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Let n(x) and N(x) be the respective counting functions of a set of generalized
primes and a set of generalized integers in Beurling’s sense. We consider weak
conditions on n{x) some of which yield N(x) ~ cx for some positive ¢, and some of
which yield nontrivial O-estimates for N(x)/x. ¢ 1988 Academic Press. Inc.

INTRODUCTION

Let #={p;J7, be a sequence of real numbers satisfying
l<p, <p><, .y pi— oo, P generates a semi-group .4 under multi-
plication. We shall call 2 a system of Beurling generalized primes (briefly:
g-primes) and .4° the associated g-integers (cf. [1,2]). Arrange the
elements of .4" in ascending order, so that

A ={n 7, ng=1<n <n,<---.

By analogy with classical prime number theory, we define

N(x)= ) 1, nx)= 3 1,

nE X nsx

(x)=n(x)+n(x"?) + n(x") + -+,

and

'I’(X)=f logtdll(t)="3 logp, (p;eP ael").
1

x
Pr<x

Suppose that one of the sequences .4, # is distributed rather like the

* This article is, with minor changes, a chapter of the author's Ph. D. dissertation, written
at the University of Illinois at Urbana-Champaign under the direction of Professor Harold
G. Diamond. The author also thanks Professor Paul T. Bateman for his valuable comments.
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corresponding sequence of natural numbers or primes. We want to know
whether the other sequence is also distributed like its classical counterpart.
Beurling proved that n(x)~ x/log x, ie., the prime number theorem holds
for 2, if

N(x)=cx+ O(xlog"ex)

with constants ¢ >0 and y > 3. Diamond showed by example that the prime
number theorem can fail for y=1% (cf. [1, 2, 5, 6]).

In [7], Diamond considered weak conditions on n(x) which enable one
to deduce N(x)~cx for some positive ¢, iec., that 4" has a density. A
closely related problem is the determination of when a multiplicative
arithmetic function has a mean value (cf. [3, 8, 9, 13, 14]). Theorem 1 of
Diamond [7] is optimal in some sense and a generalization of theorems of
Delange [3] and Wirsing [13].

Diamond also asked the following question: What conditions on n(x)
will vield nontrivial O-estimates for N(x)/x? For convenience, we shall call
this question the O-density problem.

In this paper, we shall give answers to the O-density problem in
Theorem 4.1, 4.3, and 4.6. For this purpose, we shall prove Theorem 3.1
which is an O-type Hardy-Littlewood-Karamata Tauberian theorem and
has interest in itself. Moreover, we shall relax the conditions of Theorem !
of Diamond [7] a little in Theorem 1.1 and give an example to which the
latter applies but the former does not. Our method of proof follows the
general idea of Diamond.

In the proof of Theorems 1.1, 4.1, 4.3, and 4.6, we shall make frequent
use of convolution techniques which have been described in detail in
[4]. The notations and the relations that we shall use here have been
summarized in [7].

1. DENSITY OF BEURLING (GENERALIZED INTEGERS

In this section, we shall prove the following

THEOREM 1.1. Suppose there exists a decomposition IT=11,+1I,
satisfying the following conditions

11,(x) 1, (L.1)
I1,(x)~ x/log x as x-— oo, (1.2)

lim (f” x“dHl(x)~—10g—s—>=log e (1.3)
s— 1+ \J1— S—l
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in view of (14) and [18, p. 59]. Using [ 18, p. 59; 11, 5.8, we conclude that
n' " *I'{(s—1)c(w) is invariant under s+ 3 — 5. Thus another proof for the
functional equation is complete.

In view of [18, p.59], the only poles, which appear in the Fourier-
expansion of E(w, 5), are at s=0, 1, 3, 2, 3 and they prove to be simple.
Calculation of the residues implies that the poles at s=3 cancel. Since
{(25—2) possesses a pole at s=3 we conclude E*(w,2)=0. Using [18,
p. 597 and (14) we calculate

T T(3/2)4(3) 45
SE= T T e 2 )
We obtain E*(w,0)= —1 from the formula for the residue and the

functional equation. Again the functional equation yields the holomorphy
of F(w,s) at s=—1, -2, —3,... In view of [I8, p.59], the function
n' ~*I(s—1){(2s—2) is holomorphic and non-zero at s= —1, —2, —3, ....
Then the poles of the gamma function imply E*(w,s)=0 for
s=—1,-2,-3,... 1

Let y denote the Euler constant and define

1 4 g/ C/ C’
Ci=y+45-3log2+-(2)+2-(3)-2(4),
73 { ¢

1 1
hw):= — a2’ + c3(w) ——
18 Zm T3)

1427 |w|v
X_—__

- 2wl + 2niducar )
2 3/ .
n? | ¥?

