
Physics Letters B 753 (2016) 61–64

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

High-energy electrons from the muon decay in orbit:
Radiative corrections

Robert Szafron ∗, Andrzej Czarnecki ∗

Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 October 2015
Received in revised form 29 November 2015
Accepted 3 December 2015
Available online 7 December 2015
Editor: B. Grinstein

We determine the O(α) correction to the energy spectrum of electrons produced in the decay of muons 
bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for 
the muon–electron conversion and will be precisely measured by the upcoming experiments Mu2e and 
COMET. The correction suppresses the background by about 15%.
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In matter, muons decay differently from antimuons. Although 
the decay rates are very similar [1], negatively charged μ− can 
bind with nuclei. The nucleus exchanges photons with the muon 
and the daughter electron, rearranging the energy distribution. In 
this paper we find how this rearrangement is affected by the real 
radiation and self-interaction on the muon–electron line. We pre-
dict the energy spectrum of the highest-energy electrons, interest-
ing both theoretically and experimentally.

For a theorist, the muon decay is the simplest example with 
which to understand the gamut of binding effects, including the 
motion in the initial state, interplay of the binding and the self-
interaction, and the recoil of the nucleus. Experimenters have re-
cently studied the bound muon decay (decay in orbit, DIO) [2] with 
a precision sufficient to probe radiative corrections, later evaluated 
in [3]; however, these studies concern only the lower half of the 
spectrum, largely accessible also to a free muon.

Interestingly, the energy range of electrons produced in the DIO 
reaches to about twice the maximum possible in a free muon de-
cay. When the muon decays in vacuum, momentum conservation 
requires that at least half of the energy be carried away by the 
neutrinos. In the DIO, the nucleus can absorb the momentum with-
out taking much energy because it is so heavy.

The high-energy part is important for the upcoming searches 
for the ultra-rare neutrinoless muon–electron conversion, COMET 
in J-PARC [4] and Mu2e in Fermilab [5]. Designed for a sensitivity 
better than one exotic conversion in 1016 ordinary muon decays, 
they will collect large samples of events with high-energy elec-
trons. A reliably predicted spectrum is needed to distinguish the 
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Fig. 1. Muon decay in orbit (DIO). Dashed lines denote Coulomb photons exchanged 
between charged leptons and the nucleus. The right panel shows the same physics 
using double lines for charged leptons propagating in the Coulomb field.

exotic signal – an excess of electrons at maximum energy – from 
the Standard Model background.

Predicting the DIO spectrum is a challenge because both the de-
caying muon and the daughter electron interact with the Coulomb 
field of the nucleus. A numerical calculation with Coulomb–Dirac 
wave functions is possible [6] provided that self-interactions (pho-
tons attached to the muon and the electron) are neglected. How 
can they be included? In the lower half of the spectrum the muon 
and the electron can be treated as nearly free and the binding ef-
fects can be factorized. Then the radiative corrections, known for a 
free muon, are convoluted with a shape function that parametrizes 
the Coulomb field effect [3,7]. Here we construct an expansion 
around the end-point and employ it to find radiative corrections 
also to the high-energy part of the spectrum.

Accounting for the external Coulomb field in charged-particle 
propagators is called the Furry picture [8]. In this formulation, 
and still ignoring radiative corrections, a single diagram, shown in 
Fig. 1, describes the DIO. We shall demonstrate that the bound-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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state radiative corrections are easiest to evaluate near the high-
energy end of the spectrum, the most important part for the new 
experiments. For now we neglect the nuclear recoil and structure, 
and treat the nucleus as an infinitely-heavy point source of the 
Coulomb field. We denote the electron energy with E; its maxi-

mum value is Emax � mμ

(
1 − (Zα)2

2

)
, where mμ is muon mass, 

Z is the atomic number, and α � 1/137 is the fine-structure con-
stant. The DIO spectrum near its end-point can be expanded in the 
small parameter � = Emax−E

mμ
,

mμ

�0

d�

dE
=

∑
i jk

Bi jk�
i(π Zα) j

( α

π

)k
, (1)

where �0 = G2
Fm5

μ

192π3 is the free-muon decay rate and GF is the Fermi 
constant [9,10]. Powers of π Zα parameterize photon exchanges 
with the nucleus and α/π arises from radiative corrections on the 
charged-lepton line and the vacuum polarization. The first non-
vanishing term has i = j = 5 and k = 0, with B550 = 1024

5π6 � 0.21. 
Higher order coefficients B may have logarithms of � and Zα. 
The latter are a reminder that we are dealing with a decay in a 
Coulomb field, although the momentum transfer with the nucleus 
is sufficiently large that an expansion in Zα is possible. This is in 
contrast with the lower half of the spectrum, accessible with small 
momentum transfers, where binding effects cannot be treated per-
turbatively. The spectrum is a smooth function of � near the end-
point, far from resonances.

