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Abstract

We design a kinetic data structure for detecting collisions between two simple polygons in motion. In order to do
S0, we create a planar subdivision of the free space between the two polygons, cadledithal relative geodesic
triangulation, which certifies their disjointness. We show how this subdivision can be maintained as a kinetic data
structure when the polygons are moving, and analyze its performance in the kinetic setting.
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1. Introduction

The problem ofcollision detectionbetween moving objects is fundamental to simulations of the
physical world. It has been studied in a number of different communities, including robotics, computer
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graphics, computer-aided design, and computational geometry. Methods have been developed for the
case of rigid bodies moving freely in two and three dimensions. Many extant techniques for collision
checking on objects of complex geometry rely on hierarchies of simple bounding volumes surrounding
each of the objects [9,13,14,17]. For a given placement of two non-intersecting objects, their respective
hierarchies are refined only to the coarsest level at which the primitive shapes in the two hierarchies
can be shown to be pairwise disjoint. This and several other optimizations have improved considerably
the cost of collision detection. Though a physical simulation involves several other computational tasks,
such as motion dynamics integration, graphics rendering, and collision response, collision detection still
remains one of the most time consuming tasks in such a system.

Motion in the physical world is in general continuous over time, and many systems attempt to speed
up collision checking by exploiting this temporal coherence, instead of repeating a full collision check
ab initio at each time step [22]. Swept volumes in space or space-time have also been used towards this
goal [4,13]. Though time-stepping at equal increments is customary for motion integration, collisions
tend to be very irregularly spaced over time. If we know the motion laws of the objects, then it makes
sense to try to predict exactly when collisions will happen. There have been a few theoretical papers in
computational geometry along these lines [7,11,24], but their results are not so useful in practice because
they use complex data structures and are only applicable for limited types of motion.

In this paper we focus on a problem that, while simple, still adequately addresses a number of the
fundamental issues that arise as we try to move away from the limitations of these earlier methods.
Our problem is that of detecting collisions between two simple polygons moving rigidly in the plane.
What makes this problem challenging is that the two polygons can be quite intertwined and thus in close
proximity in many places at once. We adopt the point of vievkioktic data structure$3,10], as it is
very natural for the collision detection problem.

A kinetic data structure, or KDS for short, is built on the idea of maintaining a discrete attribute of
objects in motion by updating a proof of its correctness as the objects move. The proof consists of a set
of elementary conditions, arertificates based on the kinds of tests performed by ordinary geometric
algorithms (counterclockwise tests in our case). Those of the certificates that can fail as a result of the
rigid motion of the polygons are placed in an event queue, ordered according to their earliest failure time.
When a certificate fails, the proof needs to be updated. Unless a collision has occurred, we perform this
update and continue the simulation. In contrast to fixed time step methods, for which the fastest moving
object determines the time step for the entire system, a kinetic method is basednis{the certificate
failures) that have a natural significance in terms of the problem being addressed (collision detection in
this case). The kinetic model allows us to perform a rigorous combinatorial time-cost analysis and obtain
practical solutions at the same time.

Unlike earlier collision detection methods that have focused on bounding volume hierarchies for
complex objects, we focus on the free space between the moving objects. We tile this free space into
cells of a certain type. Some cells of this tiling deform continuously as the objects move. As long as
all the cells in the tiling remain non-self-intersecting, the tiling itself functions as the KDS proof of
separation, or non-collision, between the objects. At certain times, of course, cells will become invalid
and a combinatorial change to the tiling will become necessary. In designing a good tiling we seek to
satisfy three somewhat opposing desiderata:

e select a deformable cell shape whose self-collisions are easy to detect (i.e., require few certificates),
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e select a tiling that can conform or adjust to the motion of the polygons, so that its combinatorial
structure remains valid for as long as possible, and
e make it easy to update the tiling when cell self-collisions do occur.

These desiderata are directly related to the compactness, efficiency, and responsiveness of our KDS.

We obtain such a tiling by maintaining a moving polygonal line separating the two polygons. More
specifically, we maintain a structure containing tefative convex hul[29] of the two polygons. This
structure is what we call thexternal relative geodesic triangulatiofERGT), a planar subdivision
combining the idea of the relative convex hull and of ¢fe@desic triangulatiorf a simple polygon [5].

(This latter structure was also used by Mount [18] for the static problem of intersection detection.) The
ERGT effectively defines a set of flexible shells surrounding each of the polygons. The space between
these shells consists p§eudo-triangleswhich are the basic shapes used in our tiling. The ERGT can be
quickly updated upon certificate failures (itressponsiveas described in [10]) and has many other nice
properties. For example, as we will see, the number of certificates of our separation proof is related to the
size of theminimum link separatofor the two polygons [28]. Thus our separation proof automatically
adapts to the complexity of the relative placement of the two polygons—from a single separating line
when the polygons are far apart to as complex as necessary when they have many points of near contac
This feature is important in the kinetic model, in which objects are allowed to changertbgan plan
unpredictably.

The quality of a KDS is measured in part by the number of events it has to process in the worst case
(its efficiency. Obviously, this number depends on the type of motions allowed. We derive the surprising
result that when the moving polygons are translating along algebraic trajectories of bounded degree, the
relative convex hull of the two polygons changes onlg:Otimes, wheren is the complexity of the
polygons. A variation on this argument shows that under such motion our KDS will pro¢essg@)
events. If the polygons are also allowed to rotate by a constant number of full turns, we show that the
number of events is near quadratic in the worst case (the obvious bound is cubic). These bounds are
nearly optimal for structures incorporating the relative convex hull.

Since the publication in 1999 of a preliminary version of this paper [2], Kirkpatrick, Snoeyink, and
Speckmann have proposed an alternative KDS for maintaining the separation of polygons moving in the
plane [15,16]. Their approach uses a logarithmic factor fewer certificates than ours, but does not allow a
provable bound on the number of events, as ours does. This difference may be because our structure i
canonical—it depends on the current position of the polygons, but not on previous positions—whereas
theirs is not.

Pseudo-triangles and pseudo-triangulations have proven useful in many additional contexts in
the recent past. They have been used for ray shooting [5], computing visibility graphs and visi-
bility complexes [19-21], art gallery guard placement [26], rigidity analysis and polygon unfold-
ing/straightening [12,27], to mention just a few applications.

Section 2 presents the exterior relative geodesic triangulation for two non-intersecting simple polygons
and the associated separation proof derived from it. It also shows how this proof can be maintained
under continuous motion. Sections 3, 4, and 5 present the event bounds for the two models of motion
considered. Section 6 concludes with plans for further work.
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2. Certification and maintenance

We denote the boundary of a simple polygety 3 P, and adopt the convention that a simple polygon
is an open set. For two verticesb € 9 P, we denote byC(a, b) the relatively open polygonal chain
alongd P from a to b going counter-clockwise. The complement®is called thefree space o and
denotedF». The shortest path fromm to » homotopic toC (a, b) in Fp is denotedry(a, b).

In this paper, we considéwo non-intersecting polygon8 and Q. DefineF, thefree spaceto be the
complement ofP U Q. We denote byr (a, ) the shortest path from to » that is homotopic t& (a, b)
in F. It is an oriented polygonal chain called theodesidrom a to b. If an edge connects two vertices
of 3 P (respectivelyd Q), it is called aP P edge (respectively @ Q edge). If it connects a vertex fro
and a vertex fronQ, it is called aP Q edge. An oriented edge that connects two verticasof P in Fp
is denotedsv. Finally, we denote by (a, b) the open region delimited b§ (a, b) and= (a, b) (Fig. 1).