Then the first Kronecker limt formula is described in

THEOREM 4. One has

- 45 {(3 45
lim E*(w,s)——i)— =— {(3)(C —log v+ h(w)).
53 2 53 2
Proof. Looking at the Fourier-expansion (14) we get
. (= 45 £(3)
* b — —
tm (B -3 55

=§ w(3) 0’ + lim <f(s) g(s_z)__f@)

s—3 s—3

90 .
+ Z c3(w) — 03/21(3/2(27'[ [w|v) PEIC)
O0#welmA T
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Proof. We have for s> 1

C(s)=sjlexp <5J‘11 “H(x)— (2 }dx) jl'

The claimed estimate follows from the well-known Hardy-Littlewood—
Karamata Tauberian Theorem [12, Chap. V, Sect. 4]. |}

LEmMMA 1.3 [11] (Axer). Let dA, dB, and dA, be real-valued set
functions on the Borel subsets of [1, c0) with the property that on any finite

interval [1,x] each is a finite measure. Assume that dA,>0,
| A(x)| < 4,(x), and

fl‘ A(x)x ?dx < 0.
1

Also, assume that B(x)=o(x) and B,(x)= O(x) where B x) is the total
variation of B(x). Then

IX dA x dB = o(x).

1

LEMMA 1.4, Let dA4=0. If

< A(x) (1.6)

| (exp )0

1

and
r A(x) x 2dx< oo (17)
1

then [ t~Yexp dI,)(t) is convergent.

Proof. We first note that d4 >0 implies A(x)7. This fact and (1.7)
imply A(x)=o0(x). Let

E(u, x)=fx (exp dIl,)(¢), u<x.
Then | E(u, x)| < 2A(x). By integration by parts,

[t exp diL,)(r) =

u v

E(u, v)+r‘ E(u, t) it

w 1

641/30/2-2
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It follows that

2 C Al
< A(v)+2f —:T)dt—»O

D

[ "exp amm)o)

u

13

as u, v—> 0. |

Proof of Theorem 1.1. First, the condition /7,(x)~ x/log x implies that
svl(x)zf log tdIT,(1) ~ x.
1
This fact and the analogue of Chebyshev’s identity yield

T(x) :=£" log szl(z)=j"

1

v, (if) AN (1)~ | = (o),

where dN, =exp dIl,. The conditions (1.1) and (1.3) are equivalent to the
hypotheses of Lemma 1.2. Hence T(x)~ cx log x. Now, for x> 1,

v
Ni(x)=1 +£ @dT(u)

and integration by parts yields N (x)~ ¢x.
Then, consider

dN =dN, x exp dIl,
={cdr + cd) * exp dll, + (AN, — cdt — ¢d) » exp dIT,.

Condition (1.4) implies, by Lemma 1.4, that [~ ¢ '(exp dIT,)(t) converges.
Thus we have

J (cdi + ¢8) * (exp diT,)(1) = f t; (exp dIT,)(1)
1- [

=cx (j t exp dﬂz)(t)+o(l)). (1.8)
[

Note that

j‘x (AN, —cdi — c8) = N,(x) —cx =o(x)
1

and

(j (dN, ——Cdt—Cé))

=N,(x)+ cx=0(x).
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These two facts and the condition (1.4) imply, by Lemma 1.3, that

R
1

f (dN, — edt — ¢8) % (exp dIT,)(1) = o(x). (19)
Combining estimates, we arrive at
N(x)=JY (cdt + ¢8) * (exp dIT,)(1)
1—

+f (dN, — cdi — c8) x (exp dIT)(1)
1-

=<cj’ ‘ ‘(expdﬂz)(t)-i-o(l)) x.
1—
Finally. we have

r t '(exp dll,)(1)

1 —

— lim jx t~(exp dIT,)(1)

s—o 1+

s 1+ s—= 1+

— lim exp<j' t“'dﬂz(t)>=exp< lim f”t "de(t)>>0
1 1-

provided that lim, ,, {7 1 *dIT,(t) exists. ||

CorOLLARY 1.5. [If we replace (1.4) by
j” ' Jexp diT, |(x) < o (14),
l,,

then the theorem is still true.

