, 
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M(t) = Xc + D V(t) DT, (3.2) 

t(t) = y(t) - D x(t I t - I), (3.3) 

K(t) = F V(t) DT M(t)-‘, (3.4) 

x(t + 1 ( t) = F x(t 1 t - 1) + K(t) t(t), (3.5) 

@(t) = F - K(t) D, (3.6) 

V(t + 1) = cP(t) V(t) +(t)T + K(t) EC K(t)T + G GT. (3.7) 

K(t) is called the Kalman gain matrix; cP(t) is called the closed loop matrix. Equations (3.2)-(3.7) 

are one of many theoretically-but not numerically-equivalent ways of writing the Kalman fil- 

ter [14]. In particular, equation (3.7) is a numerically stable version of the discrete-time recursive 

Riccati equation [13]. 

If the model is stationary, then the exact likelihood function is obtained by setting x(1 ] 0) 

to the unconditional mean of x(t) and setting V(1) to the unconditional covariance of x(t). 

Accordingly, when the data have been adjusted for means and fixed effects (as they should be 

for a VARMA model), x(1 ] 0) = 0 and V(1) = C, where C solves the discrete-time algebraic 

Lyapunov equation 

C-FCFT=GGT. (3.8) 

If the model is nonstationary, then, other methods must be used for setting x(1 ] 0) and V(1) 

(e.g.7 1161). 
There are various ways of solving (3.8). A straightforward and generally effective way is as 

follows. First, apply the vectorization rule [17, p. 301 

vec(A B C) = [CT @ A] vet(B), (3.9) 

where @ denotes the Kronecker product, to obtain the n2 x n2 linear system 

[In2 - (F @ F)] vet(C) = vec(G GT), (3.10) 

where I,2 is the n2 x n2 identity matrix. Then, exploit the symmetry of C and G GT to 

reduce (3.9) to the n(n + 1)/2 x n(n + 1)/2 linear system A z = b, where z = vech(C) and 

b = vech(G GT). Finally, solve A z = b for z by some standard method (e.g., Gaussian 

elimination with partial pivoting; [18, pp. 52-691). 

The n2 eigenvalues of [I+ - (F@F)]arel-&Xj,foriandj=l,...,n,wheretheX’sare 
eigenvalues of F. Stationarity means that [Xi] < 1, for i = 1,. . . , n, hence, that 1 - Xi Xj # 0, for 
iandj=l,... , n. Therefore, stationarity implies that [In2 - (F @F)] is invertible, so that (3.8) 
should yield a unique positive semidefinite value of C. 

A more efficient method for computing C is as follows. First, following Mittnik [19], write 

C = 0 s2 OT, where 0 is an n x 2n matrix of zeroes and rearranged elements of 8, and G is 

the 2n x 2n matrix of contemporaneous and serial covariances of the underlying process, u(t), 
and the disturbance vector, e(t). The (2,2)-block of s1 is I,, the n x n identity matrix. The 
off-diagonal blocks of s2 comprise zeroes and Wold MA coefficients of the model. The (1, 1)-block 
of Q can be computed with algorithms proposed by Mittnik [20,21]. Relative efficiency of the 

algorithms depends, in part, on the autoregressive order p. Finally, given G, recursively compute 
0 52 OT [19]. 

Computations are efficient when they are reliable (or numerically stable), accurate, and speedy. 
In a maximum likelihood estimation, speed is important because the likelihood function is com- 

puted repeatedly. Speed is less important in the present computations, because they will be 
executed only once. However, in computing C, reliability and accuracy decreases as the size of 
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the linear system to be solved increases (cf. (18, pp. 24-281). In this respect, it might also be 

desirable to reduce equations (4.8) and (5.12) to (5.14), (6.12), (6.16), and (6.18), derived in 

Sections 4-6, with analogues of Mittnik’s results. 

We assume that enough assumptions are in force so that the Kalman filter converges, as 

t -+ co, and that the converged filter is asymptotically stable. Sufficient conditions for this to 

occur are that D G GT DT > 0 (positive definite) or E:(. > 0 (or some “combination” of these 

matrices is positive definite), and that system (2.2) and (2.3) is stabilizable and detectable (22, 

pp. 533-5351. In the time-invariant case, the Kalman filter is said to converge if M(t), K(t), 

cP(t), and V(t) converge to constant values. Equations (3.2)-(3.7) show that M(t), K(t), and 

cP(t) converge to constant values if and only if V(t) does. In the time-invariant case, the Kalman 

filter is asymptotically stable if the converged closed loop matrix, 3 = ii%@(t), is a stability 

matrix (has all eigenvalues inside the unit circle). In Section 6, these not&s of convergence and 

asymptotic stability are extended to the periodic case. 