Proposition 2.1. Let (a, b) and (¢, d) be two pairs of vertices, with each pair either 6 or 9 Q.
If (a,b) and (c,d) are on different polygons, theR(a, b) and R(c, d) do not intersect. Ifa, b) and
(c, d) are on the same polygon ait{a, b) andC(c, d) do not overlap, themR(a, b) and R(c, d) do not
intersect. IfC(a, b) € C(c,d), thenR(a, b) C R(c,d).

Proof. The proof is based on the observation that two geodesics cannot intersect twice so as to create ar
open regionS of free space bounded on all sides by the union of the geodesics. In such a case at least
one of the geodesics could be shortened by following the opposite boundgry of

If (a,b) and(c, d) are on different polygons, let, b be the two vertices oP andc, d be two vertices
of 0. Note that bothr (a, b) andR (c, d) are all in free space. Hence, if they overlap, then any component
S of R(a, b) N R(c, d) can serve as the forbidden region that shows that at least ane of) andx (¢, d)
is not locally optimal.

If (a,b) and(c, d) are on the same polygon axdtia, b) andC(c, d) do not overlap, the argument is
the same as above. @(a, b) C C(c,d) andR(a, b) € R(c,d), thenR(a, b) \ R(c,d) contains one or
more open regions bounded entirely by edges @f, ») andx (¢, d). Once again at least one of the two
geodesics is not locally optimal.c

Given a subsequenceof vertices ofP, thepinned geodesic cyclef P based orf is the sequence of
geodesics irF joining consecutive vertices df. The subsequence is cyclic, so the last vertex is joined
to the first. We say that the vertices $frepinned

.
§\ \\\\a

Fig. 1. The geodesic froma to b for two placements of the small polygon. A shortest path endpoint is indicated by a star.
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2.1. External relative geodesic triangulation

Proposition 2.1 allows us to define a planar map. Let(respectivelyT,) be a binary tree whose
leaves are the edges Bf(respectivelyQ) in counter-clockwise order, and I&tbe the binary tree whose
root hasT» andT),, as its two children. Each subtreeDf(exceptT itself) is associated with a polygonal
chain on one of the boundaries, Balefines a hierarchy of polygonal chains. With each nodéT that
is not the root, we associate the geodesic between the two extreme vertices of the subtree vooted at

We associate with the root node a geodesic homotogi@tand pinned to a vertex of P. We choose
p depending on the configuration so that, when the convex hulls afd Q are disjoint, this geodesic
contains an inner common tangent and an outer commaon tangent between the hulls.

To maintain this conditionp must vary as the polygons move. We accomplish this as follows: Without
loss of generality assume the diameterPois no smaller than that af. Let (pi1, p2) be a diametral pair
of vertices ofP. Consider enclosin@ between two maximally separated parallel lines tange#t {bhe
lines pass througlp; and p,. BecauseQ’s diameter is no greater than that Bf Q can intersect at most
two of the three slabs bounded by these lines. We chpasépi, p,} such thatQ does not intersect the
half-plane bounded by the line through and maintain this condition over time. Whenew@iis about
to enter the half-plane incident jg we movep from p; to p, or vice versa, extending the geodesic loop
by wrapping it along the portion of the convex hull Bffrom p; to p, that is not visible fromQ. See
Fig. 2.

Likewise, whenQ leaves the half-plane incident to whichever on¢of, p.} is not p, we shorten the
geodesic loop by moving from p, to p; (or vice versa) and dropping the doubled path along the back
side of P’s convex hull. Note that moving from p; to p, or vice versa takes only @) time. Although
the loop may gain or los® (n) edges, these paths can be precomputed and spliced in or out of the loop
in constant time.

By Proposition 2.1, this system of geodesics defines a planar nédim@a that we call theexternal
relative geodesic triangulatiofor ERGT) of the paiK P, Q) based orf” (Fig. 3). In the rest of this paper,
we take a tree of depth @gn) to define the ERGT, where is the total number of vertices of the two
polygons. In particular, we choos® and 7, to becomplete binary treesach internal node has two
children, and leaves appear only on two adjacent levels of the tree. Thus the number of nbgles of
T, with depthk is 2* for all except the two maximal-depth levels of the tree. Fig. 4 shows an example of
part of T» and the corresponding portion of the ERGT.

Observation 2.2. The edges of the ERGT are obtained by superimpd3itag») pinned geodesic cycles
for each polygon, and possibly some inner and outer common tangents of the polygons.

Fig. 2. The loop’s attachment vertgxmoves fromp4 to p» asQ moves pasP.
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D@23

Fig. 3. Planar maps induced by the ERGT of two polygons, withRige edges in bold. The right polygon is dreaming about
its first four pinned geodesic cycles.

Fig. 4. The subchain, ..., i of 3 P, the corresponding part @fp, and the associated ERGT. Each tree node lists the endpoints
of the associated chain and the numerical label of the nontrivial pseudo-triangular face associated with the node, #any. A “
means that there is no nontrivial face between the node’s chain and the chains of its children.

exterior face

pseudo-triangle

Fig. 5. The root node defines an infinite exterior face and a pseudo-triangle.

The ERGT has a number of properties that are straightforward generalizations of those of the geodesic
triangulation of [5]. Consider a nodein T or Ty. It has an associated geodesic, and its two children
define two geodesics obtained by pinning an additional vertex. The open region between these three
geodesics, if non-empty, is a face of the planar map call@deaudo-triangle(three convex vertices
joined by three concave chains). We associate this face with the imotlee root node ofl’ defines
two faces: the infinite face (made of only one concave chain linked to itself by a convex vertex) and a
pseudo-triangle. See Fig. 5. For any line segmetf jithe sequence of nodes Bfcorresponding to the
faces whose interiors it crosses lie along a patfi.in

A planar map is made of vertices, edges, and faces. Additionally, we will say that two adjacent edges
along a face define eorner, which can be eithereflex convex or degeneratdi.e., @ or 180) on that
face. A condition that states that a given corner is reflex or convex is calbednar certificate Now,
suppose that we move the vertices in compliance with the certificates of all corners: are we sure that the
map will remain planar, i.e., that no two edges will intersect? For a general planar map, this is not the
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case, but the special structure of the pseudo-triangles allows the ERGT to be certified by its corners, in
the following sense:

Lemma2.3. Let P, Q be two simple polygons moving continuously between Giared timer /-, and let
X, be their ERGT at. If no corner ofXy becomes degenerate befofethenX; = Xy for all 1 < ¢;.

Proof. We argue first that so long as the corners of a geodesic triangle stay nondegenerate while the
polygons move, the geodesic triangle cannot self-intersect. Consider the slopes of lines tangent to the
concave chains of a pseudo-triangle. (Imagine rolling a line along the inner boundary of the pseudo-
triangle, maintaining contact with the chains as it moves.) The convexity of the corners and the concavity
of the chains means that the slope of the rolling line changes monotonically as the point of tangency
moves along the boundary. In particular, the slopes of the inner tangent lines supporting the different
chains lie in three disjoint ranges. By the mean value theorem applied to slopes, if a line intersects a
chain more than once, then the slope of the line lies in the chain’s tangent range. In particular, a line that
bisects the angle at a convex corner lies in the slope range of none of the chains, and therefore it separate
the two chains incident to the corner. Applying this argument at all three convex corners shows that the
chains of the pseudo-triangle intersect only at the convex corners. The boundary of the pseudo-triangle
remains simple as the polygons move.

