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Let n(s) and N(.r) be the respective counting functions of a set of generalized 
primes and a set of generalized integers in Beurling’s sense. We consider weak 
conditions on n(\-) some of which yield N(u) - c.v for some positive c, and some of 
which yield nontrivial O-estimates for N(s)/r. 1 19X8 Academc Press. Inc 

INTRODUCTION 

Let d = {pI},‘=, be a sequence of real numbers satisfying 
1 <pl <pz<, . . ..p. -+ CG. 9 generates a semi-group -4‘ under multi- 
plication. We shall call B a system of Beurling generalized primes (briefly: 
g-primes) and .4” the as sociated g-integers (cf. [ 1, 21). Arrange the 
elements of I +‘ in ascending order, so that 

.1’= {n,);& n,=l<n,<n,<~~~. 

By analogy with classical prime number theory, we define 

N(x)= 1 1, 71(x)= c 1, 
,I,< I P,S y 

n(n) = 7c(.U) + f7r(P2) + f7r(.Y’f3, + . ‘. ) 

and 

Y(x)=~‘logzrNjT(r)= c logpi (PiEi?, ccEz+). 
I PfS 1 

Suppose that one of the sequences C 6’, 9 is distributed rather like the 

* This article is, with minor changes, a chapter of the author’s Ph. D. dissertation, written 
at the University of Illinois at Urbana-Champaign under the direction of Professor Harold 
G. Diamond. The author also thanks Professor Paul T. Bateman for his valuable comments. 
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corresponding sequence of natural numbers or primes. We want to know 
whether the other sequence is also distributed like its classical counterpart. 
Beurling proved that n(x) - x/log x, i.e., the prime number theorem holds 
for 9, if 

N(x) = cx + 0(x log pi’ exu) 

with constants c > 0 and y > 2. Diamond showed by example that the prime 
number theorem can fail for y = 4 (cf. [ 1, 2, 5, 61). 

In [7], Diamond considered weak conditions on X(.X) which enable one 
to deduce N(x) - cs for some positive c, i.e., that ,V has a density. A 
closely related problem is the determination of when a multiplicative 
arithmetic function has a mean value (cf. [3, 8, 9, 13, 141). Theorem 1 of 
Diamond [7] is optimal in some sense and a generalization of theorems of 
Delange [3] and Wirsing [ 133. 

Diamond also asked the following question: What conditions on rc(.~) 
will yield nontrivial O-estimates for J/(x)/x? For convenience, we shall call 
this question the O-density problem. 

In this paper, we shall give answers to the O-density problem in 
Theorem 4.1, 4.3, and 4.6. For this purpose, we shall prove Theorem 3.1 
which is an O-type Hardy-Littlewood-Karamata Tauberian theorem and 
has interest in itself. Moreover, we shall relax the conditions of Theorem 1 
of Diamond [7] a little in Theorem 1.1 and give an example to which the 
latter applies but the former does not. Our method of proof follows the 
general idea of Diamond. 

In the proof of Theorems 1.1, 4.1, 4.3, and 4.6, we shall make frequent 
use of convolution techniques which have been described in detail in 
[4]. The notations and the relations that we shall use here have been 
summarized in [7]. 

1. DENSITY OF BEURLING GENERALIZED INTEGERS 

In this section, we shall prove the following 

THEOREM 1.1. Suppose there exists a decomposition II= 17, + 17, 
satisfw%g the following conditions 

n,(x) T, (1.1) 

n,(x) - x/log x as x-+00, (1.2) 

lim X 
(?’ 

.x-“m,(x)-log3 =logc, 
> 

(1.3) 
\-I+ ,- 
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in view of (14) and [18, p. 593. Using [18, p. 59; 11, 5.81, we conclude that 
7~’ ‘T(s - 1) c’,(o) is invariant under s H 3 -s. Thus another proof for the 
functional equation is complete. 