Proof. Take
Am:jl" |exp T, (1)

Then we have

[ texp dnznz)‘ <A(x)
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and, by integration by parts,

jA (2 dr = ——(—)+f ! JexpdiT|(1)< [ x " exp diTy)(x) < co.
1

Therefore the hypotheses of Theorem 1.1 are satisfied. ||
COROLLARY 1.6 (Diamond). If we replace (1.4) by

j X |dL|(x) < (1.4),
1

then there exists a positive constant ¢, such that N(x)~ ¢, x holds as x — .

Proof. We have é
JI x 'lexp dH3|(x)<Jl x '(exp |dI,|)(x)=exp {r ! ldel(x)}
1 1 1

which is finite. Moreover, (1.4), 1implies the existence of
lim, ,,, {¥ x°d,(x). Therefore, we have N(x)~c,x with positive
constant

cl=c L" X Yexp diT,)(x)>0. 1

2. AN EXAMPLE

In this section, we give an analysis of an example of Diamond [5].

The analysis shows that Theorem 1.1 applies to the example but
Corollary 1.6 does not.

Following [5], we define t(x) by setting

r(x):J i1 —cos(log t)}(log t) " dt

1

for x> 1 and 1(x)=0 for x<1. Let p,, the rth g-prime, be defined by
p,=1"'(r). Then, as Diamond showed.,

N(x)=c,x+ O{x(log x) "},

where ¢, =exp{[{ ¢~ '(dll — dr)(1)} > 0.



DENSITY OF GENERALIZED INTEGERS 127
We first show that Corollary 1.6 does not apply to this example. Suppose

that we have a decomposition IT=11,+ 11, with [II, satisfying the
condition (1.2). Then it can be shown that 7, does not satisfy (1.4),. Let

M,(x)=[" |diT,|(1).

1 -
Then
11, (x) 2 [ {15(x)| — .

We know that [5]

I(x)=1t(x)+ 0(x"?)

=li(x)— sin (log x+§> + O(x log ™% x).

X
ﬁ log x
Therefore we have

II,(x)=II(x) — IT(x)

= L _x sin (lo + >+ al
B J2log x gxTy)Te log x
. s X
sin{logx+—|)|+o0 .
oz x43) ()
It follows that

J sz(t jv|17[2 ) “COG_%)
I

sin <log t+ g)‘ dt + o(log log x)

and hence

1
HIy(x)| =—=

X
\/E log x

1
7 logt
NG

n

log log x + o(log log x)

since

1 2
L TTog dt=;loglogx+0(1).

'(l t+n
tsm og Y
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Therefore

dt

IT,,(x) +J" 11,,(1)
X 2

S

2
27 log log x + o(log log x) - o«

jl‘ ¢ \dITL| (1) =

as x —» oo and (1.4), cannot be satisfied.
We then show that Theorem 1.1 applies to the example. Set

el —t!

H.(x>=£ oa?

for x=1 and I1,(x)=0 for x<1 and
I,(x) = I(x) — IT,(x).
Then (1.1) and (1.2) are satisfied. Moreover, since

Ed x - !
[ = o g oo,
1 . log x s—1

the condition (1.3) with ¢ =1 holds.
It remains to show the existence of the function A(x) in (1.4). Actually,
we have the estimate that

j " (exp dIL)(1) < x log~¥’x. (2.1)
1—

To show (2.1), we define dT =exp dt, C=logc,, and
dv=dll —dr— Co
as in [5]. Then we have
exp(dll,) =exp{dt —dll,} x exp{dIl —dt}
=c(dT—T(t)t ' dt)xexpldv}.

By a technique of Dirichlet, we have

f‘ (exp dIT,)(1) = ¢, j“” (T(f>—f:’/"+ T(t) 1! dt)(exp{dv})(u)

1— 1— u
‘et

+e LV+ (j_+ exp{dv})(dT(u)— Twyu ' du). (22)

\/ R

We shall show that both terms on the right-hand side are O(x log~*°x).
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Let

=" uexp {dv} — )

Then by Lemmad4 in [5], for each (fixed) positive number &,
f(y)=0(log™* y) as y » co. We have the formula

LH exp{dv} = Jl}f {0+udf(u)}

and integration by parts yields

IH udf (u)=O(ylog 3 y).

