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Abstract 

Venturino, E., The Galerkin method for singular integra! en,uations revisited, Journal of Computational and 
Applied Mathematics 40 (1992) 91-103. 

In an earlier work, the author has obtained error bounds for the Galerkin method for solving Cauchy singular 
integral equations, discovering that the usually neglected constants contain the Riemann zeta function, when 
evaluated in the supremum norm. The aim of this investigation is twofold: to show that the occurrence of the 
Riemann zeta function in the error bound for the Chebyshev norm is sharp; and secondly to use this result to 
obtain a class of forcing functions for which the method does not yield ai; approximate solution differing from 
the analytical one bv at most a prescribed error tolerance. These counterexamples indicate that in practical 
situations, for functions exhibiting a behavior similar to the one presented here, Galerkin’s method might not 
lead to an acceptable solution. 

Kqwords: Galerkin method, singular integral equations. 

1. Introductiou 

Singular integral equations arise in many problems of mathematical physics. They find 
applications in many important fields like fracture mechanics, aerodynamics, the theory of 
porous filtering, antenna problems in electromagnetic theory, and others. Their solutions can 
be obtained analytically, using the theory developed by Mushkelishvili [ll]; but in practice, 
approximate methods are needed. The direct numerical methods are preferred, whi,ch attack 
the equation as it is written, without transforming it beforehand into a Fredholm equation. 
Among these, the oldest one is the Galerkin method, proposed original!y by Erdogan [3]. The 
convergence proof for first-kind equations was first given ty Linz [lo], thereby justifying it 
theoretically. Afterwards, a number of papers for equations of the second kind appeared 
[1,5,W,9,151. 
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The purpose of this study is to continue the investigation begun in the earlier work [14,15], 
where the author has obtained error bounds for the Galerkin method. A striking consequence 
was the discovery that the usually neglected constants contain the Riemann zeta function, if the 
error is evaluated in the supremum norm. However, this does not happen if the estimate is 
computed using the &-norm. The aim of this investigation is twofold. We want to show that 
the occurrence of the Riemann zeta function in the error bound for the supremum norm is 
sharp. Secondly we use this result to obtain a class of functions for which the method does not 
yield an approximate solution that differs from the analytical one by a given error tolerance. 
Thus convergence in practice does not occur, contrary to the common belief. 

The counterexample, although somewhat artificial, indicates that in practical situations, 
within the limitations due to the memory of the system and the time requirements of the user, 
for functions exhibiting a behavior similar to the ones presented here, the method may not lead 
to an acceptable solution. Such situations do arise in engineering situations, as is outlined in [4]. 

The paper is organized as follows: in the next section we briefly review the basic formulae of 
the Gale&in method and recall the results derived earlier, for ease of the reader. In Section 3 
we provide the counterexample for the dominant equation. The comp!ete equation is examined 
in Section 4. A final discussion concludes the note. 

2. Preliminaries 

We consider here the dominant singular integral equation of the second kind 

ag(x) + bz-’ j1 g(t)(t -x)-l dt =f(x), -i<x<l. (2 1) . 
‘-1 

The unknown function g is sought in the ciass 01 no~ubl ~~~~~~~~~ c rr”lJe- ~n~t;nllous functions over ( - 1: 1). Its 
singular behavior at the endpoints is described by using the fundamental function 

w(x) = (1 -x)a(l +x)p, 

with 

0 = (2+)-l log 
a - ib 

[ 1 a +N, 

where M, N are integers chosen such that the index of the equation 

x = -((~+p)= -(M+N) 

attains the values - 1, 0, 1. Usualiy a new smooth unknown function y(x) is defined by letting 

g(x) = +X)y(x). 

The equation can be rewritten introducing the operator T as 

T(y) = aw(x)y(x) + bn-’ 
/ 

’ w(t)y(t)(t -x)-l dt =f(x). 
-1 

The formula 17, p.2901 

/ 
’ (1 - t)“(l + t)‘(t -x)-l dt 

-1 

(2 2) . 