In view of [ 18, p. 591, the only poles, which appear in the Fourier- 
expansion of E(NJ, s), are at s = 0, 1 , 1, 2, 3 and they prove to be simple. 
Calculation of the residues implies that the poles at s= t cancel. Since 
<(2s- 2) possesses a pole at s = $ we conclude .!?*(\c, +) =O. Using [18, 
p. 591 and (14) we calculate 

72 
res ~*(\v,s)=~(~) __ *3;2 
., = 3 

fgy4y=y l(3). 

We obtain i?*(~‘, 0)= -1 from the formula for the residue and the 
functional equation. Again the functional equation yields the holomorphy 
of E( u’, s) at s = -1, -2, - 3, . . . . In view of [ 18, p. 591, the function 
n ’ -“T(.s - 1) ((2s - 2) is holomorphic and non-zero at s = - 1, -2, -3, . . . . 
Then the poles of the gamma function imply B*( ~1, s) = 0 for 
.s= -I, -2, -3, . . . . 1 

Let 1’ denote the Euler constant and define 

c:= ;j+;-; log?+; (2)+2; (3)-2; (4), 

h(w) 
1 

: = - 
18 

7c2v3 + c 
1 

O+r~~~lm,l 
c3(0) 1(3) 

v 
X 

1 + 271 10( 
7c2 lo13:2 e 

2n ~,“~“+2nr~u.<r,) 

Then the first Kronecker limt formula is described in 

THEOREM 4. Otle has 

lim I?*(u), s)-~ s-3 
( 

45 l(3) 
543 1 

=; [(3)(C-logt,+h(w)). 

Proof: Looking at the Fourier-expansion (14) we get 

lim E*(w, s)-~ s-3 
( 

45 l(3) 
., - 3 > 

=i n25(3)v3+iiy7 
-( 

f(3) 
f(s)[(~-2)--~ 

> 

+ c c3(w) - v 9o 3’2K3,7(2~ (01 v) e2n’<u,‘o>, 
0 + w t Im .1 71 
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Proof: We have for s > 1 

The claimed estimate follows from the well-known Hardy-Littlewood- 
Karamata Tauberian Theorem [ 12, Chap. V, Sect. 43. 1 

LEMMA 1.3 [ 111 (Axer). Let dA, dB, and dA , be real-valued set 
functions on the Bore1 subsets of [ 1, 00) with the property that on any finite 
interval [ 1, -u] each is a finite measure. Assume that dA, > 0, 
I A( d A,(x), and 

s ,% 
A,(x) .x-’ d.u < co. 

I 

Also, assume that B(.u)=o(x) and B,(x)= O(x) where B,(x) is the total 
variation of B(X). Then 

.‘dA*dB=o(.u). 
1 

LEMMA 1.4. Let dA > 0. Zf 

.Y 
(exp dIZz)(t) 6 A(x) 

1 

and 

(1.6) 

s 3. 
A(x).u-‘d.~<ac, (1.7) 

I 

then j? tP’(exp dl7,)(t) is convergent. 

ProoJ: We first note that dA >/O implies A(X) r. This fact and (1.7) 
imply A(x) = o(x). Let 

E(u, -u) = s’ (exp dfl,)(t), u < x. 
u 

Then 1 E(u, .K)[ < 2A(x). By integration by parts, 

I ’ t-‘(expdU,)(t)=- - 
au, v) + 1. au, t) dt, 

u I v ut2 

641/30/2-2 
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It follows that 

asu,u+m. 1 

Proof of‘ Theorem 1.1. First, the condition U,(X) - x/log ,K implies that 

‘I/,(x)=sIlogt~~,(l)c.r. 
I 

This fact and the analogue of Chebyshev’s identity yield 

where dN, = exp dZ7,. The conditions ( 1.1) and ( 1.3) are equivalent to the 
hypotheses of Lemma 1.2. Hence T(X) - cx log X. Now, for x 3 1, 

N,(x)= 1 + j,‘&dT(u) 

and integration by parts yields N,(x) - cx. 
Then, consider 

dN = dN, * exp d17, 

= (cdt + c6) * exp &I, + (dN, - cd{ - ~6) * exp d17,. 