Now consider the exterior facE of the root node. It is bounded by a single concave chain whose
ends meet at a convex vertex. The complement of the exterior fads tiled by P, Q, and a collection
of pseudo-triangles. Since none of them collapses, as argued above, no vérfexar penetratd F
coming from the side oF (that is, the collapse shown on the right side of Fig. 6 is not possible)p Let
be the convex vertex af. For every poini on 3 F, the segmenpg lies in the closure of . Choosey
to be the point wher@ F intersects the bisector of the anglepafThe line supportingpg cuts F into two
convex pieces (the angle at every vertex in each piece is convex). Thefefasghe complement of the
union of two touching convex polygons, cannot collapse—no vertekFotan penetratd F from the
side of F (from the exterior face).

Because the geodesic triangles and the exterior face tile the free space, abutting along shared edge:
local validity of each face implies global validity of the ERGT tiling

In particular, a collision can occur betweéhand Q only when a certificate fails. Thus, we will be
able to detect collisions if we can maintain the ERGT.

!

Fig. 6. A pseudo-triangle certified by convex/reflex certificates cannot self-intersect (left figure). The outer face could
self-intersect (right figure), except that its complement (the interior) is prevented from collapsing by the polygons and
pseudo-triangles that tile it.
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2.2. Compactness and locality

Some certificates in the geodesic triangulation involve only verticg’, gbme involve only vertices
of Q, and some involve both. In a context in whi¢ghand O both move rigidly, only the certificates
involving both polygons can ever fail. Those are the corner certificates that are adjadaptddges in
the ERGT. This set of certificates is called tative set

In the kinetic setting, a change of the motion plan of one of the polygons makes it necessary to
recompute the failure times of the active set, and it is therefore desirable to have as small an active
set as possible.

Lemma 2.4. In an ERGT ofP and Q with n vertices in total, the active set h&i« log f) certificates,
wherex is the size of a minimum link separator Bfand Q.

Proof. A line segment disjoint from the interior @f can cross a geodesic between two vertice® ait

most once. Therefore, it can cross a pinned geodesic cycle at most twice. (Once a segment enters a regio
R(a, b), it cannot come back out.) Consider a separator thakchedges. LetlT be a pinned geodesic

cycle of P. Any polygonal chain that separat@sand Q has to cross all its bichromatic edges (edges
between a vertex oP and a vertex ofQ), hence the number of bichromatic edges createdibig at

most %.

Each certificate from the active set is adjacent to a bichromatic edge, and there are at most four corners
adjacent to one edge. Hence the number of certificates is at most four times the number of bichromatic
edges of the ERGT.

By Observation 2.2, the total number of bichromatic edges of the ERGTi$0@n). To improve this
bound, we count the number of unique bichromatic edges associated with each [Evel of

Leta, b, andc be three vertices in counterclockwise order aloy The portion ofr (a, b) disjoint
from m(a, ¢) is contained inR(a, ¢) U C(a, c). Therefore, of the edges af(a, b) \ 7 (a, c¢), at most
one is aP Q edge—only the point where(a, b) separates from (a, c¢) can belong taQ. A symmetric
argument applies ta, b,c € Q. It follows that if a given level ofT’ below the top two levels hals
nodes, the maximum number BfQ edges that belong to the pinned geodesic cycle for that level and not
to the cycles of any higher levels is at mést-or level j of the tree,j > 1, the number of uniqu® Q
edges belonging to its geodesic cycle is at most(&iir2«). The levels for which 2is not the upper
bound arg0, 1, [log, «1, [log,«1+ 1, ...}, and for each of these levels the number of unigu2 edges
crossed by a separator is at most 2

BecauseT» and Ty, have been chosen to be complete binary trees, the heiglft isf at most
[log,n] + 1. Thus the total number of distinétQ edges crossed by a separator is at most

log, «
. n
241 —1 2 = 1+log-—} ).
2(2+ logyn — logyk) + O(K( + ogK))

j=2
This completes the proof of the lemmanc

2.3. Maintenance of the ERGT

We now assume that we have two moving simple polygBnand Q. We assume transversality in
spaceltime, i.e., there is at most one group of three vertices collinear at any given time, and if three
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vertices are collinear at then the triangle they define really flips orientation between just before and
just after that instant. This assumption also implies non-degeneraéy afd Q separately: no three
vertices of P are collinear, and the same holds f@r (The general position assumption is for purposes of
exposition; it can be removed, if necessary, by applying a symbolic perturbation [6].) We further assume
that, given the knowledge of the motions Bfand Q, we can compute the failure time of any certificate
with O(1) computation.

We maintain the ERGT of? and Q by taking all corner certificates of the associated planar map,
and putting them in an event queue ordered by time of failure. As the ERGT remains the same when no
certificate fails, we just need to describe how to update it when there is an event. An event, in general,
involves updating the geodesic triangulation, and descheduling and rescheduling in the event queue the
corner certificates that are affected by this update.

As we have seen, there are two types of certificates (reflex and convex), and therefore two types of
events, which are pictured in Fig. 7. The failure of a convex certificate (right to left in Fig. 7) is easy to
handle, as there is only one possible resulting felpwever, when a reflex certificate fails, we need to
choose between three possible resulting maps. This can be done with the help of the tree on which the
ERGT is based.

Consider the situation on the left of Fig. 7. LEtbe the face of the reflex certificate, and Jebe its
adjacent vertex. The facg has two adjacent faces aroundwhich we denotef, and f,. Recall that our
ERGT is based on a binary trdg and that each face has an associated node in this tree (each node is
associated primarily with a geodesic and secondarily with the face, if any, between its geodesic and those
of its child nodes). Lev, v,, v, be the three nodes associated with our faces. If either adjacent face is
absent, that isf is bounded on either side by a polygon edge, not a face, let the approprite, be
the node associated with the polygon edge adjaceyit to

Proposition 2.5. The relative positions of nodes v,, v, are different in each case of Fig. More
precisely, if none of them is the root nodeTgfthe cases are

(a) the three nodes are not on a common path,

(b) the three nodes are on a common path, ang betweern and v,

(c) the three nodes are on a common path, ane between andv,.

Proof. As we mentioned in the paragraph after Observation 2.2, if a segmeént arosses a sequence
of faces, the associated nodes lie along a path iim each case (a)—(c), we choose appropriate segments

Fig. 7. The failure of a convex certificate (right to left), and of a reflex certificate (left to right). The polygon edges incident to
the extreme vertices may lie on either side of the edge involved in the event (right inset).

3 In case (a), three convex certificates fail at the same time, and extra care must be taken to handle this properly.
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around the vertex to prove the claim. In case (b), we can draw a segment that crgsgesf;, in this
order, and in case (c) we can draw a segment that crgsgésf, in this order.