Thus

J‘l\/§+ (Lj:: exp{dv})(dT(u)— T(u)u~" du)

X+ -3 x+ -3
<jf f(log£) dT(u)+f\/_ f<log f) T(u)u ' du
u u u

1— 1- U

-

=0(xlog " x)

since dT =0, T(u)= O(u), and
Vi —1
f ' dT(u) = O(log x).

1 -
From Lemma 1 in [5],

T(x)=x+2%e ¥ d,x'* (logx) '~ 2+ O(x log " x).

j=1

Hence

R 2 X
] " Ty di=x 429 Y d, | 1 (log 1)\ dr+ O(x log 77 x),
1 i=1 e
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Therefore, the first term on the right-hand side of (2.2) equals

2 4 14 —j 12
2c, Re Y d, “¢ <—;> <log§> (exp{dv})u)
1--

j=1

-JV’H (IW+ t'(log t)~/—17 dt>(exp{dv})(u)}

o

+ fl\’/h 0 (u (log > 7 7/?) (exp{dv})(u).

We treat separately the three resulting integrals /— IT+ I1I. The integral /
is a linear combination of the following integrals

Je+ )\ E X\ 12
=l (;) <'°g;) (exp {dv})(u)

By the definition of f
ENCT X\ /12 A _
JI:xlilJ utl(log—> df(u)+x1iz(logx)7171/2.
1-- u

Integrating by parts and noting that [ u~"| f(u)| du < o0, we see that

NE X\ iz
f ui"<10g ;> df (u) = O((log x) 7/~ '?)
] -

and thus /= O{x(log x)~**}. The integral /I is a linear combination of the
following integrals:

=" < [ ttog 0y 71 dz)(exp{dv D)

11— 4

/; x/u x
=f“ " (f " flog )" dr udf(u)+f t(log 1)~/ V2 dr.

¢ e

Integrating by parts and noting that

X/u+ . ) —/—1/2
j t'(loge)y /172 dt:0<1(10g5> >,
. u u

we see that

JJ’” (J‘/“* tilog 1)~/ =12 dt) udf (u) = O(x(log x) 7~ '7)

e
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and thus I7= O{x(log x)*?}. Finally,

Jx+ X
[ IT| < L % <log ;)

NE Jx
<xlog mx(J ' u‘exde)(f "
- 1

—7/2

exp{dIT—dt — C8} |

u 'exp a’r)
<xlog " x
since

\/;+ X+
j u=(exp dn)(u)=ff u~'dN(u) = O(log x),
1

— 1

j\/H uYexp dr)(u)=f\/_+ u'dT(u) = O(log x).

-

This completes the proof of (2.1).
Finally, it is easy to see that

- o -1 _ >
i it = | x;sx_cos(lﬁdﬂj X~ (dIT — dr)(x)
L - log x -1

for s> 1 and

lim j" x~*dIT(x)
i

s i+ _

exist.

3. AN O-TypE HARDY-LITTLEWOOD-KARAMATA TAUBERIAN THEOREM

The purpose of this section is to set up the following O-type Hardy-
Littlewood-Karamata Tauberian theorem which we shall apply to the
O-density problem. This theorem is of independent interest.

THEOREM 3.1. Let F(x) be a nondecreasing function with support <
[1, 00). Suppose that the Mellin transform [ x~*dF(x) converges for all
s> 1. If there exist constants K> 0 and 6 >0 such that

(s—l)fﬁ x*dF(x) <K (3.1)
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holds for 1 <s< 1+ & then there exists a constant k >0 for which

j" 1 'dF(1) <k log x
1-

(3.2)

holds for x = x,. Furthermore, if there also exists a constant K' > 0 such that

K’g(s—l)r X dF(x) < K
{-

holds for 1 <s <1+ 0 then there exists a constant k' >0 for which

fv 1 \dF(t) > k' log x
1

holds for x = x,.

