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a b s t r a c t

The paper presents the dynamical features of a vector–host epidemic model with direct
transmission. First, we extended the model by taking into account the exposed individuals
in both human and vector population with the impact of disease related deaths and
total time dependent population size. Using Lyapunov function theory some sufficient
conditions for global stability of both the disease-free equilibrium and the endemic
equilibrium are obtained. For the basic reproductive number R0 > 1, a unique endemic
equilibrium exists and is globally asymptotically stable. Furthermore, it is found that
the model exhibits the phenomenon of backward bifurcation, where the stable disease-
free equilibria coexists with a stable endemic equilibrium. Finally, numerical simulations
are carried out to investigate the influence of the key parameters on the spread of the
vector-borne disease, to support the analytical conclusion and illustrate possible behavioral
scenarios of the model.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Vector-borne diseases are infectious diseases caused by pathogens transmitted by insects, ticks, bacteria and protozoa
which are primarily transmitted by disease transmitting biological agents (anthropoids) called vectors,who carry the disease
without getting it themselves. Vector-borne infections are major killers, particularly of children in developing countries.
Over the past decade, more comprehensive and transparent methods of measuring health have improved understanding
of the importance of these diseases. The World Health Organization reports annually on the numbers of deaths and DALYs
(disability adjusted life years, a composite measure of health status combining premature death and sickness during life),
by disease category in different regions of the world [1]. Despite technological advances and increasing affluence in many
regions, vector-borne infectious diseases remain amongst the most important causes of global health illness. Malaria is one
of the most prevalent vector-borne diseases whose vectors are the mosquitoes. The mosquitoes are vectors of a number of
infectious diseasesmost prominent amongwhich are dengue, yellow fever, St Louis Encephalitis, Japanese Encephalitic, and
West Nile Fever, caused by theWest Nile Virus. There are also some other vectors like the assassin bugs, causing the Chagas
disease, fleas transmitting the plague from its normal host to humans, or from human to human, and ticks which transmit
the most prevalent vector-borne diseases in North America.

Both deterministic and stochastic populationmodels are important in characterization for understanding the relationship
of vector-borne diseases with ecological communities. The model first proposed by Ross [2] and subsequently modified
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Fig. 1. The flow chart represents the interaction and transfer diagram of both human and vector.

by Macdonald [3] has influenced both the modeling and the application of control strategies to vector-borne disease.
Models of malaria that investigate complications arising from host superinfection, immunity, and other factors are based
on this fundamental model [4–7]. The model has also influenced the mathematical analysis of many other vector-borne
diseases [8,9]. Infectious disease such as malaria, dengue fever, West Nile virus, and so forth, are transmitted to human
population by vectors. However direct transmission (transfusion related transmission, transplantation related transmission,
and needle–stick-related transmission) is also possible [10].

In recent years, the phenomenon of the backward bifurcations has arisen the interests in disease control (see [11–13]). In
this case, the basic reproduction number cannot describe the necessary disease elimination effort any more. In a backward
bifurcation, disease control is only feasible if basic reproductive number R0 is reduced further to values below another sub-
threshold less than unity. Clearly, this phenomenon has important public health implication, since it renders the classical
requirement of reproduction number being less than unity to be insufficient (in general) for disease elimination. Thus, it is
important to identify backward bifurcations and establish thresholds for the control of diseases. The purpose of this paper
is to study the backward bifurcation and global dynamics of a vector–host epidemic model with direct transmission.

In this work we extend the model of Cai and Li [14] to include exposed individuals, disease induced death rate
and time dependent total population size in both host and vector population. We first establish stability results for the
proposed model. Analysis of this model reveals that there are two equilibria which are the disease-free equilibria and the
endemic equilibria. Further, it is shown that the model exhibits the phenomenon of backward bifurcation where the locally
asymptotically stable disease-free equilibrium co-exists with a locally asymptotically stable endemic equilibrium when
R0 < 1. Then, we use Lyapunov function theory to present global asymptotical stability. It is proved that the global dynamics
are completely determined by the basic reproduction number R0. If R0 ≤ 1, the disease-free equilibrium is globally stable.
If R0 > 1, a unique endemic equilibrium exists and is globally asymptotically stable. Finally, numerical simulations are
carried out to investigate the influence of the key parameters on the spread of the vector-borne disease, to support the
analytical conclusion and illustrate possible behavioral scenarios of the model. This new assumption is biologically much
more plausible than the previous assumption without the exposed class and disease related death rate in both host and
vector population.

