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We examine the electronic width ratios of Υ resonances below the B B̄ threshold by means of an
effective (Cornell-type) QCD potential incorporating 1/mb corrections obtained from a prior fit to the
bottomonium spectrum. From our analysis we conclude that the Υ (2S) and Υ (3S) states should belong
to the strong-coupling (nonperturbative) regime while the Υ (1S) state should belong to the weak-
coupling (perturbative) regime, in agreement with a previous study based on radiative decays.
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1. Introduction

Heavy quarkonium has historically played a role of utmost im-
portance in the rise of the Standard Model (SM), notably regarding
the quark model of hadrons and the development of QCD as the
presently accepted theory to describe the strong interaction among
them.

Furthermore, a large amount of data have been collected dur-
ing the last decade at BEPC, B-factories, CESR, HERA, and Teva-
tron experiments, greatly improving the accuracy of the measured
production cross sections, decay widths and branching fractions
involving heavy quarkonia (see [1] for a review). In the future,
a Super Flavour Factory could provide further experimental results
on heavy quarkonia to an unprecedented accuracy [2,3].

On the other hand, such precise measurements are matched by
the ever-growing soundness of the theoretical background, firmly
based on an effective field theory, namely the Non-Relativistic QCD
(NRQCD). The maturity already reached in the field even makes
feasible the search for new physics, e.g. in quarkonium decays,
looking for experimental deviations from the SM expectations. Let
us mention the seek of light dark matter in invisible quarkonium
decays [4] (followed up by experimental searches [5,6]) and Υ

radiative decays into dileptons as a way of searching for a light
non-standard Higgs boson [7–11].

With the advent of the quark model and QCD, hadronic prop-
erties have been traditionally understood with the help of (more
or less QCD-motivated) potential models, some of them having
reached a fairly acceptable level in predicting or postdicting level
spacings, transitions rates, etc. Nevertheless, potential models have
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several setbacks and limitations, mainly due to the fact that they
do not come directly from first principles. At this stage, effective
theories enter the game in order to describe rigorously the hadron
dynamics.

A prototype is the Heavy Quark Effective Theory (HQET) which
naturally describes hadrons with a single heavy quark [12]. These
systems are characterized by two energy scales: the heavy quark
mass, mQ , and the characteristic scale of the strong interaction
ΛQCD. HQET is obtained by integrating out the scale mQ and ex-
panding the QCD Lagrangian in powers of ΛQCD.

On the other hand, bound states made of two heavy quarks
are characterized by more scales whose relevance and hierarchy
are usually estimated by invoking the so-called velocity counting
rules [13]. Since the heavy quark relative velocity v is typically
small (v2 ∼ 0.3 for charmonium and v2 ∼ 0.1 for bottomonium)
the different scales obey the useful relation En ∼ mQ v2 � p ∼
mQ v � mQ , where En is the heavy-quark bound-state energy with
n the principal quantum number. NRQCD is obtained by integrat-
ing out the heavy quark mass mQ [14]. High-energy modes are not
lost but encoded into short-distance coefficients and new local in-
teraction terms in the effective Lagrangian.

The resulting framework allows the separation between the
short-distance scale of the process under study from the longer
distance scales associated with quarkonium structure. Therefore
operators can be expanded as a double series (perturbative and
nonperturbative), with αs and v being the expansion parame-
ters controlling the accuracy of the truncated series, respectively.
However, these expansion parameters are not completely indepen-
dent in heavy quarkonium physics as the typical velocity of the
heavy quark is determined by a balance between the kinetic en-
ergy mQ v2 and the potential energy which should be dominated
by a Coulombic-term ∼ αs/r. Setting r ∼ 1/mQ v , by invoking the
virial theorem we are led to the well-known relation

αs(mQ v) ∼ v.
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Moreover, since αs(μ) runs (decreasing) with the energy scale
(for higher μ), one can approximately write

αs(mb) ∼ v2

where mb denotes the bottom quark mass. The above relation
should play an important role in assessing the velocity counting
rules to be applied in quarkonium physics. In fact, relativistic cor-
rections of order v2 would be of the same order as perturbative
corrections of order αs(mb). Let us also remark that the αs pertur-
bative expansions in NRQCD may be not fast convergent series and
truncation even at NNL will likely imply sizeable effects [15]. In
this work, we will implicitly take the αs corrections into account
through the velocity counting rules.