Corrections to the leading behavior have several sources. The 
large momentum transfer to the nucleus probes its interior. The 
finite nuclear size, already included in [6], causes the largest cor-
rection. We will comment at the end of this paper on how to 
include it in our formalism. The finite nuclear mass introduces a 
recoil effect, also evaluated in [6]. It affects the coefficients B only 
slightly but it shifts the end-point energy Emax.

We shall exploit a theoretical similarity between the DIO and 
the photoelectric effect to control higher-order binding effects. 
They generate powers of π Zα [11,12] rather than Zα. Indeed, a 
numerical evaluation for a point nucleus with Z = 13 (as in alu-
minum, the planned target in COMET and Mu2e) finds a −21%
correction, consistent with 13πα = 0.3. Logarithmic enhancement 
starts with (π Zα)7 ln(Zα). Fortunately, these large effects, slightly 
suppressed by the finite nucleus size, are summed up in the nu-
merical evaluation [6].

Finally, the most challenging corrections result from radiative 
effects that are the subject of this study. Before delving into the 
physics of the end-point, we present our main result. Close to the 
end-point, including radiative corrections, the DIO spectrum for 
aluminum is

mμ

�0

d�

dE
≈ 1.24(3) × 10−4 × �5.023. (2)

To illustrate the importance of the new corrections we consider 
the last 150 keV of the spectrum (the typical planned resolution 
of Mu2e and COMET). Radiative corrections reduce the number of 
events in this bin by 15%, a welcome reduction of the background, 
comparable in size with higher-order binding effects.

In the remainder we explain the origin of such a large effect. 
We begin with the tree-level behavior, appropriately expanding the 
lepton wave functions. We find that an exchange of a single, highly 
virtual photon gives the electron an energy of the full muon mass.

The asymptotic state of a relativistic electron with four-momen-
tum p is described by a plane wave distorted by the Coulomb 
potential V . To the first order in V , in momentum representation 
indexed by �q, it is
Fig. 2. Furry diagram expanded in Zα. Crossed circles indicate insertions of the 
weak interaction transforming the muon into an electron; the emitted neutrinos 
are not shown. These two amplitudes give rise to the highest-energy electrons.

ū(p)

[
δ3 (�p − �q) + /V

(
(�p − �q)2

) 1

/q − me

]
, (3)

where u(p) is a spinor solution of a free Dirac equation and the 
four-potential in momentum space reads

V
(�k2

)
=

(
− Zα

2π2�k2
, �0

)
. (4)

A muon bound to a nucleus with Z � 137 is nonrelativistic. Nev-
ertheless, we will need the first relativistic correction to its wave 
function, just like in the classic analysis of the photoelectric ef-
fect [13],

ψ
(�q) = ψNR

(�q)(
1 + �q · �γ

2mμ

)
u(P ), (5)

where ψNR
(�q) = 8π Zαmμ	(0)[�q2+(Zαmμ)2

]2 is the nonrelativistic momentum-

space wave function of the 1S ground state with 	(0) =(
Zαmμ

π1/3

)3/2
; u(P ) is the four-spinor of a muon at rest, P = (mμ, 0). 

Higher order corrections to eq. (5) are suppressed by Zα.
We now consider separately the contributions of the two terms 

in the electron wave function (3). The delta function term forces 
the muon momentum in (5) to be large, �q = �p ∼ mμ . Thus we 
neglect Zαmμ in the denominator of ψNR and find

ψ
(�q) ≈ (2π)3	(0)

1

/P + /q − mμ
/V

(
�q 2

)
u(P ). (6)

This is visualized in Fig. 2a: the muon, before decaying, transfers 
momentum �q ∼ mμ to the nucleus through a hard space-like pho-
ton. It is here that the relativistic correction to the muon wave 
function is important.