The paper is organized as follows. In Section 2, we present a formulation of the extended mathematical model. We show
mathematical analysis to establish stability results for the proposed model in Section 3. We present detail analysis of the
endemic equilibria and the existence of a backward bifurcation in Section 4. In Section 5, we use Lyapunov function theory
to show global stability of both disease-free and endemic equilibrium, respectively. Parameters estimation and numerical
results are discussed in Section 6. Finally, we give conclusion.

2. Model frame work

The model presented in [14] studied the analysis of a simple vector–host epidemic model with direct transmission. In
their work, the host population was divided in three subclasses susceptible host Sh, infectious host Ih and recovered host Rh
with total constant population and vector population into susceptible vectors Sv and infectious vectors Iv without disease
related death rate. In this section, we extend their model by including the following features:

1. Exposed class in both host and vector population denoted by Eh and Ev, respectively.
2. Disease induced death rates in both host and vector population denoted by δh and δv, respectively.
3. Total time dependent population of both host and vectors such that Nh = Sh + Eh + Ih + Rh and Nv = Sv + Ev + Iv .
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We consider a compartmental model that divide the host and vector populations into different classes. In our model the
total host population at time (t), denoted byNh(t), is split into four distinct epidemiological subclasseswhich are susceptible
(Sh(t)), exposed (Eh(t)), infectious (Ih(t)) and recovered (Rh(t)) subclasses of host, so that Nh = Sh + Eh + Ih + Rh while,
the total vector population at time (t), denoted by Nv(t) is split into susceptible (Sv(t)), exposed (Ev(t)) and infectious
(Iv(t)), subclasses of vectors, so that Nv = Sv + Ev + Iv . The immune class in the vector population does not exist, since
the mosquitoes once infected never recover from infection, that is, their infection period ends with their death. Complete
interaction and transfer diagram of both host (human) and vector population is depicted in Fig. 1. The compartmental
deterministic mathematical model can be represented analytically by the following nonlinear system of seven ordinary
differential equations:

dSh
dt

= b1 − β1ShIh − β2ShIv − µhSh,

dEh

dt
= β1ShIh + β2ShIv − αhEh − µhEh,

dIh
dt

= αhEh − γhIh − µhIh − δhIh,

dRh

dt
= γhIh − µhRh,

dSv

dt
= b2 − β3Sv Ih − µvSv,

dEv

dt
= β3Sv Ih − αvEv − µvEv,

dIv
dt

= αvEv − µv Iv − δv Iv,

(1)

with initial conditions

Sh(0) ≥ 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Rh(0) ≥ 0, Sv(0) ≥ 0, Ev(0) ≥ 0, Iv(0) ≥ 0. (2)

Here b1 is the recruitment rate of human (assumed susceptible). Susceptible human can be infected via two routes of
transmission, that is, directly, through a contact with an infected individual (possibly as a result of transfusion related
transmission, transplantation related transmission, and needle–stick-related transmission) and through being bitten by an
infectious vector. Thus, we denote the rate of direct transmission of the disease by β1, β2 is the biting rate that a pathogen-
carrier mosquito has of susceptible human, µh is the natural mortality rate of human, exposed humans develop clinical
symptoms of the disease and move to the infectious class at rate αh, γh is the recovery rate of human. We assume that a
disease may be fatal to some infectious host, so deaths due to disease can be included in the model using the disease related
death rate from infectious class, δh. It is assumed that recovered individuals acquire lifelong immunity against re-infection.
Similarly b2 is the constant recruitment rate of susceptible vectors population by birth and β3 represents biting rate of per
susceptible vector per host per unit time, µv is the natural mortality rate of vectors population. Exposed vectors develop
symptoms of disease and move to the infectious class at rate αv and infectious vectors die due to disease at a rate δv . The
total human population dynamics is given by

dNh

dt
= b1 − µhNh − δhIh. (3)

The given initial conditions (2) make sure that Nh(0) ≥ 0. Thus the total population Nh(t) remains positive and bounded for
all finite time t > 0. The total dynamics of vector population is

dNv

dt
= b2 − µvNv − δv Iv. (4)

It follows from (3) and (4) that

dNh

dt
≤ b1 − µhNh,

dNv

dt
≤ b2 − µvNv. (5)

Then

lim
t→∞

SupNh ≤
b1
µh

and lim
t→∞

SupNv ≤
b2
µv

.