Condition (1.4) implies, by Lemma 1.4, that j’i? t ‘(exp dLfz)(f) converges. 
Thus we have 

= 1.x 
TV- ’ 

(expdn,)(t)+o(l) 
> 

. (1.8) 

Note that 

‘(dN,-cdr-c@=N,(.+-(..Y=o(.Y) 
I 

and 

’ (dN,-cdt-c6) 
> 

= N,(x) + cx = O(x) 
I I’ 



DENSITYOFGENERALIZED INTEGERS 125 

rhese two facts and the condition (1.4) imply, by Lemma 1.3, that 

s 
.’ (dN, - cdt - ~6) * (exp &7,)(t) = O(X). 
I 

(1.9) 

Combining estimates, we arrive at 

N(x) = {’ (cdt + cd) * (exp &7,)(t) 
I- 

+ s ’ (dN, - cd2 - ~6) * (exp &7?)(t) 
1~ 

0 
z = c t ‘(exp cln,)(t)+o( 1) .Y. 
I- ) 

Finally. we have 

c T t ‘(exp dI7,)(t) 
I 

= lim 
i‘ 

r tr”(exp &7,)(t) 
5-r1+ ,- 

” = lim exp 
,+I+ I- 

tr’dZ7,(t))=exp(v~~+ i,/ t ‘dZ7,0)>0 

provided that lim,, _ , + j; t ‘&7,(t) exists. 1 

COROLLARY 1.5. !f HYJ replace ( 1.4) ~JJ 

then the theorem is still true. 

Proof: Take 

A(x)=S‘ IexpcUT21(t) 
1 

Then we have 

(1.41, 

IJ ’ (exp LII~~)(~) d A(-u) 
I 
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and, by integration by parts, 

i 

1 
A(t) t-2&= A@) 

1 
T+~lylr’ lexpdZ721(r)</,K x-’ Iexpdll,J(x)<co. 

Therefore the hypotheses of Theorem 1.1 are satisfied. l 

COROLLARY 1.6 (Diamond). [f’ we replace (1.4) h-r 

then there exists a positioe comtunt c , such that N(s) N c, s holds as x + m. 

Proof: We have 

s 

% 
x 

1 

which is finite. Moreover, (1.4), implies the existence of 
lim ,j-r,+ I,-‘-- .~-“dZ7~(.u). Th ere ore, f we have N(x) - crx with positive 
constant 

!‘, 

I 
c, =c sV’(expdIT,)(x)>O. 1 

2. AN EXAMPLE 

In this section, we give an analysis of an example of Diamond [S]. 
The analysis shows that Theorem 1.1 applies to the example but 

Corollary 1.6 does not. 
Following [S], we define T(X) by setting 

T(X) = 
I 

‘{I-cos(logt)}(logt)‘dt 
I 

for ,K> 1 and T(X) = 0 for x < 1. Let pr, the rth g-prime, be defined by 
p, = T  -I(r). Then, as Diamond showed. 

N(x) = c,x + O{x(log x) “*}, 

where c, =exp(j; t~‘(dZbdt)(t)) >O. 
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We first show that Corollary 1.6 does not apply to this example. Suppose 
that we have a decomposition Z7= II, + Z7, with I7, satisfying the 
condition (1.2). Then it can be shown that II, does not satisfy (1 .4)2. Let 

Then 

n,,.(x) 3 I n,(x)/ - c(). 

We know that [S] 

IT(x) = t(x) + 0(x”‘) 

= /i(x) - x 
J3log.w 

sin(log~~+~)+O(\log~‘n). 

Therefore we have 

n,(x) = n(x) - n,(x) 

= -$-&sin(logS~+~)+O(&) 

and hence 

l~~(.~)l=~~~sin(logx+~)~+~(~). 