=~(l +x)‘(l -xjd cot(Ta) -2-*B(a, p + 1) 2F,(~, 1; 1 -cr; $(l -x)), 
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for x f 1, since x is an integer, in our notation can be rewritten as 

aw(x) + b& 
/ 

1 w(t)(t -x)-l 
-1 

dt = yP’_-,“*-fi’( x), 

93 

(2 3) . 

where we let 

-2-xb 
y= 

sin(7r0) g 

However, (2.3) holds also for x = 1, by defining P_ ,(x) = 0 and remarking that w(x) in such 
case is a solution of the homogeneous dominant singular integral equation. Note that if the 
equation is of the first kind, the Jacobi weight and polynomials reduce to the Chebyshev ones, 
of the first or second kind depending on x being 1 or - 1. 

In the case x = 1, an extra normalization condition is added, usually of the form 

/;,w(f)y(l) dt = 1, (2 4) . 

to obtain uniqueness of the solution. In case x = 0, no extra condition is needed, the solution 
being unique as stated by the theory, while for x = - 1, the solution exists if and only if the 
following orthogonality condition is satisfied: 

jl p(t)f(t) de/’ [w(t)]-‘f(t) dt=O. 
-1 -1 

(2 5) . 

To set up the Galerkin method, WP need to define the weighted scalar product as follows: 

(f, s>,= / * w(t)f(t)g(t) dt; 
-1 

!et !I f 11, be the corresponding norm. In our case w(t) is the Jacobi weight w(t) and the 
approximating functions are the corresponding orthogonal polynomials Pn(“*? t ). 

The major results concerning convergence of the Galerkin method are summazized her: for 
ease of reference. They can be found, together with the various constants t,, L,, H,, H,, in 
M. 

Theorem 1. Iff E C 

andifr>$, 

11, then the error of the method satisfies 

II eN Ilm < i,ll f jr+ ‘)llml( r - $V-r+3/2. 

Together with (2.1) we will be concerned also with the complete equation, in which, in 
addition to the singular term, a Fredholm kernel is present; in extended form it is written 

aw(x)y(x) -+ h-’ j-;,W)YV)(~ -xJ-’ dt + /‘, K(x, t)w(t)y(t) dt =f(x), (2.6) 

or, in operator notation, 

T(Y) +X(y) =f. 

In this case the following results hold. 
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Theorem 2. Iff E C v+ ‘I[ - 1, l] and the Fredholm kernel K E C(‘+ ‘I[ - 1, l] with respect to both 
the variables, then the error of the method satisfies 

II e, II, < HJl f (r+ ‘$Wf- ‘I’, 

andif&, 

II eN lljo G tiJ f (c+l)ilms( r - 4 jwr+3/2. 

Zn the rest of the paper, some estimates will also be needed. We list them here, for ease of 
reference. From [ 13, p. 1681: 

(2 7) . 

where 4 = max(ar, fi) 3 - $. In vice ef the values attained by the index, this condition is always 
satisfied. Recall also that 

n+q 
( 1 

((I+ W-=(q+4 
= 

n n! . 

Finally, [13, pp. 58 and 631 yield respectively 

p@.B) n ( ( 
1) = n i “), 

;[ P#y)(x)] = +(I2 +a +p + l)P,‘“_;‘.p+‘)(X). 

The &-norm of the Jacobi polynomials will also be of interest [13, p.681: 

I 
p(a.B) ’ 

n II H’ - h(nawB’ = 297n + a! + l)r(lz + p + 1) 

x[T(n+l)T(n-~+1)(2n+l-*)]-‘. 

(2 8) . 

(2 9) . 

(2.10) 

(2.11) 

3. Sharp error estimates 

Our first task in this section is to derive the error equation. Let the solution of the equation 
be expressed as the infinite series of the Jacobi polynomials PAa*p) = c#I,, as follows: 

Y = 2 P,4,; 
n=,y 

note that in case of negative index, /3_ 1 is not present in the sum, since (6__ 1 = 0; 

&P which does not appear in the above sum, will be calculated from the 
condition (2.4). We assume also that the right-hand side can be expressed as an 
in terms of the related Jacobi polinomials P,(Iy-p) - Q&, with coefficients 
moment not yet specified: 

(3 1) . 

also, if x = 1, 
normalization 
infinite series 
I~,_X for the 
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Here it should be remarked that if x = - 1, from the orthogonality condition it follows that 
cyO = 0, since (2.5) can be restated as 

( f, #Jp = 0. 