Thus the feasible region for the system (1) is Ω = {(Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ R7
+
, V1 ≤

b1
µh

, V2 ≤
b2
µv

}.

Proposition 1. Let (Sh, Eh, Ih, Rh, Sv, Ev, Iv) be the solution of the system (1) with initial conditions (2) and the closed set
Ω = {(Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ R7

+
, V1 ≤

b1
µh

, V2 ≤
b2
µv

}. Then Ω is positively invariant and attracting under the flow
described by (1).
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Proof. Consider the following Lyapunov function

V (t) = (V1(t), V2(t)) = (Sh + Eh + Ih + Rh, Sv + Ev + Iv). (6)

Its time derivative is

dV
dt

= (b1 − µhV1 − δhIh, b2 − µvV2 − δv Iv). (7)

It is easy to prove that
dV1

dt
≤ b1 − µhV1 ≤ 0, for V1 ≥

b1
µh

,

dV2

dt
≤ b2 − µvV2 ≤ 0, for V2 ≥

b2
µv

.

(8)

It follows from (8) that dV
dt ≤ 0 which implies that Ω is positively invariant set. On the other hand, a standard comparison

theorem [15] can be used to show that 0 ≤ (V1, V2) ≤ (V1(0)e−µht +
b1
µh

(1 − e−µht), V2(0)e−µv t +
b2
µv

(1 − e−µv t)). Thus as

t → ∞, 0 ≤ (V1, V2) ≤ (
b1
µh

,
b2
µv

) and we can conclude that Ω is an attracting set. �

Furthermore, the model (1) is well-posed epidemiologically and mathematically. Hence, it is sufficient to study the
dynamics of this basic model in Ω .

3. Disease-free equilibrium

In order to understand dynamical behavior of the system (1), we set right hand side of all equations in the system (1)
equal to zero. Direct calculations shows that the system (1) has a disease-free equilibrium point given by

E1 = (S0h , 0, 0, 0, S
0
v , 0, 0),

where S0h =
b1
µh

and S0v =
b2
µv

. The dynamics of the disease is described by the quantity R0 as follows:

R0 =
b1
µh


αhαvb2β2β3

µvQ1Q2Q3Q4
+

αhβ1

Q1Q2


, (9)

with Q1 = αh + µh, Q2 = γh + µh + δh, Q3 = αv + µv and Q4 = µv + δv . The threshold quantity R0, is called the basic
reproduction number of the disease [16,17]. It represents the expected average number of new infections produced directly
and indirectly by a single infectivewhen introduced into a completely susceptible population. For classical epidemicmodels,
it is common that the basic reproduction number is threshold in a sense that, when the basic reproduction number R0 < 1,
on average each infected individual infects fewer than one individual, and the disease dies out. If R0 > 1, on average each
infected individual, infects more than one other individual, so we would expect the disease to spread.

Theorem 3.1. If R0 < 1, then the disease-free equilibrium point E1 of the model (1) is locally asymptotically stable, otherwise
unstable.

Proof. The local stability of the disease-free equilibrium solution can be examined by linearizing the system (1) around E1.
This gives the Jacobian matrix J1 as follows

J1 =



−µh 0 −β1
b1
µh

0 0 0 −β2
b1
µh

0 −Q1 β1
b1
µ1

0 0 0 β2
b1
µh

0 αh −Q2 0 0 0 0
0 0 γh −µh 0 0 0

0 0 −β3
b2
µv

0 −µv 0 0

0 0 β3
b2
µv

0 0 −Q3 0

0 0 0 0 0 αv −Q4


. (10)

The characteristic equation of the above matrix is

(λ + µh)(λ + µh)(λ + µv)(λ
4
+ a1λ3

+ a2λ2
+ a3λ + a4) = 0, (11)
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where

a1 = Q1 + Q2 + Q3 + Q4,

a2 = Q1Q2 + Q1Q3 + Q1Q4 + Q2Q3 + Q2Q4 + Q3Q4 −
b1αhβ1

µh
,

a3 = Q1Q3Q4 + Q2Q3Q4 + (Q3 + Q4)


Q1Q2 −

b1αhβ1

µh


,

a4 = Q1Q2Q3Q4(1 − R0).