It follows that 

since 
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Therefore 

J2 3 - log log .Y + 0( log log X) + cc 
72 

as x -+ cc and ( 1.4)2 cannot be satisfied. 
We then show that Theorem 1.1 applies to the example. Set 

n,(X)= i’$-gdt 

for .Y 2 1 and 17, (x) = 0 for ,Y < 1 and 

IT?(X) = U(x) - U,(x). 

Then (1.1) and (1.2) are satisfied. Moreover, since 

j,x I -“dLT,(x) = j,l .Y -.’ Q& d.Y = log 3, s> 1, 

the condition (1.3) with c = 1 holds. 
It remains to show the existence of the function A(x) in (1.4). Actually, 

we have the estimate that 

1 ’ (exp cG~~)( t) < x log 312.~. (2.1) 

To show (2.1), we define dT = exp dr, C = log c, 

dv=dIi-ds-C6 

and 

as in [S]. Then we have 

exp(dnz) = exp { dT - dZ7, } * exp ( dIi-dz} 

=r,(dT- T(t) tr ’ dt) * exp{dv}. 

By a technique of Dirichlet, we have 

j,‘(expdn,)(t)=c,j~~+(T(Z)-j~i’.+T(t)t~’dt)(exp{dv~)(u) 

expjdv} (dT(u)- T(u)~‘du). (2.2) 
> 

We shall show that both terms on the right-hand side are 0(x logmm3”r). 
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Let 

129 

I.(A=I:_t u P’(exp{dv} -6). 

Then by Lemma 4 in [S], for each (fixed) positive number k, 
I = O(logek 1~) as y + c;c. We have the formula 

and integration by parts yields 

s I’+ 
udf(u)= 0(ylogP3Jq. 

I- 

Thus 

= 0(x log -* x) 

since 020, T(U)= O(u), and 

s J; 
z.-’ dT(u) = O(log x). 

l- 

From Lemma 1 in [S], 

T(x)=x+2*% i g,xl+’ (log x-‘- “* + 0(x logP7’* x). 
j= 1 

Hence 

jr+ T(t)t~‘dt=x+2Be i d,~~~~i(logr)~j~L~Zdf+O(xlog~‘~2~~). 
I j=, e 
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Therefore, the first term on the right-hand side of (2.2) equals 

2~‘~ J$e$, d,{j;;’ (t)“(logt) ’ ‘I2 (exp{dv})(u) 

,i+ 

J 0 

r/u+ 
- t’(log t)~mJP”‘dt (exp{dv})(u) 

I > 

+J::+ U’~~(log~) 7i2)(exp{dv})(a). 

I 

We treat separately the three resulting integrals I- II+ ZZZ. The integral Z 
is a linear combination of the following integrals 

J,=J;T+ (~)‘“(log~)~ ‘~~ I” (exp(dv})(u). 

By the definition of,f, 

Integrating by parts and noting that j;” K’ 1 f(u)/ du < co, we see that 

[;m~ylog;)-‘-‘~* df( u) = U( (log x) PiF “2) 

and thus I= O(x(log .Y)- ‘I’ 1. The integral ZZ is a linear combination of the 
following integrals: 

t’(logr)~‘~‘~‘~~)udf(u)+~‘r’(logt)~’~”*dr. 
e 

Integrating by parts and noting that 

s Y/U + “ t’(logt) ‘l.‘dt=O(~(log;)-‘-“2), 

we see that 

T/U f 
t’(logt)-j-‘/‘dt udf(u)=O(x(logx) J-I”) 
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and thus II= O{x(log x))~‘*}. Finally, 

since 

I J’ up’(exp dI7)(u) = s,“” u -ldN(u) = O(log x), 
I- 

,I’;+ uP’(expdr)(u)=I,T+ uP1dT(u)=O(logx). 
I- 

This completes the proof of (2.1). 
Finally, it is easy to see that 

for s>l and 

lim 71 
i 

x-‘dL’,(x) 
*-I-t ,- 

3. AN O-TYPE HARDY-LITTLEWOOD-KARAMATA TAUBERIAN THEOREM 

The purpose of this section is to set up the following O-type Hardy- 
Littlewood-Karamata Tauberian theorem which we shall apply to the 
O-density problem. This theorem is of independent interest. 