In case (a) we need to show that the three nodes do not lie on a common path. In this cage faces
fe¢, and £, lie on the three sides of a central triangleLet v, be the node associated with We prove
that none of the three nodes v,, andv, lies between the other two on a common path. Without loss
of generality, suppose thatlies between, andv,. We can draw a segment that cuts z, f, in order.
Thus bothv andv, lie betweerv, andv,. The two possible orders arg, v, v, v, andvg, v, v, v,.. In the
first caseyp lies between, andv,; however, we can draw a segment that provesithéies between,
andv. In the second case,lies between, andv,; however, we can draw a segment that proves ithat
lies betweernv andv,. Hence neither order is possible, and the three nodeg andv, cannot lie on a
common path. O

If one of the nodes is the root node, we can distinguish how the event should be handled with a little
extra work. Details are left to the reader.
Here is high-level pseudocode for the kinetic maintenance of the ERGT:

Let Q be atime-ordered priority queue of convex and reflex certificates.
while (Q is not empty) {
C < (Q.popHead);
Dequeue all certificates involving the edgesof
if (C is a convex certificate)
Restructure the ERGT as in Fig. 7 (right to left);
else
Restructure the ERGT as in Fig. 7 (left to right), choosing
which local configuration to create by using Proposition 2.5;
Enqueue certificates for all the corners involving modified edges of
the ERGT, with failure times based on the motionsPaand O;

}

Our kinetic data structure maintains the ERGT, and, for each face, a pointer to its ndd@gate
that T is fixed over time: it is not the dual tree of the planar map). When a reflex certificate fails, we
use these pointers as indicated by Proposition 2.5 to decide how to handle the event. This can be done
in O(1) time with a constant number of least-common-ancestor queries [23]. (In fact, we can find least
common ancestors using a trivialldgn) traversal ofT” without increasing the asymptotic running time
of event handling.) In all cases, the update of the ERGT involves the destruction and creation of a constant
number of edges. Each corner certificate that is disturbed during this process needs to be descheduled ¢
rescheduled in the event queue, which takes an additional time logarithmic in the size of the active set.
In other words, our KDS is responsive.

The reader is invited to examine Fig. 3, and to imagine how the structure of the ERGT would change
if the small polygon were to move around.

Theorem 2.6. Our kinetic data structure for maintaining an ERGT of two moving polygbrand Q is
compact and responsive: it us€gx log #) certificates, where is the size of a minimum link separator
for P and Q, and each certificate failure can be correcteddiogn) time.



J. Basch et al. / Computational Geometry 27 (2004) 211-235 221

As noted in passing in Section 2.2, a change to the flight plaR of O changes the failure time of
every certificate. Thus our KDS is not local. However, this is to be expected—a polygon does not have
constant description complexity, and the many possible near-collisions between two polygons must be
represented somehow.

3. Efficiency preliminaries

In the next two sections, we analyze the number of combinatorial changes to the ERGT as the polygons
move. The ERGT is composed oflogn) pinned geodesic cycles. A combinatorial change to it occurs
when a vertex is inserted into or deleted from the vertex sequence of one of those pinned geodesic cycles

We analyze the number of combinatorial changes under two models of motion: pure translation and
translation with bounded rotation. In both cases, we will assume without loss of generality that
stationary and is moving. The position and orientation @fare given by a moving orthogonal reference
frame—a poiniy (r) and a pair of orthogonal unit vectar$z), y(r)—whose coordinates are continuous
functions of time. The vertices ad have fixed coordinates relative to the moving reference frame. In
order to compute the failure times of corner certificates in constant time, we assume that the coordinates
of the reference frame, and thus the coordinates of every vertex, are polynomials of bounded degree.
Any rigid motion can be approximated by such a moving reference frame to any desired accuracy, for
a limited time. However, bounded-degree algebraic rigid motions necessarily have non-uniform angular
velocity and can cover only a constant number of full turns.

Remark. A polynomial representation of rotational motion is inherently inexact:(t) = (a(¢), b(¢))

is required to be a unit vector, the@(t))? + (b(1))> = 1, and this is not possible with non-
constant polynomials. Square roots must enter into the representation tqwkee¢p= 1. Possibilities
includex(t) = (a(?), V1 — (a())?) andx(¢) = (a(1), b(t))/\/(a(t))z + (b(1))?2, wherea(t) andb(z) are
polynomials. One can also write(r) = (cosd(t), sinf(t)), whered(¢) is polynomial and bounded to

some constant-size interval. However, introducing sines and cosines increases the complexity of the
computation. In all cases, if(r) = (a(¢), b(¢)), theny(t) = (—b(t), a(t)).

For both pure translation and rigid motion, we show that the worst-case number of changes to the
ERGT is about the same as the worst-case number of changes to the relative convex hull. Our results are
as follows:

Theorem 3.1. If two simple polygong and Q with n vertices translate along algebraic trajectories of
degreek, then the number of changes to their ERGDi&n logn). The worst-case number of changes
to the relative convex hull i€ (kn).

Theorem 3.2. If two simple polygons® and Q with n vertices undergo bounded-degree algebraic rigid
motion, then the number of changes to their ERGD(8?+*) for any e > 0, where the hidden constant
depends on the exact parameters of the motion. The worst-case number of changes to the relative conve
hull is Q (7).

Like the bounds for other kinetic data structures [3,8,10], these bounds do not actually require the
motion to be algebraic, but only that it satisfy certain combinatorial conditions. Howeverhiitis
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Fig. 8. (a) An inner appearance and (b) an outer appearance of the orientegi@gdgdongr (a, b) as Q moves downwards.
In each case, the polygon edges incident to the extreme vertices may lie on either side of the connecting edge (inset), except
that, for the outer appearance, the vertex fr@nsannot be pinned.

sufficient to assume that any individual certificate can fail only a constant number of times, as it is for
most previous KDSs. Whether our bounds can be extended to more general classes of pseudo-algebrai
motion remains an open problem.

Lemma 3.3. Any combinatorial change to the ERGT involves the appearance or disappearance of some
PP or QQ edge in a pinned geodesic cycle.

Proof. A combinatorial change consists of the insertion or deletion of a single vertetween two

other vertices in the vertex sequence of some pinned geodesic cycle. Without loss of generality suppose
v € 3P is inserted between two verticesandw. If eitheru or w is a P vertex, then it forms a new P

edge withv; otherwisenw is a Q Q edge that disappears wheiis inserted. Symmetric arguments hold

if v is deleted and/or belongs é@. O

It suffices to bound the number of appearances, because the total number of disappearances is at mo:
n more than the number of appearances? R edge may appear for two different reasong?isuddenly
stops intersecting it (we call this dnner appearanck or if one of theP vertices starts intersecting a
P QO edge (we call this anuter appearance Fig. 8 illustrates these two events for specific positions of
the vertices ofP.

4, Boundsfor trandational motion

In this section, we consider the case in which the motioads pure translation. In this case, the
motion of O can be described by the motion of a single point. Let us say that the position of this point at
timer is g(t). We say that the motion isonvexbetweery, andt, if the projection ofg(¢) on any line¢
has at most one local extremum in the open time intefvals < . Thanks to the following lemma, we
can assume without loss of generality that the motio@a$ convex.
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Lemma 4.1. If the coordinates of (r) are polynomials of degrek, theng(t) can be decomposed into
O(k) convex motion fragments.