There are seven eigenvalues corresponding to Eq. (11). Three of the eigenvalues, −µh with multiplicity two and −µv have
negative real part. The other four eigenvalues can be obtained by solving

δ(λ) = λ4
+ a1λ3

+ a2λ2
+ a3λ + a4. (12)

These four eigenvalues have negative real part if they satisfy the Routh–Hurwitz Criteria [18], such that ai > 0 for
i = 1, 2, 3, 4, with a1a2a3 > a23 + a21a4. For R0 < 1, Q1Q2 > b1αhβ1/µh, we obtain ai > 0 for i = 1, 2, 3, 4. Thus all
the eigenvalues of the characteristic equation (11) have negative real parts if and only if R0 < 1, which shows that the
disease-free equilibrium E1 is locally asymptotically stable. �

Remark. For R0 ≥ 1 or equivalently a4 < 0, we have δ(0) < 0 and lim δ(λ) → +∞ when λ ∈ R and λ → +∞. Then,
there exists λ∗ > 0 such that δ(λ∗) = 0, which proves the instability of the disease-free equilibrium.

4. Endemic equilibria and backward bifurcation

In order to find equilibria (endemic equilibria) of the system (1) where at least one of the infected components of the
system (1) is non-zero, we need to take the following steps.

Let E2 = (S∗

h , E
∗

h , I
∗

h , R
∗

h, S
∗
v , E∗

v , I∗v ) represents any arbitrary endemic equilibrium of the model (1). Solving the equations
of the system (1) at steady state gives,

S∗

h =
Q1Q2Q3Q4(µv + β3I∗h )

αhβ1Q3Q4(µv + β3I∗h ) + αhαvb2β2β3
, E∗

h =
Q2

αh
I∗h , R∗

h =
γh

µh
I∗h , S∗

v =
b2

µv + β3I∗h
,

E∗

v =
β3b2I∗h

Q3(µv + β3I∗h )
, I∗v =

β3αvb2I∗h
Q3Q4(µv + β3I∗h )

.

If I∗h ≠ 0, then substituting S∗

h , I
∗
v in the first equation of the system (1) at steady state, we obtain after some calculations

the following quadratic equation:

f (Ih) = aI2h + bIh + c = 0, (13)

where

a = β1β3Q1Q2Q3Q4,

b = (β1µv + β3µh)Q1Q2Q3Q4 + b2αvβ2β3Q1Q2 − b1αhβ1β3Q3Q4, (14)
c = µhµvQ1Q2Q3Q4(1 − R0).

Clearly the coefficient a is always positive, and c is positive (negative) if R0 is less than (greater than) unity, respectively.
Since a > 0, the existence of the positive solutions of Eq. (13) will depend on the signs of b and c. If R0 > 1, then there are
two roots of Eq. (13) of which one root is positive and thus there is a unique endemic equilibrium. If R0 = 1, then c = 0
and there is a unique nonzero solution of (13), I = −b/a, which is positive if and only if b < 0. If b < 0 there is a positive
endemic equilibrium for R0 = 1. Since equilibria depend continuously on R0 which shows that there exists an interval to
the left of R0 on which there are two positive equilibria

I1 =
−b −

√
b2 − 4ac
2a

, I2 =
−b +

√
b2 − 4ac
2a

.

If c > 0 and either b ≥ 0 or b2 < 4ac , there are no positive solutions of (13) and thus there are no endemic equilibria. For
different range of these parameters the following results are established.

Theorem 4.1. The model (1) has:

(i) a unique endemic equilibrium in Ω if c < 0 ⇔ R0 > 1;
(ii) a unique endemic equilibrium in Ω if b < 0, and c = 0 or b2 − 4ac = 0;
(iii) two endemic equilibria in Ω if c > 0, b < 0 and b2 − 4ac > 0;
(iv) no endemic equilibria otherwise.
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Fig. 2. The figure of I∗h , I1 and I2 versus R0 that shows a backward bifurcation with endemic equilibria when R0 < 1.

Case (iii) of Theorem 4.1 indicates the possibility of a backward bifurcation (where the locally-asymptotically stable
disease-free equilibrium co-exists with a locally-asymptotically stable endemic equilibrium when R0 < 1, see, for
instance, [19,20]) in the model (1) when R0 < 1. To find backward bifurcation, we set the discriminant b2 − 4ac to be
zero and solved for the critical value of R0, denoted by Rc is given by

Rc = 1 −
b2

4aµhµvQ1Q2Q3Q4
.