The approximate solution of the equation is obtained by truncating the series representation 
of y, denoting by c, the approximations of the coefficients &, 

N-l 

Y,= E uhl~ (3 2) . 

n=O 

and imposing that the residual of the equation 

$tx) =ftx) - T( YN) = i a,-&-~ - NilC,wn) 
n=x n=x 

00 

= 
c %Pxhl-x - Nikk-x 

n=,y n=x 

be orthogonal to the first N -x polynomials +i, i.e., 

(TN9 #j)p=o, j=x, x+ l,...,N- 1. 

This yields N - x algebraic equations, the Galerkin equations, which are used to determine the 
values of the coefficients in the truncated expansion for the unknown function: 

N-l 

= C YCn~~n-x9 (b;-)fJY i=x, X+ l,---,N-l, (3 3) . 
n=x n=x 

that is, 

ffj-x = YCj, j=x, x+ l,..., N- 1. 

Let us define the error 

eN(x) =ytx) -yNfx) = E sn+n(x)- 
n=x 

Using (2.2) the error equation can be written as 

N- 1 

T(eN) E T(Y -YN) =f - T(Y,) = f a,-x@n-x - c YCn#n-, 
n=x n=x 

00 

= 
c %-&l-x’ 

n=N 

We thus obtain 
m m 

c ~,T(&J = c %z-*k-x’ 
n=x n=N 
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so that by equating coefficients of the same polynomials we obtain: 

an = 0, ff= x ,..., N- 1, 

&!!X, R =N, N+ I,..., 
Y 

the former equation expressing the fact that /3, = c,, n =x, . . . , N - 1. This agrees with a 
fundamental lemma proven in [14,15], which shows that the first N -x coefficients of the 
Fourier expansion of the solution must coincide with the ones obtained by solving the Gale&in 
equations. The expression for the error can then be written as: 

e,(r) = Y-* i G~A(X)- (3 4) . 

n=N 

We want to show here that the occurrence of the Riemann zeta function in the error bound 
obtained in [lS,lS] is sharp. Observe that using (2.9), 

IIe,lLAeN(l)I= y-’ 2 LY,_~&(~) 2 y-’ 2 aJnLa 
I I )I 

. 
n=N n=N 

On the other hand, we also have the following upper bound: 

n=N 
,_*I II&&JfIY-iI i lQ*l(n;q)9 

n=N 

where we have used (2.7). For the remainder of the paper, we make the assumption that 

q=a, 
so that 

-p= max( -a, -p) =q*_ 

Since we are about to provide a counterexample, this is not restrictive. 
We can now specialize the constants an+ we take them to be 

n-p 
a,_, = 

n- 
( 1 

P ’ 
a0 forx=O, a,=a,=O forx=-1, 

n 
so that the above estimates become, in view of (2.7) and of the fact that N is large, 

IIq&Ay-lI f 
n=N 

~ly-‘lN*-P-XS(p+~) 
and denoting by L a suitable constant, 

11 eN II= 2 Lly-‘I 2 n-p+a+p >L,ly-‘I N’-p-x 
1 

n=N 

c(p +x) - I+ E , 1 
or, in summary 

~y~l(N1~P~X~(p+~)~~IeNI(OC~L~y~‘~N’~p~x &(p+-x)--l+; . 1 

(3 5) . 

(3 6) . 

(3 7) . 

(3 8) . 

(3 9) . 

(3.10) 
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These bounds show that the actual growth of 11 eN llm is like JV’-ti-x~( JY + x), i.e., the 
occurrence of the Riemann zeta function is sharp. Moreover, they yield theoretical convergence 
for the Galerkin method applied to the function f constructed in this way, provided that p is 
chosen so that p > 1 -x. Given this condition, the upper bound (3.10) does in fact approach 0 
as N grows large. 

We now examine the right-hand side, to understand the implications of the assumptions 
made so far. One extra difficulty with respect to the estimate obtained for the error is given 
here by the fact that the series for f starts from x and not from AL We cannot use the 
asymptotic estimate (2.7) abruptly. However, an upper bound is immediately calculated: 

(3.11) 

For-x= - 1, an upper bound on this norm is i7r2, for x = 0 the upper bound is finite, but the 
function f might have a !srge norm. In both such cases, being the uniform limit of continuous 
functions, f must be continuous. For x = 1 instead, the series on the right-hand side may 
diverge. In order to pc&iuiy undersiand more to what kind of forcing function the choice of the 
coefficients cy, _* leads, we investigate the lower bounds as well: 

Ilf IbIf(l)l= inmp(nJ&/)= invpkQ, ,:,“,,. 
n=l n=l 

It is easily seen that 
n 

I-I 
k-a! 2+X 

k=l k+a+x 
z l- 1 k+l+x ’ 

from which the estimate 

llf Il-SG~x~~~~~x~~~+Z+X~ 

follows, with 

G(x) =x(x + 1) - (x2 - 1)+$x(x-l), x+1,0, I). 