Proof. Let ¢(r) = (x,y) = (X(¢),Y(¢)). We break the trajectory at all its vertical and horizontal
tangents, and at its points of inflection. An inflection point of the trajectory is a point m@ér@ 0.
Using the standard prime notation for derivativE§y) = ‘é—i andX'(r) = ‘(’j—f Then

dy dy/dt  Y'(¢)

dx ~ de/dr - X'()’

and

>y d /Y d/y®m) 1 X' Y (t)-Y @)X (1)
dx2  d (X/(r)) S (X/(z)) X'@6) (X'(1))® ‘

Therefore, we break the time domain at all nontrivial solution¥1@) =0, Y'(z) =0, andX’'(0))Y" () =
X"(®)Y'(r). This divides the motion into @) motion fragments. We need to argue that each fragment is
Convex.

We focus on a single fragment given by a time interjvglz;]. By the mean value theorem applied
to slopes, no horizontal or vertical line cuts the fragment trajectory more than once. If the fragment is
nonconvex, let? be a line such thay(r) has multiple local extrema when projected 6wluring the
intervaltg < t < ;. Leta andb be consecutive local extrema;andb are tangent to two parallel lines
perpendicular t@, and the trajectory betweenandb lies between these lines. The second derivatives of
the trajectory with respect to have opposite sign at andb. The mean value theorem implies that the
second derivative has a zero betweesndb, which contradicts our choice of fragment intervalsa

To prove Theorem 3.1, we consider the number of appearanc@sadind Q Q edges on a single
pinned geodesic cycle @t, which we callPGC(P) in the sequel. We denote the relative convex hull of
P (a geodesic cycle with no pinned vertices)REH(P).

Lemma4.2. Any Q O edge of PGCP) is also an edge of RCt) and of RCHQ).

Proof. Viewed as a polygonRCH(P) containsPGC(P). Neither contains any point af’s interior.
Hence the vertices of @ Q0 edge of PGC(P) also belong taRCH(P). Because the edge belongs to
PGC(P), no part of P crosses the edge. Hence the edge is also an edgEldfP).

Any vertex of Q that appears oRCH(P) lies on a path that is the intersection of the boundaries of
RCH(P) andRCH(Q). Therefore, if aQ O edge appears oRCH(P), it must lie along this path, and
hence be part dRCH(Q). O

According to this lemma, if 8 Q edge appears or disappearsRBC(P), that edge is also an edge
of RCH(Q). However, its appearance &G C(P) may not correlate with a change RCH(Q).

We now bound the number of appearance® &f edges orPGC(P). Subsequently, we will extend
this to bound the total number of combinatorial changeB&L(P). The idea, explained in more detail
later, is to apply the argument symmetricallyR&C(Q) and toRCH(Q), and then separately bound the
number of times eaclp O edge that ever appears BCH(Q) can entePGC(P).

Recall thatzg(a, b) is the shortest path that avoids only the polygdffior a, b € P. It is identical to
7 (a, b) when the convex hulls of and Q are disjoint. LetRy(a, b) be the region bounded by (a, b)
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andC(a, b), just asR(a, b) is the region bounded hy(a, b) andC (a, b). Note that for any position of
0, R(a, b) C Ro(a, b)—Q pushesr (a, b) inward, towardC (a, b), and never outward.

Let uv be an oriented® P edge. We extend it beyonduntil it hits P (or to infinity, if it does not hit
P), and denote the part of this segment (or ray, or empty seipbyVe callizv the extension ofiv at v.
The extensionu is defined symmetrically. The union @9 and its two extensions is denotgd. It cuts
Fp inup to four components (at most four, by non-degeneracy).

Definition 4.3. Thepocketof the oriented edg&v, denotedpocketuv), is the component oF» \ iiv that
is locally to the left ofiv. If iv is a finite segment, theeighbor pocket of is the component wittry
on its boundary, andv not on its boundary. The neighbor pocketoi defined symmetrically (Fig. 9).

If a neighbor pocket is on the same sideiof aspocketuv), it is calledforward-facing otherwise it
is calledbackward-facing

Note that a pocket may be finite or infinite.idl is clockwise-oriented, its pocket may be unbounded,
and we call this amfinite pocketBecause a neighbor pocket may be either forward-facing or backward-
facing, the lids of a pocket and its neighbors may have opposite orientations. At most one of a pocket and
its neighbor pocket(s) can be infinite. See Fig. 10. A neighbor pocket is a pocket in its own right. The

Fig. 9. Two instances of an oriented edge The pocket it defines is in gray, and the neighbor pockets are hatched.

infinite
finite {\ backward
backward e

finite 1| finite
~1 | forward /| | ] [ forward

Fig. 10. Neighbor pocketpocketuv) is lightly shaded, neighbor pockets are shaded darker, and thedmtkétuv) is shown
as a thick line.
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endpoints of the extension segment that defines it may not be vertices, but the definition of a pocket does
not require them to be.

A finite pocket of P is full if it contains at least one point ap, and emptyotherwise. Thdid of
pocketuv) is the portion ofiv on its boundary. If a finite pocket contains a pinned verteRG{C(P) in
its closure, we say that the pocket itselpianed

Lemma 4.4. Let P; and P, be two finite, disjoint pockets df whose lids are parallel, withP; and P,
locally on the same sides of their lids. Suppose that at somertinpecketP; is full and P, is empty,
and that at some later timg, pocketP; is empty andP; is full. If P and Q remain disjoint and translate
continuously between andt,, then there exists a timg, with; < ¢’ < ,, at which bothP, and P, are
empty.

Proof. We argue by quantifying the notion of fullness. L&tP;, t) denote the “depth of penetration”
of pocketP; at timer. If P; is empty,d(P;,t) =0. If P; is full, d(P;, 1) is the maximum perpendicular
distance from the line supporting the lid 8f to a vertex ofQ inside P;. Note that for any time interval
in which P; is full, the depth of penetration is always determined by the same vert@x of

Let s € [11, 1] be the first time wherP; becomes empty. We want to argue tifatis empty atr’.

If P is full at any time before’, letz; € [¢1, ¢'] be the last time before when P, becomes full. Then
d(Py, ty) >0 andd(P,,ty) = 0. Since depth of penetration is determined by the same vertex during any
interval of fullness, it follows that/ (P, 1) > d (P>, t) for all 1, <t <¢'. That is, Py is full until after P,
is empty again. Whet;, becomes empty?, is empty as well. O

The definitions of pockets and neighbor pockets allow us to characterize the placeménht®rof
which aP P edge can be present ®GC(P).

Lemma 4.5. If an oriented P P edgee is present on PG(P) for some position oD, then pocket) C
R(a, b), for two consecutive pinned verticesandb.

Proof. Edgee belongs tor (a, b) for two consecutive pinned verticesandb. For each endpoint of

e, either the lid ofpockete) ends atv, or = (a, b) bends away fronpockete) when it leaves the lid
of pockete) (if 7 (a,b) crossed the lid to entgrockete), then the path could be shortcut by a path
not containinge). See Fig. 11. Hence the only intersectionpaickete) with w(a, b) is a segment of
the pocket lid, and becaugmckete) is locally to the left ofx(a, b) there,pockete) is contained in
R(a,b). O

pocket(e)

Fig. 11.pockete) C R(a, b). R(a, b) \ pockete) is lightly shaded, angockete) is shown slightly darker.