The second term in (3) refers to an electron scattered on the 
nucleus. Now the muon momentum, not restricted to large values, 
has its typical bound-state size �q ∼ Zαmμ , negligible in compari-
son with �p ∼ mμ . We use lima→0

8πa
(q2+a2)2 = (2π)3δ3

(�q)
to approx-

imate the muon wave function,

ψ
(�q) ≈ (2π)3	(0)δ3 (�q)

u(P ). (7)

This is shown in Fig. 2b, where the hard photon is exchanged after 
the decay.

The two diagrams in Fig. 2 add up to the leading contribution 
B550 in (1). In both cases any energy unused by the electron (∼ �) 
is taken up by the neutrinos and not transferred to the nucleus. 
Counting neutrino momenta in the integrated matrix element ex-
plains the leading energy dependence in (1),
∫

d3ν

ν0

d3ν0

ν0
δ
(
mμ� − ν0 − ν0

)
. . . /ν . . . /ν ∼ �5. (8)

Having understood that in the leading order in Zα only two 
diagrams describe the end-point behavior, we are now ready to 
evaluate order O

(
α
π

)
radiative corrections. In the Furry picture 

there are two groups of virtual corrections, shown in Fig. 3, and 
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Fig. 3. Virtual corrections to the muon DIO (Furry picture). These two diagrams 
represent five possible insertions of the weak decay vertex, symbolized by crossed 
circles.

Fig. 4. Furry diagram for the real radiation correction.

real radiation, Fig. 4. We expand them in Zα just like the tree-level 
diagrams, keeping only the leading fifth power, but in addition to 
wave functions (3), (5), we need also the Coulomb–Dirac Green’s 
function [14],

−iG V
(

E; �p, �p′
)

�
δ3

(
�p − �p′

)
/p − m

+ 1

/p − m
/V

(
(�p − �p′)2

) 1

/p′ − m
. (9)

The expansion (9) reduces radiative corrections in an external field 
to a set of loop diagrams that we evaluate analytically [15]. This 
approach can be extended to higher-order corrections.

The expansion of the diagram in Fig. 3a results in two types 
of contributions. If the momentum flowing through the fermion 
loop is small, on the order of mμ Zα, it generates the Uehling cor-
rection to the potential [16] that affects the muon wave function. 
If the momentum is hard, on the order of mμ , it modifies the 
photon propagators in Fig. 2. We call this a VP correction, to dis-
tinguish it from the contribution to the wave function. In the VP 
case, the photon, to which we are considering the vacuum polar-
ization correction, is hard; we are dealing with short distances and 
the Green’s function can be expanded in Zα, unlike in the case 
of the Uehling potential. A similar procedure has been discussed 
in [17].

First we calculate the Uehling case of Fig. 3a. In muonic alu-
minum the Uehling potential has a long range, exceeding the Bohr 
radius, and requires the Coulomb Green’s function with all orders 
in Zα. It strengthens the attractive force and increases the muon 
wave function at the origin,

	(0) → 	(0)
(

1 + α

π
δ0

)
. (10)

For aluminum we find δ0 = 3.27. This correction reflects the run-
ning of the coupling α up to the average muon momentum scale 
mμ Zα.

VP corrections to propagators of highly virtual photons are re-
lated to the running of α up to the hard scale mμ . They enhance 
the tree-level decay rate by a factor 1 + α

π δVP, with

δVP = 4

3
ln

mμ

me
− 10

9
+ 0.12 ≈ 6.1, (11)

where the term 0.12 arises from a muon loop.
Another correction comes from the real radiation. Diagrams 

represented by Fig. 4 are expanded in the same way as virtual 
corrections, using (9). Near the end-point the eikonal approxima-
tion suffices; by energy conservation the real photons must be soft, 
0 < Eγ < mμ�.