2. Potential model connection to pNRQCD

A naive connection of NRQCD with potential models can be
made by realizing that certain (long-distance, colour-singlet) ma-
trix elements of NRQCD can be actually related in first approxi-
mation to wave functions at the origin (WFO) or their derivatives.
Nevertheless, this simple picture does not hold too far as there
are NRQCD matrix elements without an equivalence in potential
models, namely, colour-octet contributions since the heavy quark
antiquark pair needs not to be in a colour-singlet state. Actually,
the potential picture that emerges from NRQCD [16] is quite differ-
ent from the traditional one [18,19] and superior.

The observation that NRQCD still contains energy scales irrele-
vant for the lower-lying states of quarkonium, led to further sim-
plifications and the resulting theory was called potential NRQCD
(pNRQCD) [20,21], when only ultrasoft degrees of freedom remain
dynamical. Such an effective field theory turns out to be, in fact,
close to a Schrödinger-like description of the bound state [22,
23]. Moreover, matrix elements in pNRQCD can be expressed as
the product of WFOs and nonperturbative glue-dependent fac-
tors, yielding a formal similarity with potential models in many
observable quantities (like decay widths into leptons or light
hadrons [25], or magnetic dipole transition [24]), which do not
happen in NRQCD.

The relation between ΛQCD and the scales mQ v and mQ v2 dic-
tates the degrees of freedom of pNRQCD:

• The weak coupling regime, when mQ v2 � ΛQCD > mQ v and the
binding energy is mainly due to a Coulombic-like potential.
Dynamics can be described using perturbative theory.

• The strong coupling regime, when mQ v ∼ ΛQCD and the binding
energy is mainly due to a confining (nonperturbative) poten-
tial.

The assignment of each quarkonium state to any of these regimes
is not such an easy task as the different scales are not directly
measurable. The fact that the spectrum of excitations of the bot-
tomonium family is not Coulombic suggests that the higher states
are not in the weak coupling regime. However, there are claims
in the literature that the Υ (2S) and Υ (3S) can also be understood
within the weak coupling regime [26,27]. In Ref. [28] Υ (1S,2S,3S)

radiative decays were used to investigate their nature. Experimen-
tal results from CLEO were confronted with the theoretical ex-
pectations, in particular as a ratio of decay widths for different
energies of the photon.

In this Letter we follow a similar strategy but focusing on
electronic decays of the Υ (1S,2S,3S) resonances mainly basing
our analysis on a phenomenological approach. We have employed
the QQ-onia package presented in Ref. [29] to determine the re-
quired WFOs, making use of a Cornell-type potential incorporating
a −c′/r2 term as suggested by recent lattice studies. Table 1 shows
Table 1
Measured electronic widths (in keV) for the Υ (1S), Υ (2S) and Υ (3S) resonances
(from [30])

Γee[Υ (1S)] Γee[Υ (2S)] Γee[Υ (3S)]
1.340 ± 0.018 0.612 ± 0.011 0.443 ± 0.008

the experimental values of the electronic partial widths for all
three resonances.

3. Velocity counting rules

In this section we briefly review different velocity scaling rules
appearing in both perturbative and nonperturbative regimes of
heavy quarkonia. All our arguments are order-of-magnitude esti-
mates which, moreover, are subject to uncertainties especially in
the nonperturbative regime due to our ignorance of the scaling
rules expected to be valid then.

Notice that, no matter the regime, it always holds the following
velocity counting rules

〈nS| p2

mb
|nS〉 ∼ mb v2; 〈nS|V (0)|nS〉 ∼ mb v2

by the definition of v and from the virial theorem, respectively.
The latter is an example where the naive guess of mb v is modified
by the dynamics of the bound state to mb v2.

3.1. Perturbative regime

The soft scale in heavy quarkonium is basically set by its size r
which can be provided by the Bohr radius of the bound state. If r
is small enough, i.e. r � 1/ΛQCD, the soft scale should be perturba-
tive and the potentials can be entirely determined in perturbation
theory.