226 J. Basch et al. / Computational Geometry 27 (2004) 211-235

Corollary 4.6. If an orientedP P edgee is present on PG(P) for some position oD, then pockek)
is finite, empty, and contains no pinned vertices not collinear with

Proof. This follows immediately from the preceding lemma, silRéz, b) is finite, empty, and has
pinned vertices only at andb. O

Lemma 4.7. If a PP edgee is present on PG(P) for some position ofD not tangent toe or its
extensions, then for each unpinned endpoiof ¢, the extension af at v is a non-empty segment or ray.
If the extension is a finite segment, then the neighbor pocketsadither infinite, pinned, or full.

Proof. Edgee belongs tar (a, b) for some pair of consecutive pinned vertieeandb. If a vertexv of
e is unpinned,r (a, b) must bend ab, and P must lie locally in the interior of the angle formed by the
bend. Hence the extensionwais non-empty.

Now suppose the extension is finite and the neighbor pagkstfinite and unpinned. The definition of
the neighbor pocket implies that lies on the same side of the line supportings P does in the vicinity
of v—see Fig. 10. Because(a, b) bends around® at v, it entersN. BecauseN is unpinned,z (a, b)
comes back out aW, crossing its lid a second time. @ does not entel, 7 (a, b) can be shortcut using
a segment of the lid av. HenceN must be full. O

This characterization lets us bound the number of appearances af Bngdge, as a pocket can
become empty at most once during a single convex motion.

Lemma 4.8. An oriented P P edge has at most one inner appearance and one outer appearance on
PGC(P) during a single convex motion.

Proof. Atthe instant aP P edgee has an inner appearance, some poinPagxits pockete). Hence the
projection ofQ’s motion on the normal te is directed away fronpockete). Beforee can have a second
inner appearance&) must re-entepockete), then reverse direction to exit it again, creating a non-convex
motion.

An outer appearance efoccurs when a vertex @ enters a neighbor pockat of e. If N is forward-
facing, it is empty prior tcee’s appearance; ilV is backward-facing, it completely contain® after the
appearance. We break possible consecutive outer appeararcesoatree cases.

(&) The same neighbor pocketeais entered by a vertex @ twice. The argument for inner appearances
of e applies:Q must cross the lid of the neighbor pocket three times, with alternating directions. See
Fig. 12(a).

(b) Different neighbor pockets are entered, but both neighbor pockets lie on the same side of the line
supportinge. See Fig. 12(b)Q crosses the line in the same direction for each appearance, and must
cross it in the opposite direction between appearances. (If the neighbor pockets lie on the same side
of the line aspockete), both must be full fore to appear, and)? must exit one before the second
appearance; if the neighbor pockets lie on the opposite side of the linepivokete), only one of
them can be full at a time, and must exit the first one before entering the second.)

(c) Different neighbor pockets are entered, and they lie on opposite sides of the line suppoBae
Fig. 12(c). Edger separates its two extensionsjp. During an outer appearance @f Q crosses
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Fig. 12. Each oriente@ P edge has at most one inner and one outer appeararR&6aP).

one of the extensions but does not cres§herefore, between successive outer appearagces)st
cross one extension, thenthen the other extension, which gives a nonconvex motian.

To bound the number of appearancesPd? edges orPGC(P), we identify three types of edges that
appear orPGC(P):

1. edges that belong tay(a, b) for some pair of consecutive pinned vertieceandb;

2. edges not of type (1) that have at least one finite, unpinned, backward-facing neighbor pocket at an
endpoint not onry(a, b); and

3. edges not of type (1) or type (2).

Note that by Lemma 4.7, an edge not of type (1) has a non-empty extension at each of its endpoints
that is not onzg(a, b)—the endpoint cannot be pinned. We prove that there &@n¢ €ges of each type.
Lemma 4.8 then shows that there are only:Oappearances of these edges.

The first bound is easy: there aré edges omg(a, b), summed over all consecutive pinned vertices
a andb.

We now bound the contribution of edges of type (2), those with at least one finite, backward-facing
neighbor pocket at a vertex not ag(a, b).

Lemma 4.9. There are at mosD(n) edgese such thate is an edge ofr (a, b) for some position oD,
e ¢ mo(a, b), and some endpoint efnot onxg(a, b) has a finite, unpinned, backward-facing neighbor
pocket.

Proof. Lete = uv, and letu be an endpoint insid&q(a, b) that has a finite, unpinned, backward-facing
neighbor pocketv. By Lemma 4.7, whenever belongs tor (a, b), Q must be contained iN. See
Fig. 13. The pathr (a, b) can be decomposed into three pafté&z, ), a loop insideN from u aroundQ
and back tat, andx (u, b). The portion ofr (a, b) outsideN depends only on. Therefore, there is only
one edge associated with each vertexe (C(a, b) \ mo(a, b)) that can belong to any(a, b). It follows
that there are only @) edges that meet the conditions of the lemma
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Fig. 13. Q is completely contained in the Fig. 14. Two restricted® P edges that cross.
backward-facing neighbor pocket ef

We now focus our attention on edges of type (B)P edges ofPGC(P) that do not belong to
any mro(a, b) and have no finite, unpinned, backward-facing neighbor pockets at their endpoints not on
mo(a, b). We call these edgesstricted P P edges

Lemma 4.10. If two restrictedP P edges of PGCP) that appear during the motion @ cross(i.e., their
interiors intersec}, then each has a finite, forward-facing neighbor pocket that is contained in the other
edge’s pocket.

Proof. By non-degeneracy, the two edges must cross properly—they cannot be collinear. Let the two
edges beix and wz, and without loss of generality assume thats contained inpocketwz) and w

is contained irpocketux). See Fig. 14. Because all the regiakga, b) are disjoint for different pairs

(a, b), ux andwz both belong tor (a, b) for the same consecutive pair of pinned vertisendb, albeit

at different times.

By Lemma 4.5, ife is a PP edge ofPGC(P), pockete) is contained inR(a, b). By transitivity,
pockete) is also contained iR (a, b).

Sincepocketwz) andpocketux) are both contained iRq(a, b), neitherx norw is pinned. Hence the
extensions at andw must exist, by Lemma 4.7. Furthermore, each extension is contained in the other
edge’s pocket: for exampléw cannot intersedix, becausez intersectsix in only one place, namely on
wz. Therefore, the extensions are finite, and bound neighbor pockets. We now argue that these neighboi
pockets are finite. Edgez and its extension at cut pocketux) into three regions. Two of these regions
are incident ta:x, and the third is the neighbor pocketwat The neighbor pocket is fully contained in
pocketux) and hence finite (and unpinned). The same argument applies to the neighbor packet of
atx. Becauserx andwz are restricted? P edges, the neighbor pockets are forward-facing.

Lemma 4.11. No two restrictedP P edges that have outer appearances on R8LCduring a single
convex motion of) can cross.