The sum of virtual and real radiation is finite,

B551

B550
= δH + δS ln �, (12)

where the vacuum polarization corrections δVP and δ0 are included 
with hard self-interaction effects in δH = 6.31 − 26

15 ln
mμ

me
, and δS =

2 ln 2mμ

me
− 2 is a soft correction. The latter can be exponentiated 

[18] (similarly to the free-muon decay [19]) and vanishes when 
� → 0,

B550 + α

π
B551 → B550

(
�

α
π δS + α

π
δH

)
, (13)

instead of unphysically diverging as ln �. It increases the exponent 
of � and suppresses DIO events near the end-point. The relative 
decrease is inversely correlated with the energy resolution: the 
number of electrons in the end-point bin of 1 (0.1) MeV is reduced 
by 11% (16%).

The final-state electron is relativistic, E 
 me , so its structure 
function [20,21] is insensitive to Coulomb corrections. A convolu-
tion with the free-decay spectrum confirms the coefficient − 46α

15π

of ln
mμ

me
due to collinear photons. Together with the vacuum po-

larization in (11), this explains the logarithmic part of the hard 
correction.

That log is largely canceled in the sum with the wave func-
tion correction in (10) and δH = −2.9 reduces the end-region by 
only a fraction of a per cent. We neglect the unknown hard cor-
rections O

(
(α/π)2

)
in the error estimate. Even terms enhanced 

by a square of the large colinear logarithm are likely much smaller 
than the error related to the nuclear-size effects, discussed below.

There are now two complementary studies of the end-point 
spectrum. Here, we have computed radiative corrections (RC) as-
suming a point nucleus and considering only the one-Coulomb 
exchange. Ref. [6] did not have the RC but included the nucleus 
structure, recoil, and multiple Coulomb interactions.

In order to combine these results, we observe that the most 
important – soft – correction is universal, not sensitive to any in-
teractions with the nucleus. The hard correction is tiny, so treating 
it also as universal is well within our final error estimate.

In the discussion of the uncertainty we specialize to aluminum 
but the discussion can be applied to other nuclei, so we keep the 
Z dependence explicit. We assume a Fermi charge distribution,

� = ρ0

1 + exp r−r0
a0

(14)

with a0 = 0.569 fm and r0 = 2.84(5) fm [22].
The finite size affects the nucleus form-factor, defined as a ratio 

of Fourier transforms of potentials from the extended (14) and the 
point-like (4) charge distributions,

Fρ(�k2) =
Vρ

(�k2
)

V
(�k2

) −→ 0.64 for �k2 = m2
μ. (15)

The DIO spectrum for a finite nucleus has an expansion analogous 
to (1), but with coefficients that depend on the density ρ . Its lead-
ing term near the end-point [6] is

∞∑
Bρ

5 j0

[
Fρ

(
m2

μ

)
π Zα

] j = 8.98 × 10−17
( mμ

MeV

)6
. (16)
j=5
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This result includes exchanges of many Coulomb photons, in addi-
tion to the single hard exchange to which we have found the radia-
tive correction. We estimate the magnitude of the multi-Coulomb 
part as a fraction f = Fρ

(
m2

μ

)
π Zα � 0.2 of (16).

Hard radiative corrections to this part are missing. To be con-
servative, we are not assuming that they involve a cancellation that 
has suppressed δH. Corrections on the order of the collinear loga-
rithm translate into a relative error of about 46α

15π f ln
mμ

me
� 0.7%. In 

addition, experimental errors in the charge distribution parameters 
(14) introduce a 2% uncertainty [6].1 Summing them in quadra-
ture, together with the sensitivity to the scale involved in the 
exponentiation of soft effects (we have varied the scale in the ex-
ponentiated term in eq. (13) by a factor of 2), we arrive at an error 
around 2.5% in the end-point spectrum.

The result (16), multiplied by the new correction (13), leads to 
our prediction for the end-point spectrum, (2).

To summarize, we have determined the correction to the high-
energy tail of the DIO energy distribution and its remaining un-
certainty. Key to this improvement has been the simplicity of the 
leading amplitudes that turn out to arise from a small number of 
hard-photon exchanges. This line of reasoning can be extended to 
higher-order binding effects, at least for a point nucleus. For a re-
alistic charge distribution, a numerical evaluation of loop diagrams 
will be necessary. However, the leading radiative correction has 
now been established with good precision. Its sizeable negative ef-
fect on the DIO will make any observed event near the end-point 
an even more convincing signal of New Physics, a discovery we 
eagerly anticipate.
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