Thus, Rc < R0 is equivalent to b2 − 4ac > 0 and therefore, backward bifurcation would occur for values of R0 such that
Rc < R0 < 1. This is illustrated by simulating the model with the following set of parameter values: b1 = 36, β1 =

0.01, µh = 0.1, αh = 0.01, γh = 0.001, δh = 0.001, b2 = 100, β3 = 0.0072, µv = 0.09, αv = 0.001, and
δv = 0.99. The associated bifurcation diagram is depicted in Fig. 2. Thus, Fig. 2 clearly shows the co-existence of two locally-
asymptotically stable equilibria when R0 < 1, confirming that the model (1) undergoes the phenomenon of backward
bifurcation.

Lemma 4.1. The basic model (1) undergoes backward bifurcation when case (iii) of Theorem 4.1 holds with Rc < R0 < 1.

Corollary 4.2. System (1) has a backward bifurcation at R0 = 1 if and only if b < 0.

Proof. For sufficiency, let us consider the graph of y = g(I) = aI2 + bI + c. Since R0 = 1 implies c = 0 thus g(0) = 0,
hence the graph passes through the origin. Further, if b < 0, we have g(I) = 0, has a positive root I = −b/a. If we increase
c from c = 0 to some positive value c > 0, since g(I) is continuous function of c guarantees that there will be some open
interval (0, ϵ) containing c , on which g(I) = 0 has two positive real roots. In other words, we have shown that it is possible
that there exist two endemic equilibria when R0 < 1. The necessity is obvious, since if b ≥ 0, (13) has no positive real roots
when R0 < 1. �

The epidemiological significance of the phenomenon of backward bifurcation is that the classical requirement of R0 < 1
is, although necessary, no longer sufficient for disease elimination. In such a scenario, disease elimination would depend on
the initial sizes of the sub-populations (state variables) of the model. That is, the presence of backward bifurcation in the
model (1) suggests that the feasibility of controlling disease when R0 < 1 could be dependent on the initial sizes of the
sub-population of the model.

Now we analyze the local stability of the endemic equilibrium when R0 > 1.

Theorem 4.2. When R0 > 1, the unique endemic equilibrium state E2 is locally asymptotically stable if β1 ≥
Q1Q2
αhb1

.

Proof. Linearization of the system (1) about an endemic equilibrium E2 gives the Jacobian matrix:

J2 =


−β1I∗h − β2I∗v − µh 0 −β1S∗

h 0 0 −β2S∗

h

β1I∗h + β2I∗v −Q1 β1S∗

h 0 0 β2S∗

h
0 αh −Q2 0 0 0
0 0 −β3S∗

v −β3I∗h − µv 0 0
0 0 β3S∗

v β3I∗h −Q3 0
0 0 0 0 αv −Q4

 . (15)
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To discuss the properties of the endemic equilibriumwemake an elementary row-transformation for the Jacobianmatrix
J2 to obtain the following matrix:

J∗ =



−M1 0 −β1S∗

h 0 0 −β2S∗

h

0 −Q1
µhβ1S∗

h

M1
0 0

µhβ2S∗

h

M1

0 0 −Q2 +
αhµhβ1S∗

h

Q1M1
0 0

αhµhβ2S∗

h

Q1M1
0 0 0 −β3I∗h − µv 0 M2
0 0 0 0 −Q3 l

0 0 0 0 0 −Q4 −
αvµvM2

Q3(β3I∗h + µv)


(16)

where

M1 = β1I∗h + β2I∗v + µh, M2 =
αhµhβ2β3S∗

h S
∗
v

−Q1Q2M1 + αhµhβ1S∗

h
.

The eigenvalues are

λ1 = −M1 < 0, λ2 = −Q1 < 0, λ3 = −Q2 +
αhµhβ1S∗

h

Q1M1
, λ4 = −β3I∗h − µv < 0,

λ5 = −Q3 < 0, λ6 = −Q4 −
αvµvM2

Q3(β3I∗h + µv)
,

λ3 < 0, if and only if

Q1Q2M1 − αhµhβ1S∗

h > 0. (17)

By using the value ofM1 with some little rearrangement, we can rewrite Eq. (17)

β1β
2
3Q3Q4(b1αhβ1 − Q1Q2µh)I∗2h + 2Q1Q2Q3Q4µhµvβ1β2(R0 − 1)I∗h

+Q1Q2Q3Q4µhµ
2
vβ1(R0 − 1) + Q1Q2µhµvαvb2β2β3R0 > 0. (18)

Thus all the coefficients of Eq. (18) are positive if R0 > 1 and b1 ≥
Q1Q2
αhβ1

. Also the condition Q1Q2M1 > αhµhβ1S∗

h shows that
M2 > 0. Hence λ6 < 0. Thus all the eigenvalues have negative real parts, which shows that the E2 is locally asymptotically
stable. �

5. Global stability analysis

The following theorem provides the global property of the disease-free equilibrium V1 of the system (1).