4. RECURSIVE COMPUTATION 
OF SAMPLE AND ASYMPTOTIC 

INFORMATION MATRICES 

Let Is(N) and I?(N), respectively, denote sample and asymptotic information matrices of 0. 

Then, under general conditions, I@(N) = f E[V2E(N)] and Ir(N) = 4 $rrr E[V2s(N)/N], 

where V2Z(N) is the approximate cr x Q Hessian matrix of L(N), with (i,j)-element 

o being the dimension of 8 

In general, & denotes a 

tr {M(t)-’ [&M(t) M(t)-’ $M(t) + 2&t(t) a&(t)T]} , 

[5, pp. 547-5491. 

(4.1) 

first-partial derivative with respect to 8i, element i of 8, and dfj 

denotes a second-partial derivative with respect to 8i and 0,. Because VzZ is symmetric, it 

suffices to compute its lower-triangular part, i.e., to consider i = 1,. . . , Q and j = 1,. . . , i. 

Let I’ij(t) = Ed&(t) 8jc(t)T. Then le,ij(N), element (i,j) of I@(N), is given by 

le,ij(N) = 5 tr i ‘iM(t) M(t)-’ ajM(t) + I’i j(t)] } . (4.2) 
t=1 

For notational simplicity, we shall sometimes collectively refer to partial derivatives in their 

more concise gradient (or Jacobian) form. For example, the gradient form of &M(t), for 

i = l,..., a, is VM(t) = [vec(&M(t)), . . . ,vec(d,M(t))] [17, p. 1751. For the same reason, 
but without assigning any particular algebraic structure, we shall refer to I’ij (t), for i = 1,. . . , a 

andj=l,. ..,i, asr(t). 

To compute I@(N), we need to compute M(t), VM(t) and I?(t), for t = 1,. . . , N. M(t) is 
computed by iterating on (3.2), (3.4), (3.6), and (3.7), starting with M(1) = EC + D C DT, 
where C solves (3.8). We now describe the computation of: 

(1) VM(t), for t = 2,. . . , N; 

(2) VW); 
(3) l?(t), for t = 2,. . . , N; and 

(4) r(l). 
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4.1. Computation of VM(t) 

First, conditional on {y(t)}:,, d’ff 1 erentiate (3.2)-(3.5) and (3.7) with respect to 8, to obtain 

aiM(t) = D &V(t) DT, (4.3) 

&t(t) = -D &x(t 1 t - l), (4.4) 

aiK(t) = &F V(t) DT M(t)-’ + F &V(t) DT M(t)-’ 

- K(t) &M(t) M(t)-‘, (4.5) 

&x(t + 1 ( t) = &F x(t 1 t - 1) + F c3,x(t ( t - 1) + &K(t) c(t) + K(t) &t(t), (4.6) 

&V(t + 1) = e(t) &V(t) @(t)T + &F V(t) +(t)T + %(t) V(t) &FT 

+ &G GT + G &GT, (4.7) 

for i = l,... ,CY [5, p. 546)]. Equation (4.7) is obtained by differentiating (3.7) and using (3.4) 

to combine and simplify terms [23, p. 4701. Then, for t = 2,. . . , N, compute VM(t) by iterating 

with (4.3) and (4.7). (Equations (4.4)-(4.7) will be used to derive equations for computing l’(t).) 

Fori=l,..., Q, aiF and &G are selection matrices of zeroes and ones. For each i, the matrices 

are zero except for a single element equal to one. For example, because 81 is element (1,l) of A1 

and F, element (1,l) of &F is one, remaining elements of &F are zero, and dlG is zero. 

VM(t) can be expressed more directly in terms of 

VV(t) = [vec(&V(t)), . . . , vec(&V(t))]. 

Applying (3.9)-(4.3) yields vec(&M(t)) = [D @ D] vec(&V(t)), hence, VM(t) = [D @D] VV(t). 