Recalling the conditions for the convergence of the error, if follows that these lower bounds 
even in case of positive index do not imply that the norm of the forcing function is necessarily 
large. For x = 1 more insight is obtained by looking at the estimate, using (2.91, (2.71, and 
where C denotes a suitable constant, 

II f llm B C nmp 11: [(nnO1)/(nnP)-Cn-.+P]+CCn-P-.+P 
n=l 

= constant + C[( p + 1 + 2cu). (3.12) 

For p = 0 and a = 0, the series on the right-hand side converges, but its sum is large, implying 
necessarily a large norm for the forcing function. 

Notice that the convergence of the method must be shown since the function f does not 
necessarily satisfy the sufficient conditions yielding convergence in the supremum norm, given 

in Theorem 1, as it is clear from the above considerations. 
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In the choice made above for the coefficients a,_* nothing has been said about the 
parameter p, which for the moment is still free, with the only restriction p > 1 -x in order to 
attain convergence. 

Now suppose we want the solution of the equation with a maxiinum tolerance, e, i.e., 
11 eN II= < C. Recall that N is the size of the Galerkin system (3.3) that has to be solved. It is thus 
limited by the amount of storage available on the system in use. Equivalently one could talk 
about execution time, which is related to the size of the system. In fact in the program 
implementing the Galerkin method there should be an exit test on the maximum iterations, or 
the maximum execution time, the algorithm should perform. In any case it is enough to remark 
that. N is system dependent, and therefore it is fixed a priori; then choose p so that 

[ 

1 
y-‘N’-P-X &(p+x)-l+z 31. 

1 
(3.13) 

This is certainly possible, since l(z) has a pole for z = 1; it 1s then sufficient to choose p larger 
but close enough to 1 - x, to obtain the above inequality. The right-hand side constructed in 
this way, whose coefficients are determined by the formulae (3.7) and (3.13) leads to a singular 
integral equation which cannot be sobred within the prescribed error tolerance by the Gale&in 
method: indeed its approximate solution will differ from the analytical one by more than the 
tolerance at least at some point. 

It is also interesting to note that the convergence condition for the lower bound of (3.12) is 
p > -2a, h case x = 1. If a = - $, then p > 2. In such situation from the lower bound for the 
error norm we obtain that the condition N-P ’ / 1 y I[&(p + 1) - 1 + l/N] 3 1 does not hold any 
more, since &(p + 1) & l(2) = $r*. The bounds for the error become in this case 

+=*N- 1-E i 

lYl 
a ll eN llpi a 

5_tc’- 1+ l/Nj N_‘_’ 

IYI 
, E>O. 

In other words, the maximum size N of the system which zan be stored in the computer 
memory determines the maximum accuracy l/N, attainable in solving the Gale&in equations. 
This is another instance for which the first-kind singular integral equations are better behaved 
than second-kind ones. 

An application 

In order to substantiate the above analysis, we briefly discuss an engineering application in 
fracture mechanics. In [4, p.5571 it is shown how to obtain a second kind singular integral 
equation from a system of singular integral equations for two bonded half planes containing a 
series of interface cracks. For a single crack, assumed to be the interval ( - 1, 11, the system is: 

&j-’ f,(t)(t -x)-l d t + Yf2W = (2~0)-IP*(x)~ 
-1 

m-l 
/ 

1 fz(t)(t-x)-l dt - yf,(xj = (~EL~)~‘P~(~)~ 
-1 

whele pLo and y represent material constants, p1 and p2 represent the external loads, fl and 
f2 are auxiliary unknown functions related to the displacements. Introducing the functions 

Q(t) =f,(tj + if*(t), P(x) = (%x’[ PM - ~P*W] 9 
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the above system reduces to 

99 

(7FQ-l (’ cp(tj(t --x)-l dt -yrp(x) =P(x). 
‘-1 

If the external load is expressed as a series of Jacobi polynomials q&(x>, with coefficients 
a! n_X expressed by (3.71, where p is small, we fall exactly into the case discussed above. For this 
problem, the algorithm will not give a solution within the prescribed error tolerance, and the 
minimum obtainable error will be given by an estimate of the type (3.13). 