Theorem 5.1. If R0 ≤ 1, then the disease-free equilibrium of the system (1) is globally asymptotically stable on Ω .
Proof. To establish the global stability of the disease-free equilibrium E1, we construct the following Lyapunov function:

V (t) = W1


Sh − S0h − S0h log

Sh
S0h


+ W2Eh + W3Ih + W4


Sv − S0v − S0v log

Sv

S0v


+ W5Ev + W6Iv, (19)

where Wi, for i = 1, 2, . . . , 6 are some positive constants to be chosen later. Calculating the time derivative of V along the
solutions of system (1), we obtain

V ′(t) = W1


Sh − S0h

Sh


[b1 − β1ShIh − β2ShIv − µhSh] + W2[β1ShIh + β2ShIv − Q1Eh]

+W3[αhEh − Q2Ih] + W4


Sv − S0h

Sv


[b2 − β3Sv Ih − µvSv]

+W5[β3Sv Ih − Q3Ev] + W6[αvEv − Q4Iv], (20)

where ′ denotes the derivative with respect to time t . Using S0h =
b1
µh

and S0v =
b2
µv

in (20), we have

V ′(t) = −µhW1
(Sh − S0h )

2

Sh
− µvW4

(Sv − S0v )
2

Sv

+ (W5 − W4)β3Sv Ih + (W2 − W1)[β1ShIh + β2ShIv]

+ (W3αh − W2Q1)Eh + (W6αv − W5Q3)Ev

+

[
W4b2β3

µv

+
W1b1β1

µh
− W3Q2

]
Ih

[
W1b1β2

µh
− W6Q4

]
Iv. (21)



752 A.A. Lashari, G. Zaman / Computers and Mathematics with Applications 61 (2011) 745–754

Let us chooseW1 = W2 = αh/Q1,W3 = 1, W4 = W5 =
b1αhαvβ2
µhQ1Q3Q4

, W6 = αhb1β2/µhQ1Q4 and rewriting Eq. (21) with some
little rearrangement, we get

V ′(t) = −
αhµh

Q1

(Sh − S0h )
2

Sh
−

b1αhαvβ2µv

µhQ1Q3Q4

(Sv − S0v )
2

Sv

− Q2(1 − R0)Ih. (22)

Thus V ′(t) is negative if R0 ≤ 1. Also note that, V ′(t) = 0 if and only if Sh = S0h , Sv = S0v , Eh = Ih = Rh = 0, Ev = Iv = 0.
Therefore the largest compact invariant set in = {(Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ Ω : V ′(t) = 0} is the singleton {E1}, where E1
is the disease-free equilibrium point. Hence LaSalle’s invariant principle [21] then implies that E1 is globally asymptotically
stable in Ω . This completes the proof. �

A global stability result for the endemic equilibrium E2 of the system (1) is given below.

Theorem 5.2. If Ro > 1, then the endemic equilibrium E2 of the system (1) is globally asymptotically stable on Ω if

µh =
b1
S∗

h
,

µv =
b2
S∗
v

,

αh =
Q1Q2

2β1S∗

h
,

αv =
Q3Q4β1

β2β3S∗
v

.

(23)

Proof. Define the Lyapunov function

L(t) =
1

β1S∗

h
(Sh − S∗

h log Sh) +
1

β3S∗
v

(Sv − S∗

v log Sv) +
1

β1S∗

h
Eh +

2
Q2

Ih +
1

β3S∗
v

Ev +
β2

Q4β1
Iv. (24)

Calculating the time derivative of L along the solutions of the system (1), we obtain

L′(t) =
1

β1S∗

h
(Sh − S∗

h )


b1
Sh

− β1Ih − β2Iv − µh


+

1
β3S∗

v

(Sv − S∗

v )


b2
Sv

− β3Ih − µv


+

1
β1S∗

h
(β1ShIh + β2ShIv − Q1Eh) +

2
Q2

(αhEh − Q2Ih) +
1

β3S∗
v

(β3Sv Ih − Q3Ev) +
β2

Q4β1
(αvEv − Q4Iv). (25)