Then, given that D = [I, 0,. . . , 01, 

VM(t) = Ivec(&Vll(Q), . . . ,vec(%Vll(t))], 

where &V,,(t) is block (1,l) of size m x m of &V(t). 

4.2. Computation of VM(l) 

First, differentiate (3.8) and vectorize the result (with (3.9)), to obtain 

[I+ - (F %I F)] vec(&C) = vec(&F C FT + F C &FT + &G GT + G aiGT), (4.8) 

fori=l,... ,CY [5, p. 5471. Then, solve (4.8) for vec(&C), for i = 1,. . . ,a and set 

VM(l) = [vec(dlC11), . . . ,v~(&Ch)l, 

where &Cl1 is block (1,l) of size m x m of &C. Model stationarity ensures invertibility of 

[Inz - (F @ F)]. 

4.3. Computation of l?(t) 

Equation (4.4) shows that 

rij(t) = D E[&x(t 1 t - 1) a,x(t ) t - l)T] DT. 

Define the augmented predicted state vector, xf(t 1 t - 1) = [x(t 1 t - l)T, &x(t ) t - l)T]T, 
and the second-moment matrix, Wt(t) = E[xf(t I t - 1) x;(t [ t - l)T], for i = 1,. . . , a and 
j=l , . . . , i. Partition Wij(t) into four n x n blocks, 

Wijlt> = 
[ 

w> UjCtjT 
vi(t) 

1 &j(t) ’ (4.9) 
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so that l?ij(t) = D Z,(t) DT. Combine (3.5), (4.4), and (4.6) as 

xf(t + 1 ) t) = F;(t) x;(t 1 t - 1) + K;(t) t(t), (4.10) 

where 

F:(t) = a”F 
0 z wt> 1 and Kf = K(t) 

[ 1 &K(t) ’ 

Because E[xf(t 1 t - 1) c(t)T] = 0, (4.10) implies that 

W,rj(t -t 1) = F;(t) Wz’j F;(QT + K;(t) M(t) K;(t)T. (4.11) 

Recall that, by definition, V(t) = E[%(t) jr(t)T] and S(t) = E[x(t 1 t - 1) x(t 1 t - lT] and, by 

stationarity, C = E[x(t) x(t)T], for t = 1,. . . , IV. Moreover, because E[x(t ( t - 1) k(t)T] = 0, 

x(t) = x(t ( t-l)+%(t) implies that C = S(t)+V(t), fort = 1,. . . , N. Therefore, S(t) = C-V(t), 

fort = l,... , N, where C and V(t) are previously computed, so that the (l,l)-block of (4.11) 

can be ignored. 

Ui(t) and Zij(t) are updated with the (2,1)- and (2,2)-blocks of (4.11), 

Ui(t + 1) = &F S(t) FT + Q(t) W(t) FT + &K(t) M(t) K(t)T, (4.12) 

Z&t + 1) = &F S(t) ajFT + ‘B(t) vi(t) ajFT + aiF Uj(t)T 4+)T 

+ a(t) Zij(t) @(QT + &K(t) M(t) &K(T)T. (4.13) 

In sum, to compute I’(t), for t = 2,. . . , N: set S(t) = C - V(t); compute aiK(t) with (4.5); 

compute vi(t) and Z,j(t) with (4.12) and (4.13); and, pick I’,(t) = D Zij(t) DT out of Z,(t), 

fori=l,... ,aandj=l,..., i. 

4.4. Computation of l?(l) 

Because x( 1 1 0) is set identically equal to zero for all values of 8 , so is XT (1 1 0)) for i = 1, . . . , a. 

Therefore, for all values of 8, Zij(l) = 0, hence, I’ij( 1) = 0, for i = 1,. . . , a and j = 1,. . . , i. 

To compute I?(N) recursively, compute Is(N) for successively higher values of N until 

Io(N)/N has converged in some matrix norm [18, pp. 1 l-161. If D G GT DT > 0 or XC > 0 

and the system (2.2) and (2.3) is stabilizable and detectable, then V(t) and, hence, M(t), K(t), 

and a(t), converge to the same limiting values for any positive semidefinite value of V(1) 

[22, pp. 533-5351. Therefore, I?(N) is independent of V(1) and VV(l), so that, when com- 

puting I,“(N), it is simplest to set V(1) = 0 and VV( 1) = 0. 