In practical engineering situations, loads acting as delta functions are not uncommon. Since 
they have a mass concentrated in a neighborhood of a point and are nearly zero everywhere 
else, their supremum norm is large. Even though they can be approximated by smooth 
functions, the latter will also possess large norms. Thus we have a potentially dangerous 
situation, of the type described above. In such a case, care should be taken in trusting results 
obtained with the Gale&in method. 

4. The complete equation 

What has been presented in the previous section can be extended to the complete equation. 
The algebraic system to be solved is modified, but again the choice for the Fredholm kernel, as 
well as the one for the right-hand side, is delayed as done in the previous section. We suppose 
however that the kernel can be expressed in terms of the Fourier series 

00 al 
K(x9 t) = C C Ki-*,j+i-*(x)4j(t)y 

i=x j=() 

and approximate it with the truncated series 
N-l N-l 

KN(x9 t) = z C Ki-*,j@i-*(x)4j(t)* (4 2) . 
i=x j=O 

If we apply the operator (4.1) to the representation (3.1) for the solution, we obtain that (2.6) 
yie!ds 

(4 3) . 

or 

YPn + i PjK,-x,jll~jilZw=an_x, 
n =x, X+ l,... . (4 4) . 

j=O 

Substitution of the represzztatic n (4.2) and of the approximation (3.2) into (2.6), and use of the 
orthogonality relation of the residual against the first polynomials ~j, yields the Galerkin 
equations 

(4 5) . m=x ,..., N- 1, 
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where again the c,‘s are used as approximations of the coefficients & of (3.1). The approxi- 
mate equations are then the following: 

yc,,, + ~~‘~~,~ll~~ll:~~=~~, n =X ,..., N- 1. (4 6) . 

j=O 

dike in the situation for the dominant equation, these equations do not coincide with the 
first + x equations (4.4). Before proceeding any further, we need to specialize the choice for 
the kernel K(x, t). The example provided here is simple, but along the same lines infinitely 
many others can be constructed. Suppose the kernel can be written in separated form as 
follows: 

x) 

n=x 

In other words, Kij = 0 for i = x, x + 1,. . . , and j = 2, 3,. . . . Equations 64.4) reduce then to 
the following ones: 

US, +Kn-,,,ll&,ll~Pl =cyn-x’ n =X, X + l~e*e~ (4 8) . 

while the approximate equations (4.6) become 

Ye, +Kn-x,lll#*llfvcl =an-xy n= X ,..., N- 1. (4 9) . 

Evidently, now these are the first N - x of the equations !4.8). Thus the unknowns c, and & 
satisfjr the same finite system, and therefore coincide, 

c,,=&, n=X ,..., N-l. 

We can solve the system (4.9) to obtain 

&=a,-, Y+K*-x.l 1 ', -'9 1 II4 II ] (4.10) 

P, = 
%-, - K-,,MI 1131 

9 
n = 2 

, 
3 

,... . 
Y 

(4.11) 

Notice that the very first equation for ,y = - 1 is identically satisfied by the convention #_ 1 = 0. 
Also for x = 0, - 1, PO is still evaluated with formula (4.11). 

Consider now the error: in view of the previous remarks, 
x 

eN=y-yN= c &&&)* 
n=N 

An upper bound for the supremum norm then can be calculated by again letting q = max(a, p) 
zcya -$: 

IIe,ll=~ i @,I IIrb,lk i Ip,l(n;“) 
n=N n=N 

4y-‘I i { la,-,I+IP,X,-,,,ll~,l12,1)(n ;:“). 
n=N 

(4.12) 



E. Venturino / Galerkin method 101 

Now let us specialize the constants, as done in the previous section: 

(4.13) 

From the previous estimate, using the fact that N large allows us to use the asymptotic 
estimate (2.7). we obtain 

s J i n-p-x =JN1-P-X[(p +x) 9 

n=N 

(4.14) 

where J is a constant. Convergence is ensured if p -i-x > 1, and again we would like to obtain a 
lower bound containing the zeta function. We can compute it as follows: 