After some rearrangement we have

L′(t) = −
µh

β1


Sh
S∗

h
+

S∗

h

Sh
− 2


−

µv

β3


Sv

S∗
v

+
S∗
v

Sv

− 2


. (26)

Since the arithmetic mean is greater than or equal to the geometric mean, we have

Sh
S∗

h
+

S∗

h

Sh
≥ 2 and

Sv

S∗
v

+
S∗
v

Sv

≥ 2. (27)

Thus, the condition (23) ensures that L′(t) ≤ 0 for all (Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ Ω , and the strict equality L′(t) = 0 holds
only for Sh = S∗

h , Sv = S∗
v , Eh = E∗

h Ih = I∗h , Rh = R∗

h, Ev = E∗
v , and Iv = I∗v . Then, the equilibrium state E2 is the only

positively invariant set of the system (1) contained entirely in Ω = {(Sh, Eh, Ih, Rh, Sv, Ev, Iv), Sh = S∗

h , Sv = S∗
v , Eh =

E∗

h , Ih = I∗h , Rh = R∗

h, Ev = E∗
v } and hence by the asymptotic stability theorem [21], the positive endemic equilibrium state

E2 is globally asymptotically stable on Ω . �

6. Numerical results and discussion

In this section the model is solved using Runge–Kutta fourth order scheme. The techniques in [22–24] can be used for
solving a wide range of problems whose mathematical models yield system of differential equations. The values of some
of the parameters in the model are dictated by reality, e.g. the death rates of the humans and mosquitoes, the duration
of the infectious period in the human, disease induced death rate of human and mosquitoes, etc. As we have pointed out,
a person infected with the dengue virus is only infectious during the viremia period, which lasts around three days. The
recovery rate should be equal to 1/3 per day and not the inverse of the length of the illness. The values of the parameters
determined by nature are µh = 0.000039 per day, corresponding to a life expectancy of human is 70 years, µv = 0.1 per
day corresponding to a mosquito mean life of 10 days, β1 and β2 are the transmission probabilities of dengue from human
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Fig. 3. The plot shows the human population.

Fig. 4. The plot shows the vector population.

Table 1
Parameters used for numerical simulation.

Notation Parameter definition Value Resource

b1 Recruitment rate of humans 2.5 day−1 [25]
µ−1

h Average human life expectancy 70 years [26]
αh Progression rate from Eh to Ih class (0, 1) day−1 [20]
γh Recovery rate for humans 1/3 day−1 [26]
δh Disease-induced death rate for humans 10−3 day−1 [25]
b2 Recruitment rate of mosquitoes 500 day−1 [27]
µ−1

v Average lifespan of mosquitoes (4, 14) days [8,27]
δv Disease-induced death rate for mosquitoes negligible day−1 [8]

to human and vector to human population respectively, β3 is the transmission probability of dengue from human to vector
population, αv is the progression rate from Ev to Iv class; these parameters are arbitrarily chosen. For illustration purposes,
we consider the parameters value in Table 1, with β1 = 0.00001, β2 = 0.0012, β3 = 0.001, and αv = 0.20 for numerical
simulation. These values are biologically feasible. Fig. 3 represents the population of humanwhile Fig. 4 represents the vector
population.
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7. Conclusion

In this work we extended the model by taking into account exposed individuals, disease induced death rate and time
dependent total population size in both host and vector population. As in epidemiological models, the model has two
steady states, an uninfected steady state where the disease is not present; and an endemically infected steady state. We
first established stability results and obtained that there are two equilibria which are the disease-free equilibria and the
endemic equilibria. We also shown that the model exhibits the phenomenon of backward bifurcation where the locally
asymptotically stable disease-free equilibrium co-exists with a locally asymptotically stable endemic equilibrium when
R0 < 1. Then, we developed Lyapunov functions to present the global stability of both the disease-free and endemic states.
It is proved that the global dynamics are completely determined by the basic reproduction number R0. If R0 ≤ 1, the disease-
free equilibrium is globally stable. If R0 > 1, a unique endemic equilibrium exists and is globally asymptotically stable. We
believe that this new assumption and analysis is biologically much more plausible than the previous assumption without
the exposed classes and disease induced death rate in both human and vector population.
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