The inefficiency in [8] is as follows. First, corresponding to x,7(t ) t-l), Terceiro Lomba, defines 

xgt 1 t - 1) = [x(t ) t - l)T, &x(t ) t - l)T, L+x(t ( t - l)TIT , 

so that his analogue of (4.11) is 50% larger than necessary, i.e., has dimension 3n2 x 3n2 instead 
of 2n2 x 2n2. Second, he decomposes Wzj(t) as p;(t) p3(t)T+C;(t), where p;(t) = E[x;(t)] and 

Czj(t) = E[(x;(t) - p;(t)) (x;(t) - pT(t))T] and propagates the p;(t)‘s and C$(t)‘s separately. 
This is unnecessary even when, as in his analysis, the model includes exogenous variables. Third, 
Terceiro Lomba does not reduce (4.11) to (4.12) and (4.13). In particular, he does not use 

S(t) = C - V(t), which continues to hold when exogenous variables are present, and, therefore, 

retains the (l,l)-block of (4.11). 



114 P. A. ZADROZNY AND S. MITTNIK 

5. NONRECURSIVE COMPUTATION OF 
THE ASYMPTOTIC INFORMATION MATRIX 

FOR TIME-INVARIANT MODELS AND SAMPLES 

If, as has been assumed so far, the model is time invariant and stationary, the sample is time 

invariant, and the Kalman filter converges and is asymptotically stable, then the (i, j)-element 
of I?(N) can be expressed as 

l&(N) = Ntr M-l 
{ [ 

;&MM-‘a,M+rij , II (5.1) 

for i = 1,. ..,a andj = 1,. . . ,i, where &M = tlimM &M(t) and I’ij = ,limWI?ij(t). This section 

derives a nonrecursive method for computing MTVM, and I’. 
+ 

Under the aforementioned conditions, as t + m, equations (3.‘2), (3.4), (3.6), and (3.7) converge 

to 

M=Ec+DVDT, (5.2) 

K=FVDTM-I, (5.3) 

+=F-KD, (5.4) 

V=WJ@T+KE<KT+GGT; (5.5) 

equations (4.3), (4.5), and (4.7) converge to 

&M=D&VDT, (5.6) 

&K = &F V DT M-l + F &V DT M-’ - K &M M-l, (5.7) 

diV=WiV(PT+diFV+T+9VdiFT+d,GGT+G&GT; (5.8) 

and equations (4.12) and (4.13) converge to 

Ui=cPUiFT+&FSFT+&KMKT, (5.9) 

Zij = ip ZQ ‘BT +&F S ajFT + + Ui ajFT +&F Uj’ aT 

+ &K M $KT, (5.10) 

where the absence of the time argument, t, in a derived matrix denotes its steady-state value. 

5.1. Computation of M 

First, use (5.2)-(5.4) to successively eliminate M, K, and + to write (5.5) in the classical form 

of the algebraic Riccati equation, 

V=GGT+FVFT-FVDT [E:C+DVDT]-lDVFT, (5.11) 

Then, solve (5.11) for V 2 0. Many recursive and nonrecursive methods have been proposed 
for doing this [22, pp. 243-2531. A generally reliable, accurate, and quick Schur-decomposition 

method is described by [24]. Finally, given V, set M with (5.2). 

5.2. Computation of VM 

First, vectorize (5.8), to obtain 

[I,2 - (Q @ Cp)] vec(&V) = vec(&F V GT + % V &FT + &G GT + G &GT). 

Then, solve (5.12) for vec(L$V), for i = 1,. . . , a. Finally, set 

VM = [vec(L%V11), . . . ,vec(&V,,)], 

(5.12) 

where &Vll is block (1,l) of size n x n of &V. Asymptotic stability of the Kalman filter ensures 
that 9 is a stability matrix, hence, that [In2 - (Q @ @)] is invertible. 
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5.3. Computation of l? 

Set S = C - V. Compute &K with (5.7). Vectorize (5.9) and (5.10), to obtain 

[In2 - (F 69 a)] vec(UJ = vec(djF S FT +&K M KT), 

[In2 - (Q @ @)] vec(Z,) = vec(&F S ajFT + + Ui $FT 

+&F U;tPT + aiK M ajKT). 