Proof. If a restrictedP P edgee has an outer appearance BGC(P), it follows from Corollary 4.6
and Lemma 4.7 thgbockete) is empty, and some vertex @ crosses the lid into a neighbor pocket
at the moment of appearance. The pocgeenters is finite and unpinned, and empty just prior to the
appearance of (otherwiser (a, b) would already enter the pocket).dfhas two neighbor pockets that
are finite and unpinned (so both must be full éoto appear), then both neighbor pockets are forward-
facing—otherwiseQ would have to intersegiockete) to intersect both neighbor pockets.
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We prove the lemma by contradiction. Suppose the lemma is false, and the two crossing edges are
andwz, as shown in Fig. 14, and without loss of generality assumeiibappears beforgx, at some
time #;. Define the positive normal t@z to be the one that points away fropocketwz). Whenwz
appears at time;, some vertex ofQ crossesvz in the negative direction (because the neighbor pocket
Q enters is forward-facing). Just aftgr pocketvw) is full and pockefwz) is empty. Wherix appears
at some timers, pocketxy) is full and pocketux) is empty, implying thaipocketvw) is empty and
pocketwz) is full.

By Lemma 4.4pocketvw) becomes empty befopocketwz) becomes full, at time, witht; < <
t3. Hence some vertex @ crossesuz in the positive direction ab, and another vertex cross#s in the
negative direction a. The projection ofQ’s motion on the normal taz therefore has two successive
local extrema, an@’s motion is not convex. O

Lemma 4.12. No two restrictedP P edges that have inner appearances on RBLCduring a single
convex motion of) can cross.

Proof. Once again, the proof is by contradiction. Suppose that the two crossing eddes amd wz,
as shown in Fig. 14. By Corollary 4.6, each pocket changes from full to empty at the moment of its
edge’s appearance. By Lemma 4.7, the forward-facing neighbor pocket iRgideb) must be full.
Without loss of generality, assume that appears beforgéx. Just afteriwz appearspocketvw) is full
andpocketwz) is empty. Henceocketux) is full and pocketxy) is empty. Let this time be,.

Just afterux appears (at some tinrg), pocketux) is empty andoocketxy) is full. By Lemma 4.4,
there exists a time,, with 1, < #, < 14, at which pocketux) and pocketxy) are both empty. But at
t3 = t4 — ¢ for some infinitesimale, pocketux) is full (because the appearance iof is an inner
appearance). Thus at times 7., t3, and s, pocketux) is successively full, empty, full, and empty.
At the instants of transition between full and empty states, the projecti@isahotion on the normal to
ux is successively positive, negative, and positive. Hafitsemotion is not convex. O

Lemma 4.13. The number o P edge appearances on PGE) during a single convex motion 3(n).

Proof. There are at most edges on all therg(a, b) paths (edges of type (1)). Lemma 4.9 shows that
there are @) edges of type (2). Lemma 4.11 shows that the graph of type (3) edges that make an outer
appearance is planar, and hence there drg €uch edges. Similarly, Lemma 4.12 shows that there are
O(n) type (3) edges that make an inner appearance. Taken together, these lemmas show that there ar
O(n) PP edges that appear ¢ C(P) during a single convex motion. Finally, Lemma 4.8 shows that
each of these edges has at most two appearances during one convex mation.

We now conside Q edges that appear d"GC(P) during a single convex motion. Such edges are
edges of the relative convex hull @f, and hence by applying Lemma 4.13@Q edges orPGC(Q)
we can show that only @) Q Q edges appear dAGC(P). However, such an edge might have multiple
appearances 0RGC(P), even though it remains continuously ®CH(Q)—Lemma 4.13 bounds the
number of appearances &CH(Q), not onPGC(P).

Lemma 4.14. During a single convex motion, ang Q edge has at most one appearance on RGLC
that is not also an appearance on the relative convex huf) of
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Fig. 15. Edgez is a Q Q edge ofRCH(Q); it joins PGC(P) because a vertex d@t crosses the line supportirg

aash
|

Fig. 16. AsQ moves up and dowh/2 times,RCH(P) change (kn) times.

Proof. In this proof we view the relative motion d® and Q from Q’s perspective:P moves relative
to Q. Let e be theQ Q edge in question. If at time edgee is already orRCH(Q) and becomes an
edge ofPGC(P), it means that one endpoint efbelongs toPGC(P) beforer, and the other becomes
a vertex ofPGC(P) att (by the nondegeneracy assumption). For this to happen, an ed®@@fP)
(a P Q edge) not previously oRGC(Q) must become collinear with atr. A vertex of P crosses the
line supportinge att, locally moving towardQ. See Fig. 15. Foe to disappear fromPGC(P) without
leavingRCH(Q), the reverse motion must occur: a vertexfofnust move across the line supportiag
moving locally away fromQ. Thus fore to appear twice of?GC(P) without appearing on or leaving
RCH(Q), P must move toward?, away, and toward again (projected on the normaltea nonconvex
motion. O

Putting Lemma 4.14 together with Lemma 4.13 applied@tove have the following corollary.

Corollary 4.15. The number of0 Q edge appearances on PGE) during a single convex motion
is O(n).

We can now finish the proof of Theorem 3.1.

Proof of Theorem 3.1. It follows from Lemma 3.3, Lemma 4.13, and Corollary 4.15 that the number
of changes to a singlBGC(P) during one convex motion is @). There are @ogn) pinned geodesic
cycles in the ERGT, and so the total humber of changes to the ERGT during one convex motion is
O(nlogn). By Lemma 4.1, the relative motion &f and Q can be decomposed into/) convex motion
fragments. This establishes upper bound part of the theorem.

To see that the worst-case number of changes to the relative convex Rlt#d for translational
motion of algebraic degrefe consider a U-shaped polygah with O(1) vertices, and a regular-gon
Q. See Fig. 16. The-gon Q moves into and out of the cavity dt k/2 times, with a motion given by
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y= c]_[ffl t —i)2. The relative convex hull oP gains and loses edges one at a time, going from size
®(1) to size®(n) k/2 times. Thus the number of combinatorial changes to@t(&rz). 0O

5. Boundsfor rigid motion

When Q is allowed to rotate as well as translate, the key Lemma 4.4 does not apply. Indeed, we can
construct an example of algebraic rigid motion in which the relative convex hitlafid Q (and hence
their ERGT) changes quadratically many times, as shown in Fig. 17. In the figusefixed, andQ
rotates around the poiat When a tooth ofQ crosses a dashed line, which is the extension of an edge
on the left convex chain oP, the relative convex hull oP changes combinatorially. Suppog&ehasn
regularly spaced teeth, and the convex chai® ¢fasn edges and is flat enough that the teetlafross
all the dashed lines one after another. Then each tooth cduses the relative convex hull to change
times. In total, the relative convex hull changes quadratically many times. Since the relative convex hull
of P is the outermost pinned geodesic cycle if we choose the first pinned vertex on the convexthull of
the ERGT changes quadratically many times as well.

To prove a nearly matching upper bound, we once again consider inner and outer appearances
separately. In the remainder of this sectighundergoes algebraic rigid motion, as described in Section 3,
and as usualP is stationary.

We first relate the outer appearances on the ERGT to some visibility changes in a continuously
changing scene.

Lemmab.1. Let P be a fixed simple polygon ange 9 P. If a pointg moves along a bounded-degree
algebraic path inFp, then the visibility betweep andgq in Fp changesO(1) times.