Proof. 1f we take s=1+ (log x)~' then, by (3.1), we have

1 rx x >
[T rar <[ o dRn <[ e dF <Klog .
€V~ - b

This proves (3.2) with k =eK.
We then assume (3.3). Choose « > 0 satisfying
K K

——>0.
a+1 &

Then we have

u”—i<
a =

{(l—l/ea)u, if 1<u<e,
e

0, if e<u

(3.3)

(3.4)

If we take s=1+ (logx) ' then 1<t '<efor I<t<xand r* '>e for

t > x. Therefore, by (3.3), we have

r 1~ dF(r)

:JY 7 dF ()
{

2(1—e™) [ Vee ) aF)
1—
Z(l_e—z)fl {J.x t*(s—l)(lwtfx)wld};*(t)_e—atj.OO [de(t)}
1- 1—
K K
2 o, —1 _ X.
(1—e ) <a+1 é)1>log>c
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This proves (3.4) with

K K
r_ - A _
K=(=e™) <a+1 e“>' I

Remark. We note that if (3.2) holds for x> x, sufficiently large then
(3.1) follows for 1 <s< 1+ 6. Also, if (3.4) holds for x = x, then the lower
bound in (3.3) follows for 1<s<1+4. Therefore, the upper bound
hypothesis in (3.3) might seem unnatural. The following example shows,
however, that (3.4) may fail to be true without the upper bound in (3.3).

ExampLE. Define recursively two sequences a,,, b, by setting

a,=e, b, =ea,, Ay =™,

Then a,,, ,>b,, and a,,> €™ hold. Let

ntm, if a,<n<b,, for meN,
0, else.

f<n>={

The function F(x)=3%,..f(n) is nondecreasing. Let 2>s>1. For
m>2/(s—1), we have

1

z n*.\'+l/m<a'lr{m7(,\'~li
n

am<n<by, Am <N < by

1 -1
garlr{m—(sflj __+_1 <2ar;1/m=26,*(17m )hm—l.
am
Therefore, 3, 2/ 1) ap<n<o, @ ° '™ converges and hence

JI x *dF(x)= i DI

m=1ap<n<by,

converges too for all s> 1. Furthermore, for m satisfying 1/2(m+ 1)<
s—1<1/2m, we have

bm
Z n75+l/m>J. x~s+l/mdx_1

Um < n< by Um

1

=1_s+ l/m (b’lnfs+1/m_a’lnfs+l/m)_l

=2mallP(e!?m — 1) — 1> all?™—1,
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Hence, for m >4,

(s—1) LI x P dF(x) = (s — 1)(al* —1)

o
2m+1)
1

> (e"1— 1) o
min ¢ )=

(al/Zm _ 1)

m

Therefore, we have lim,_ , (s— l)fi’; x *dF(x)=o and the upper
bound in (3.3) does not hold.

We now see that, for x=a,, ,,, we have

. o 1 1
Lr 7 dF(1y= Y Yo onttv Sbmozm—loga,,,oﬂ=m—logx.

m<my am<n<by 0 0

Hence, (3.4) fails to be true.

4. O-DENSITY OF BEURLING g-INTEGERS
In this section, we shall give answers to the O-density question.
THEOREM 4.1.  Suppose that II(x)1. If II(x) satisfies the conditions
I(x) < x/log x (4.1)

- 1
lim sup (f xdI(x)—log —) <. (4.2)
i

s 14 s—1
then N(x) < x holds. Moreover, if T1(x) satisfies (4.2) and the conditions
I1(x)>» x/log x (4.3)

s—14 s—1

= 1
lim inf (J‘ x *dIl{x)—log —) > — oo, (4.4)
1

then N(x)>» x holds.

To prove Theorem 4.1, we need the following

LEMMA 4.2. Assume (4.2). Then we have

f“ ' dN(1) <log x. (4.5)

1
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Moreover, assume (4.2) and (4.4). Then

jx = dN(1) > log x. (4.6)

1

Proof. Assume (4.2), then we have

cm:f X dN(x) = ex;;(f  dll(x) — log — >< S

s
s—1 s—1

for s — 1 +. Therefore, by Theorem 3.1, (4.5) holds.
In the same way, we can prove (4.6). |

Proof of Theorem 4.1. We first assume (4.1) and (4.2). Then

W(x)=£x LdIT < x.

Chebyshev’s identity and Lemma 4.2 imply

T(x):= j LdN = J:, WG) dN(1) < x log x.