(5.13) 

(5.14) 

Solve (5.13) for vec(Ui), for i = 1,. . . ,a. Solve (5.14) for vec(Zij), for i = 1,. . . ,a and 

j = l,..., i. Finally, set l?ij = D Zij DT. Stationarity of the model and asymptotic stabil- 

ity of the Kalman filter ensure invertibility of the system matrices of (5.13) and (5.14). 

6. NONRECURSIVE COMPUTATION 
OF THE ASYMPTOTIC INFORMATION 

MATRIX FOR PERIODIC MODELS AND SAMPLES 

Consider, for example, a bivariate periodic model of monthly seasonality which is estimated 

with a sample in which the first variable is observed monthly, the second variable is observed 

quarterly, at the end of each quarter, and the sample starts in the first month of a quarter. Then, 

the model has periodicity 12, so that F(t) and G(t) may assume up to 12 different values in 

a year and D(t) and Xc(t) vary as follows. For t = 1, 2, 4, 5,. . . , D(t) is the n-dimensional 

row vector [l, 0,. . . , 01, and C,(t) is a constant nonnegative scalar; for t = 3, 6, 9,. . . , D(t) is 

the 2 xn dimensional matrix [I, 0, . . . , 01, and Xc(t) is a constant 2 x2 positive semidefinite matrix. 

Because the second variable is only observed every third month, the sample has periodicity 3, 

and, because 12 is evenly divisible by 3, the model and sample have an overall periodicity p = 12. 

Jones [15] first suggested handling such missing data by varying D(t) and Xc(t) in the Kalman 

filter; Ansley and Kohn [12] extended the idea to multivariate models. 

In general, then, we may consider a model and sample with overall periodicity p. In such 

case, the Kalman filter converges if M(t), K(t), a(t), and V(t) converge to limit cycles with 

periodicity p, as t + CCL Again, M(t), K(t), and a)(t) converge in this sense if and only if V(t) 
does. Formally, {V(t)},“=, converges to a limit cycle with periodicity p, {V~}~=l, if for any 

E > 0, there is a T such that t 2 T implies /IV(t) - V(t - p)II < E, where )( . 11 is some matrix 

norm. Accordingly, {M(t)}:,, {K(t)}E1, and {@(t)}L1 converge to limit cycles {Mk}{,l, 

{Kk}izl, and { +plc}Ezl, with periodicity p. 

Suppose, in fact, that the model and sample are periodic, with overall periodicity p, the model 

is stationary, and the Kalman filter converges and is asymptotically stable. Then, element (i,j) 

of I?(N) can be expressed as 

for i = l,... ,CX and j = l,..., P 

{ aiM(t)}E, and { &.#)}E,. 

i, where {&Mlc}i=, and {rk,ij}k=l are the limit cycles of 

Th is section describes how to compute MI,, VMk, and I’k with 

an extension of the method of the previous section. When p = 1, the computations reduce to 

those for the time-invariant case in the previous section. 

To simplify notation, F(t), G(t), D(t), and Xc(t) are henceforth written as Fk, Gk, Dk, 

and E+,k, for k = 1, . . . , p. The different proofs of convergence and asymptotic stability of the 

linear optimal filtering problem and the dual linear optimal control problem, respectively, given 

by Zadrozny [ll] and Todd [lo], can be extended to prove that, under appropriate extensions of 

D G GT DT > 0 or Xc > 0 and stabilizability and detectability, the Kalman filter of a periodic 

model and sample converges and is asymptotically stable. 
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Define pk as the cyclical product pk = Fk-1. +. F1 F, +. *Fk, for k = 1,. . . , p. A periodic 
model is stationary if j!‘k is a stability matrix, for k = 1 , . . . , p. A sufficient but generally not 

necessary condition for this to occur is that Fk is a stability matrix, for k = 1,. . . , p. Similarly, 

define @k = Q?k_i...+r +,...*k, for k = l,..., p. Then, the Kalman filter is asymptotically 

stable if &k is a stability matrix, for k = 1,. . . , p. 