Proof. The region where is not visible fromp is made of disjoint pockets whose lids are collinear
with p. Each timeg disappears and reappears from view, it has to enter and leave a pocket, and the slope
of pg reaches a maximum or a minimum. Sincé& moving along an algebraic path of bounded degree,

the slope ofpg has only Q1) local extrema. There is one special case in wigighasses behiné, but

this can also happen only(D times. O

Lemma 5.2. The visibility between any point 6P and any point ob O change<O(1) times.

o0

\_7

Fig. 17. WhenQ rotates around the point each tooth causes the relative convex hull to chantimes.
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Proof. Suppose that at time ¢ starts (or ceases) to be visible frggn This happens only when there is
a vertexr that ceases (or starts) to block the visibility frgmo p. If r € P, then the visibility fromg

to p changes even if we consider only the visibility with respecPtdf r € Q, similarly, the visibility
from g to p changes, even considering only the visibility with respea@@tdy Lemma 5.1, there can be
only O(1) such events. O

An interesting observation is that the previous lemma doesn’t hold for two points on the same polygon.
In Fig. 17, the visibility between a vertex on the left convex chairPadind the tip vertex on the right
side of P changes: times asQ makes a full rotation.

L emma 5.3. The number of outer appearancesP and Q Q edges on the ERGT 8(n?).

Proof. If a P P edgepip; has an outer appearance due to a vejtas in Fig. 8(b), we charge this outer
appearance to the paip1, ¢). As g stops being visible fronp; at that time, such a pair can be charged
at most a constant number of times, by Lemma 5.2. The same applieg &dges. O

Surprisingly, the bound on the number of inner appearances is much more involved and requires a
lower envelope argument using Davenport—Schinzel sequences [25].

For each convex vertex € 3Q, we choose a rayp that divides the exterior angle atinto two
subangles, each less thanLet P’ be a subset of the vertices Bf A vertexp € P’ is anupper extreme
visible vertexfor ¢ in P’ if it is visible from ¢ and, among all visible vertices @’ on the same side
of go as p, gp makes the smallest angle wil§. A vertex p is alower extreme visible vertek the
angle betweegy andgp is maximized. Informally, an extreme vertex is the “lowest” or “highest” vertex
among a set of vertices visible frogn(Fig. 18). We have the following characterization oP@ edge.

Lemma 5.4. Suppose thapq is a P Q edge onr(a, b) wherea, b, p € P, g € Q. Thenp is either a
lower extreme visible vertex fgrin C(a, b), or an upper extreme visible vertex@b, a) N mo(a, b).

Proof. The regionR(a, b) has a reflex angle gt—otherwiser (a, b) could be shortened. Therefore the
two neighbors of; on x (a, b) lie on opposite sides afy. Becausegjy entersR(a, b), the first polygon
point intersected by must lie onC(a, b). Note that for a verteyp € P to appear onr(a, b), it must
belong to eitherC(a, b) or C(b,a) N mg(a, b). (This follows becauseR (a, b) C Rq(a, b); the named
vertices are exactly those on the boundarRefa, b).)

Consider the situation in whiclp € C(a, b), and p is visible fromgq. (If p is not visible fromg,
pq cannot be an edge on(a, b).) If p is not a lower extreme visible vertex, then there is some vertex
p' € m(a, b) such thaiyp’ makes a larger angle witi thangp . Edgeszp’ andgp cut R (a, b) into three
pieces, witha and b at opposite ends angd in the middle piece—this follows because the vertices of
C(a, b) visible fromq appear in polygon order. Any path fromto b containing the edggp cannot be
the shortest path, as it can be shortcugpy (Fig. 18(a), withp’ = p»).

The shortest pathr (a, b) is contained insideRq(a, b), and so we can consider path-finding inside
that polygon. The vertices dtq(a, b) N C (b, a) that appear ot (a, b) appear in reverse polygon order;
the same is true forrg(a, b). The path formed byj; and gp splits Ro(a, b) in two, with ¢ and b in
opposite sides. Ifp is not an upper extreme visible vertex fgr then there is some visible vertex
p' € Ro(a,b) N C(b, a) closer in angle taj than p. A path froma to b that uses;p must cross;p’
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(a) (b)

Fig. 18. (a)p1 and p» are lower extreme visible vertices @fin C(a, b). (b) p1 and po are upper extreme visible verticespf
in C(b,a) Nmg(a,b).

on the way frony to the path end, and hence is not a shortest path—it can be shorigpt {#ig. 18(b),
with p’=p,). O

By Lemma 5.4, we can bound the number of inner appearances.

Lemma 5.5. The number of inner appearances on a single pinned geodesic cyOl@is(n)), where
As(n) is the nearly linear maximum length of a Davenport—Schinzel sequence. The paraneter
constant depending on the parameters of the motion.

Proof. We focus onP P edges that appear on a specific geodesic, b) in the course of the motion.
Note that an inner appearance oP#® edge is due to the disappearance ¢f@ edge.

Consider a specific vertexof 9 Q. For each vertey € C(b, a) N o(a, b), plot the angle betweefp
andgp as a function of time, but only for those times wheiis visible fromg. Lemma 5.2 guarantees
that each vertey defines only a constant number of arcs in this plot. By Lemma 5.4, anggtigea P Q
edge on the pinned geodesic cycle onlyifs either on the lower or the upper envelope of these arcs.
Likewise, for verticesp € C(a, b), we plot the angle betweefp and the reversal afp as a function
of time. An edgegp is a P Q edge only ifp is on the upper or lower envelope of this plot. For each of
the two plots, the upper envelope corresponds to vertices on one sifieanfd the lower envelope to
vertices on the other side.

Vertexq causes the appearance aP & edge onrt (a, b) wheng has two incident? O edges;p; and
gp2 and those edges become collineafp; replacesyp; andgp; on z(a, b). This occurs only if the
angle betweef, andgp: differs by+m from the angle betweegy andgp>. That is,g makes aP P edge
appear om (a, b) only if one of the four upper/lower envelopes intersects one of the others when shifted
vertically by . Since any two arcs intersect(D times (each intersection corresponds to a collinearity
betweeng and two vertices ofP), the number ofP P appearances is proportional to the number of
vertices on the envelopes. Letbe the number of vertices dfi(a, b) andC (b, a) N mo(a, b), i.e., the
number of vertices oRy(a, b). The number of vertices on the envelopes 3. ©0n)) [25]. Each vertex
p € P appears on at most one patk(a, b) for which p ¢ C(a, b). Therefore, the sum of = |Ry(a, b)|
over all consecutive pinned vertex pairsh € d P is O(n). Thus the number oP P edges that; creates
is O(A,(n)). Summing over all vertices ad proves the lemma. O

Applying Lemma 5.5 to the Qogn) pinned geodesic cycles of the ERGT gives am Bgni,(n))
bound on the number of inner appearances. Sip¢e) = O(n'**) for any positives [25], this bound,
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combined with Lemma 5.3’s bound on the number of outer appearances, completes the proof of the upper
bound part of Theorem 3.2. The lower bound follows from the example at the beginning of this section.

6. Conclusion

We have presented an efficient and responsive KDS for the problem of collision detection between two
moving simple polygons in the plane. We believe that the kinetic setting is the framework of choice to
approach problems of collision detection, even when the motion plans are not fully known. We recently
generalized this structure to the case of multiple moving polygons [1]. We would like to integrate the
approach presented in this paper with the distance sensitive approach for convex polygons in [8]. We
still do not know whether these ideas can be successfully adapted to three-dimensional non-convex
bodies. The most straightforward extension of our ideas to three dimensions leads, unfortunately, to
non-polyhedral tilings of the free space.
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