(4.15) 

We finally choose the two remaining constants, in the formula for fir; we want q _x < 0 and 
K 1_x,1 > --y/II +I IIt, so that, with these choices, & c 0. Then asymptotically, 

zlrl-’ 

n=N 
1 +I& I IMAI~] 

I 1 
> HN1-p-x l!p +x) - 1+ E , 

L 1 (4.16) 

where again H represents a constant. We can now repeat the argument at the end of Section 3 
to show that in this case as well, in pactice, by a suitable choice of the parameter p, the 
approximate solution obtained with the Gale&in method will differ from the analytical solution 
more than the required tolerance. Also, similar computations to the ones already performed at 
the end of Section 3 on II f II=, repeated here for II f lloc and for II K Ilao, show that in some cases 
these functions may well be badly behaved. Finally, we observe that not both these functions 
need to have a bad behavior; indeed an alternative choice to (4.13) is to take the constants 

K * n_x 1 >, 0 and in such a way that their series converges: 

Then we 

i Kn_x,l(“;a) =s<m 
n=x 

would have 

(4.17) 
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S, denoting the partial sum of the series (4.17); the right-hand side thus converges and for the 
lower bound a similar analysis yie!ds again the occurre.?ce af the Riemann zeta function, so 
that the same ccsFclusion holds. Indeed note that the seiuence of the partial sums of the series 
(4.17) is monotonically increasing, so that 

[ 

1 
HP-p-x J(p+Jo-1+ z . 

I 

Alternatively, the roles of cy,_* and Kn_L,, in (4.13) agd (4.17) could be interchanged and still 
the same analysis carries through. In either way one set of coefficients can be chosen so as to 
make either the right-hand side CT the kernel a function as smooth as we please. The other 
function instead might possibly exhibit a bad behavior, as the analysis at the end of Section 3 
shows. Thus it is likely that a bad behavior of either the kernel or the forcing function is 
reflected in the corresponding behavior of the error bounds and thus in poor performance of 
the algorithm. 

An applica tim 

We refer again to [4, p.5681. A torsion problem for an infinitely long elastic shaft bonded to 
an elastic disk of finite width and different elastic constant is expressed as a singular integral 
equation with 2 generalized Cauchy kernel, of the form 

‘-y(&)[(t -x)-l - (t +x - 2)-l - (t +x 9 2)-l] c’i =f(x)* 

Notice that .the terms apart from the singular value are bounded for every i, x E ( - 1, 11, but 
become unbounded as both x and t simultaneously approach the endpoints. In the same paper 
also, other types of kernels are discussed, containing weak or logarithmic singularities in 
additi;_n to the principal value integral. Even though it is possible to represent within machine 
accuracy such functions by means of smooth functions, these will exhibit large norms, and thus 
faii into the class of badly behaved functions discussed above. It thus would be unrealistic to 
claim coirvergence for the Galerkin method and trust blindly the computer results. 

5. Conclusions 

In this study we have examined how the error bounds affect the Galerkin method, when 
applied to the solution of singular integral equations. We have seen that the occurrence of the 
Riemann zeta function in the error bound for the method, discovered in 114,151, is sharp. This 
in turn shows that in particuiarly nasty cases, the method may very well fail to give a reliable 
approximate solution in practice, becaus e the size of the linear algebraic system needed to 
achieve a given tolerance is too large to fit in the memory of the system or, equivalently, that 
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the time required to solve it is too large. The occurrence of such situations in practical 
problems has been examined, by discussing some instances where engineering problems lead to 
forcing functions or kernels with large norms. One should also mention that these problems do 
not arise if the norm used is the &-norm, as illustrated in [14,15]. Also, it is interesting to 
compare this analysis with the one done for direct quadrature-collocation methods, which 
discretize the singular integral via an appropriate integration formula and then obtain a linear 
algebraic system by collocating the functional equation at a discrete set of points. It is well 
known that there is a relationship between the Galerkin method and the quadrature-colloca- 
tion method. As it has been shown in [12], the condition number relative to the &-norm of the 
linear algebraic system obtained via quadrature-collocation grows like !V3/*, where N is its size. 
Evidently, for N large, this entails practical problems of the type addressed here. 
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