If the model and sample are periodic, with periodicity p, the model is stationary, and the 

Kalman filter converges and is asymptotically stable, then (5.2)-(5.11) become 

Vk+i = Gk G; + F,, VI, F; - Fk Vk D; [cc,, + Dk Vk D;]-’ 

xDkVk@-, (6.2) 

Mk = x<,k + Dk Vk D;, (6.3) 

Kk = Fk Vk Dl Mkl, (6.4) 

%‘k =Fk--Kk Dk, (6.5) 

(6.6) 

&Mk = Dk a& D L (6.7) 

&I& = a& Vk D; Mil + FI, aiVk D; ML1 - Kk &Mk Mi’, (6.3) 

U k+l,i = !%k Uk,i FL i- aiFk Sk FL i- a&k Mk Kl, (6.9) 
Z k+l,ij = *‘k Zk,ij %‘; + &Fk Sk $F; + +k Uk,i ajF; + aiFk Ul,j %; 

f a&k Mk $K:, (6.10) 

for k = 1,. . . ,p, i = 1,. . . ,Q, and j = 1,. . . ,i, where {Sk}Lr, {Uk,i}l=r, and {zk,ij}E=, are 

the limit cycles of {S(t)}~,, {Ui(t)}&, and {Zq(t)}L1. 

6.1. Computation of Mk 

Equation (6.2) needs to be solved for Vk >_ 0, for k = 1,. . . , p. This can be done in at least 

two ways. First, following Todd [lo], combine (6.2), for k = 1,. . . , p, into a Riccati equation of 

the form (5.11), in terms of V = diag[Vr, . . . , V,]. Then, use some standard method such as the 

Schur-decomposition method (see [24]) to solve the Riccati equation for V 2 0. Alternatively, 

for k = 1 (or any other k = 2, . . . , p), iterate p- 1 times with (6.2) to obtain a nonlinear equation 

in terms of VI. Solve this equation forVi > 0 with any general method for solving nonlinear 

equations (e.g., the trust-region method [25]). Then, given VI, iterate p - 1 times with (6.2) 

to obtain Vz,..., V,. Finally, given VI, with either method, compute Mk, Kk, and +k with 

(6.3)-(6.5), for k = 1,. . . ,p. 

6.2. Computation if VMk 

For k = 1,. . . , p and i = 1,. . . , a, compute Dk+p,i by iterating over 1/ with 

II - @II+1 m,ifc+,, + m+v+1 vv+1 c+1+ @“fl Vv+lmc+, v+l,i - 

+ WL+l G:+,, + Gv+l W:++1, (6.11) 

for u= k,..., k + p - 1, starting with 

Dk,i = &Fk VI, @; + 91, VI, d& + &Gk G; + Gk &G;. 

Note that, because given matrices are periodic, ai&+, = ai&. Then, iterate p - 1 times 
with (6.6), set a&+, = Z 8Vk, and vectorize the result, to obtain 

[I& - (Sk @ Gk)] Vec(divk) = vec(%+p,i), (6.12) 
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for k = 1 ,..., pandi=l,..., CY. Then, solve (6.12) for vec(&V,) and compute &MI, and &Kk 
with (6.7) and (6.8), for k = l,.. .,p and i = 1,. . . ,a Finally, set VMk = [vec(&Vk,ii), . . . , 

vec(&Vk,ii)], fork = 1,. . . , p, where&Vk,ii isthe (l,l)-blockofsizemxmofd~Vk. Asymptotic 
stability of the Kalman filter ensures that !&k is a stability matrix, hence, that [I,z - (gk @ Sk)] 
is invertible, for k = 1, . . . , p. 

6.3. Computation of rk 

First, the periodic counterpart of (3.8) is needed and is set up as follows. For k = 1,. . . , p, 

compute A&p by iterating with 

A v+1 - - F,+i A, F:++, + Gv+i G:+,, for v = k, . . . , k + p - 1, 

starting with hk = Gk Gl. Then, the periodic counterpart of (3.8) is 

Gk - Fk GI, F,T = Ak+p, fork= l,...,p. 

(6.13) 

(6.14) 

Stationarity of the model ensures that (6.14) yields a unique positive semidefinite solution of Gk. 
Note that in the periodic case, in recursive computation of L(N), I@(N), and Ir(ZV) according 

to Sections 3 and 4, V(1) should be set to the value of GI, which solves (6.14) for the value of k 

corresponding to t = 1. Similarly, in this case, VV(1) should be set to the value of VGk which 
solves the periodic anaiogue of (4.8), derived from (6.14), for the value of k corresponding to 
t = 1. 