THEOREM 3.1. Let F(x) he a nondecreasing function with support c 
[ 1, co ). Suppose that the Mellin transform s;“- x-“dF(x) converges for all 
s > 1. If there exist constants K > 0 and 6 > 0 such that 

(s- 1) j’= xGdF(x) d K 
I ~~ (3.1) 
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holds for 1 <s < 1 + 6 then there exists a constant k > 0 for which 

‘; t-‘dF(t)dklogs (3.2) 

holds for x 3 x0. Furthermore, if there also exists a constant K’ > 0 such that 

K’<(s-1) jx .x-dF(x)bK (3.3) 
1 

holds for 1 < s < 1 + 6 then there exists a constant k’ > 0 for which 

s 

T 
t ‘dF(t)>k’logx (3.4) 

I- 
holds for x 3 x0. 

Proof. If we take s = 1 + (log x) - ’ then, by (3.1), we have 

1 y - 
s 

’ t-l dF(t)< 
e I.. J‘ I 

tp’dF(t$ t-“dF(t)dKlogx. 

This proves (3.2) with k = eK. 
We then assume (3.3). Choose c1> 0 satisfying 

Then 

K’ K 
--->o. 
n+l e’ 

we have 

if -1 1 < u d e, 
24 

if e < U. 

If we take s = 1 + (log x) ~ ’ then 1 < tJ ~ ’ <e for 1 < t 6 x and tSP ’ > e for 
t > x. Therefore, by (3.3), we have 

i t-’ dF(t) 
I -- 

= 
c, ’ t -.‘t’- ’ dF(t) 

dF(t) - e-l j”iy r’dF(t)] 
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This proves (3.4) with 

133 

k’= (1 -e-x)- 1 (S-G). I 

Remark. We note that if (3.2) holds for .Y> x,, sufticiently large then 
(3.1) follows for 1 < s < 1 + 6. Also, if (3.4) holds for x > x,, then the lower 
bound in (3.3) follows for 1 <s < 1 + 6. Therefore, the upper bound 
hypothesis in (3.3) might seem unnatural. The following example shows, 
however, that (3.4) may fail to be true without the upper bound in (3.3). 

EXAMPLE. Define recursively two sequences a,, b, by setting 

a, =e, b,=ea,,,, Qm+l= 
hn e . 

Then a,, , > 6, and a, > em hold. Let 

f-(n) = {a”“’ 
if a,<n<b,, for mEN, 
else 

The function F(x) = CnG yf(n) is nondecreasing. Let 2 >s > 1. For 
m > 2/(s - 1 ), we have 

Therefore, x:, , z,,J ~ , ) I,, < n S h, n ~’ + ‘PI converges and hence 

converges too for all s > 1. Furthermore, for m satisfying 1/2(m + 1) < 
s - 1 < 1/2m, we have 

3 2maz2”(e IPm - 1) - 1 > Q” - 1. 
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Hence, for m 3 4, 

(.v-l)S1 .u~\dF(.u)~(s-l)(a~?“-l) 
I- 

1 3 - 
2(m + 1) 

(q’” 1 ) 

1 
b 

2(rn + 1) 
(e “m-l- 1) -+ s. 

Therefore, we have lim,, , +(s - 1) jj’- x ‘S(x) = CC and the upper 
bound in (3.3) does not hold. 

We now see that, for x = a,,, + , , we have 

s r t-‘dF(t)= c c n~‘+‘I”‘~6,,=ilogn,,+,=I,ogx. I- m<ml) u,<n<ll, m. m0 

Hence, (3.4) fails to be true. 

4. O-DENSITY OF BEURLINC g-TNTEcxRs 

In this section, we shall give answers to the O-density question. 

THEOREM 4.1. Suppose that n(x) t Zf n(x) satisfies the conditions 

z7( x) 4 x/log x (4.1) 

1 
lim sup X x “An(x)-log- 

> 
<cc;. 