1

By integration by parts, we have
X
N(x)=1 +j log ™! udT(u) < x.
1

We then assume (4.2), (4.3), and (4.4). In the same way, we can prove
Nx)>x 1

THEOREM 4.3. Suppose there exists a decomposition IT=1I1, + IT, where
I1,(x)1and II, satisfies the conditions (4.1) and (4.2). Moreover, suppose
there exists a nondecreasing function A(x) such that

“} (exp de)(t)‘ <A(x)
and

fjl A(x) x " dx < .
1

Then N(x) < x holds.
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Proof. The hypotheses (4.1) and (4.2) imply N,(x)={{exp dll, <x. It
follows that

N(x)= Jl dN, + exp dIT, < ]l y (;) dN (1)

:JXA <§>(K5+Kdz)+f" y <§>(d1v,(z)—1<5—1<dz)
1 1-

<2KA(x)+ Kj y (;) dr

since A(x/t)|in t. If we change the variable in the last integral then we
have

N(x) < 2KA(x) + Kx f A(u)u= du=0(x)
1
since A(x)=o(x). ||

By the same way that we deduced Corollaries 1.5 and 1.6, the following
two corollaries are established.

COROLLARY 4.4. Suppose that [Il\(x)Tand that Il satisfies the
conditions (4.1) and (4.2). Moreover, suppose that

o

f CxUexpdilL,|(x) < x

1

holds. Then N{x)< x.

COROLLARY 4.5. Suppose that II,(x) satisfies the conditions of
Corollary 4.4. Moreover, suppose that

j XU di,|(x) < 0
1

holds. Then N(x)<x.
The conditions which guarantee a lower bound for N(x)/x are more

complicated as we show in the following.

THEOREM 4.6.  Suppose there exists a decomposition IT =11, + I, where
I1,(x) T and I1, satisfies the conditions
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x/log x < I1,(x) < x/log x 4.7)

rxﬂ'dnl(x)qogs%:ou) as s—1+4. (4.8)
. ~

(Accordingly, by Theorem 4.1, we have

}me, sup M = Ylim,\ sup ijﬂ@ =K< 0,
tim i0f M) i i LER AT
N’ X xox X
Moreover, suppose that I1, satisfies the conditions
f}l XU dIT, | (x) < o0 (4.9)
K'>§£f‘ x| dIT,| — dITL)(x). (4.10)

Then we have x € N(x)( < x).

Proof. Let dIl,=1(|dIl,| —dII,) be the lower variation of the Jordan
decomposition of dIT, [10]. Then d/7,>0. We note that condition (4.9)
implies the convergence of [ x ~'(exp dIT;)(x). Consider

[ (;) exp(—dIT; )(1)
1
X X di;  dirs
:J.‘ N, (7)(5 —2'—+‘4—'—+ >(1)
< X dir;  dIn;
—jl N1<7>d[]3*<6+—3—|—+?—+>“)

dIl}  dIT?
>f N1< )(5 dIly) + (5 TR )m‘

Given ¢ > 0 sufficiently small, there exists B> 1 such that for x> B we have

(K —e)xsN|(x)<(K+¢)x
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Therefore
Ty(x) = L N, G)(é'dH})(t): Ny(x)— L N, G) dIly(1)
>(K —&)x—(K+¢)x JIB (1aIT (1) — Mx j/B ¢ 'dITy (1)
>x {K’ e (K+e) jf" (i)~ MJ:/B ‘- 'dIL(t)}

Z X,
where ¢ >0, for x> B, sufficiently large. Moreover, we have
Re
1

| T,(x)] < N, (x) + L N, G) T (1) < x+xj ¢ 'dlTL (1) < x.

It follows that
x X Y [x i din
'[1 N1<—t>exp(—dﬂ3)(1)zjl T, <-;><6+—2T+T+>(I)

/B x dir;  dity
Zjl T|<7><5+T+T+'“>(I)

. x dif?  dil
—L/Bl \T, 7) <5+7+]——!~+ --->(z)
> ex— Mx j ~(exp dIT)(1) = = x
x/By 2
for x = B, sufficiently large.
Finally, we have
N =1+ N, G)(exp dI,)(1)
1
o dll dar
=1+ l N, (it) exp(—dIl;) x exp (—I—%f—z>(t)>x. [ ]
“1
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