To compute rk, first, for k = 1,. . . , p, solve (6.14) with any method for solving (3.8) and set 
Sk = GI, - Vk. Then, obtain an equation for vec(Uk,i) analogous to (6.12). For k = 1,. . . ,p, 
andi=l,..., CY, compute rk+p,i by iterating with 

r v+l,i - - *v+l Tv,i FL++, + &F,+i Sv+l FL+1 + WL+I M,+i Kz+i, (6.15) 

for v = k , . . . , k + p - 1, starting with rk,i = &Fk Sk Fl f && Mk Kl. Then, iterate p - 1 
times with (6.9), set Uk+p,i = Uk,i, and vectorize the result, to obtain 

[Id - (Fk @ Gk)] vec(Uk,i) = vec(rk+p,i). (6.16) 

Then, for k = 1,. . . , p and i = 1,. . . ,a, SOhe (6.16) for VeC(uQ). Stationarity of the model 
and asymptotic stability of the Kalman filter ensure that [In2 - (Fk @ &k)] is invertible, for 
k= l,...,p. 

Next, obtain an analogous equation for vec(zk,ij). For k = 1,. . . , p, i = 1, . . . , a, and 
j = 1,. . . , i, compute \kk+p,ij by iterating with 

!I? v+l,ij = %+1 *v,ij @:+I. + 4Fv+1 Sv+l ajFL+l + *v+l Uv+l,i ajFz+, 

+ &Fv+l UL+l,j @‘,T+l + &Ku+1 M~+I ajKJ+l, (6.17) 

for u = k, . . . , k + p - 1, starting with 

@k,ij = &Fk Sk ajF,T + @k Uk,i 0jF,T + &Fk Ul,j @pkT $ &Kk Mk ajKl. 

Then, iterate p - 1 times with (6.10), set Zk+p,ij = Zk,ij, and vectorize the result, to obtain 

[I,$ - @k @ $k)] vec(zk,ij) = veC(*k+p,ij). (6.18) 

Then, for k = 1,. . . p, i = 1,. . . , a, and j = 1 , . . . , i, solve (6.18) for vec(i&j). Kalman fil- 
ter asymptotic stability ensures invertibility of [In2 - (61, @ &k)]. Finally, for k = 1,. , . , p, 
i=l,... ,c~,and j=l,..., i, Set rk,ij = Zk,ij,ll, the (l,l)-block Of Size m X m of Zk,ija 
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7. CONCLUDING REMARKS 

Some simple extensions and modifications make the recursive method of Section 4, for comput- 

ing sample and asymptotic information matrices, applicable to generally time-varying models and 

samples. First, the constant state-space coefficient matrices, F, G, D, and ‘cc, must be written 

everywhere as time varying, i.e., as F(t), G(t), D(t), and E<(t). In general, the observation- 

selection matrix, D(t), may also depend on 8. This will occur, for example, if the model has 

simultaneous-equations components. If so, then, the computational equations must be extended 

in the obvious way to include derivatives of D(t) [5,6,8]. Also, if the model varies nonperiodically, 

then, V(1) and VV(l) must be set by means other than solutions of Lyapunov equations. For 

example, Ansley and Kohn’s method [12] could be applied to obtain, in effect, V( 1) = lim c1, 

and VV(l) = 0. 
C’M 

The nonrecursive methods of Sections 5 and 6, for computing asymptotic information matrices 

in time-invariant and periodic models and samples reveal that stationarity of the model and as- 

ymptotic stability of the Kalman filter are sufficient conditions for the existence of the asymptotic 

information matrix. Although, in theory, invertibility of the moving-average part of the model is 

necessary only to ensure asymptotic normality of parameter estimates, in practice, invertibility 

is also necessary in computation of the likelihood function and its gradient, in order to prevent 

computed innovations from becoming too large (overflowing) at some iteration. However, if one 

is only computing information matrices recursively or nonrecursively and, in particular, is not 

computing innovations, then, noninvertibility should not cause numerical difficulties. 

The paper has derived results only in partial-derivative-form equations, i.e., at the level of 8i 

expressions of derivatives. All of the results can also be derived in gradient-form equations, i.e., 

at the level of V expressions of derivatives. This was not done because, in the present context, 

gradient-form equations require many more steps to be derived, are more difficult to implement, 

are computationally much less efficient, and provide no compensating insights. Gradient-form 

equations are more difficult to implement because they require numerous permutations of matrix 

elements, which are absent from the partial-derivative-form equations, and are computationally 

much less efficient because they replace many ordinary matrix products with much sparser Kro- 

necker matrix products. 
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