\-It 1 s-l 
(4.2) 

then N(x) <x holds. Moreover, if n(x) satisfies (4.2) and the conditions 

zz( x) 9 x/log x (4.3 1 

lim inf 
S-l+ 0 

1 
% x ‘dI7(x) - log - 
I s- 1 > 

> -CD, (4.4) 

then N(x) $ x holds. 

To prove Theorem 4.1, we need the following 

LEMMA 4.2. Assume (4.2). Then we have 

.r 

t-‘dN(t)elogx. 
1 

(4.5) 
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Moreover, assume (4.2) and (4.4). Then 

i 

) :  

t-l dN(t)$logx. 
1 

(4.6) 

Proqf: Assume (4.2), then we have 

for s + 1 +. Therefore, by Theorem 3.1, (4.5) holds. 
In the same way, we can prove (4.6). I 

Proof of Theorem 4.1. We first assume (4.1) and (4.2). Then 

Y(x) = j-‘ LdZ7 6 x. 
1 

Chebyshev’s identity and Lemma 4.2 imply 

T(x) := i,‘ LdN = i‘,; ‘P (;I dN( t) 6 x log x. 

By integration by parts, we have 

N(x)=1 +/,‘log-‘udT(u)d.x. 

We then assume (4.2), (4.3), and (4.4). In the same way, we can prove 
N(x) 9 x. 1 

THEOREM 4.3. Suppose there exists a decomposition I7= I7, + 112 where 
n,(x) t and 17, satisfies the conditions (4.1) and (4.2). Moreover, suppose 
there exists a nondecreasing function A(x) such that 

’ (expdn,)(t) d A(X) 
I 

and 

x 

A(x) x -‘d,x< a. 

Then N(x) 4 x holds. 
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Proof. The hypotheses (4.1) and (4.2) imply N,(x) = j; exp tin, <x. It 
follows that 

since A(.x/t) Jin t. If we change the variable in the last integral then we 
have 

N(x) < 2KA(x) + KX j,’ A(u) up’ du = O(s) 

since A(X) = o(x). a 

By the same way that we deduced Corollaries 1.5 and 1.6, the following 
two corollaries are established. 

COROLLARY 4.4. Suppose that I7,(.u)rand that L7, satisfies the 
conditions (4. I ) and (4.2). Moreover, suppose that 

holds. Then N(X) < X. 

COROLLARY 4.5. Suppose that Z7,(.u) satisfies the conditions of 
Corollary 4.4. Moreover, suppose that 

holds. Then N( s ) 6 X. 

The conditions which guarantee a lower bound for N(x)/x are more 
complicated as we show in the following. 

THEOREM 4.6. Suppose there e.uists a decomposition I7= I7, + IT, where 
II,(x) 1 and I7, satisfies the conditions 
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s 32 
X-“dll,(.+log-+0(l) as s-l+. (4.8) 

I 

(Accordingly, h?l Theorem 4.1, M’e have 

Moreover, suppose that II, satisfies the conditions 

(4.9) 

(4.10) 

Then lt‘e have .Y < N(.Y)( @ x). 

Proqf: Let dI7, = i( 1 dZ7,I - dZ7,) be the lower variation of the Jordan 
decomposition of dl7, [IO]. Then dI7,>0. We note that condition (4.9) 
implies the convergence of j; sP’(exp dIl,)(x). Consider 

dI7; dI7; 
6+2’+4!+... (1). 

Given E > 0 sufficiently small. there exists B > 1 such that for x B B we have 
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Therefore 

where c > 0, for .Y 3 B, sufficiently large. Moreover, we have 

It follows that 

s Y 
>CX-MX 

r/f31 
t-'(exp &7,)(t) 2; x 

for .Y > B2 sufficiently large. 
Finally, we have 

N(x) = 1 + j,‘ N, (:)(exp dUz)(r) 

=l+jl’N,(;) exp( - dI7,) * exp 1 
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