Then the following scaling rules should hold:

〈nS|V (1)|nS〉 ∼ α2
s /r2 ∼ m2

b v4

since αs ∼ v and r ∼ 1/(mb v), and

〈nS|V (2)|nS〉 ∼ αs/r3 ∼ m3
b v4

and so on.
Let us stress that perturbation theory cannot incorporate quark

confinement, so it becomes crucial to determine the potential non-
perturbatively in this regime. This can be the case for high-lying
quarkonium resonances, as we are checking in this work. Indeed,
states below the B B̄ threshold and not too deep (namely Υ (2S)

and Υ (3S)) are expected to be in the strong-coupling regime
whereas the deeper Υ (1S) state is expected to be in the weak cou-
pling regime. States above (or very close to) open bottom threshold
are not expected to be in either regime [31].

3.2. Nonperturbative regime

Admittedly, the power counting of NRQCD is not well known
in the nonperturbative regime and, in fact, has been addressed by
different authors in distinct ways [25,32,33]. We might assume a
very conservative counting: mb vd with d standing for the operator
dimension.1 Thus the following counting rules could hold:

〈nS|V (1)|nS〉 ∼ m2
b v2; 〈nS|V (2)|nS〉 ∼ m3

b v3.

On the other hand, making use of the 1/mb expansion of the
potential, one may write

V (r) = V (0)(r) + V (1)(r)

mb
+ V (2)(r)

m2
b

+ · · · (1)

1 This is somewhat similar to HQET [34] where any operator counts like Λd
QCD.



54 J.-L. Domenech-Garret, M.-A. Sanchis-Lozano / Physics Letters B 669 (2008) 52–57
where V (k) , k = 0,1,2, . . . , are the leading and subleading terms
respectively. The potential V (2)/m2

b contains the leading-order
spin-dependent potentials and the velocity-dependent potential.
In this work we truncate the expansion up to V (1)/m, neglecting
1/m2

b terms and higher. In a nonperturbative regime this approxi-
mation should amount to a O(v2) accuracy at least when solving
the Schrödinger equation, thereby justifying the use of a non-
relativistic approach.

Let us also point out that lattice calculations will be of help in
determining the functional form of V (1)/mb . We will come back to
this important point in Section 5.1.

Finally, notice that the static potential V (0)(r) is well parame-
trized by a Coulomb plus linear term (i.e. a Cornell-type functional
form [35,36]),

V (0)(r) = − c

r
+ σ r + μ

where σ stands for the string tension governing the confining
potential and μ is a constant. This funnel shape will be used
throughout this work as a reference, later on to be somewhat mod-
ified when defining the actual leading-order potential for heavy
quarkonium.

4. Υ leptonic decays

As is well known, leptonic partial widths are a probe of the
compactness of the quarkonium system, and provide useful infor-
mation complementary to spectroscopy [17]. In particular, the elec-
tronic width for 3 S1 states (Γ [Υ (nS) → e+e−]) probes the WFO
according to potential models.

Likewise, if the pNRQCD framework is applied, the leptonic
width can still be written in terms of the radial WFO as mentioned
in the Introduction. The following expression obtained in Ref. [25]
should hold up to order v3 × (En/mb,Λ

2
QCD/m2

b):

Γ
[
Υ (nS) → e+e−]

= NC

π

|Rn(0)|2
m2

b

×
[

Im fee
(3 S1

)(
1 − E(0)

n

mb

2ε3

9

+ 2ε
(2,EM)
3

3m2
b

+ c2
F B1

3m2
b

)
+ Im gee

(3 S1
)( E(0)

n

mb
− ε1

m2
b

)]
(2)

where NC = 3 is a colour factor and E(0)
n is the (leading-order)

bound-state energy; ε and B stand for universal (i.e. flavour and
state independent) nonperturbative parameters, which can be ex-
pressed in terms of gluonic field-strength correlators [25]. They can
be determined either by experimental data or by lattice simulation,
but still their numerical values are quite uncertain.

The matching coefficients Im fee(
3 S1) and Im gee(

3 S1), corre-
sponding to the O 1(

3 S1) and P1(
3 S1) operators of the NRQCD

Lagrangian, are given at order αs by the expressions [14,37]

Im fee
(3 S1

) = 1

3
π Q 2α2

[
1 − 16αs

3π
+ O

(
α2

s

)]
, (3)

Im gee
(3 S1

) = −4

9
π Q 2α2

[
1 − 8αs

3π
+ O

(
α2

s

)]
(4)

where |Q | = 1/3 for the bottom quark.
At lowest order, one recovers from (2) the well-known formula

[38] expressed in our notation as

Γ
[
Υ (nS) → e+e−] = NC Im fee(

3 S1)

π

|R(0)
n (0)|2
m2

b

showing that the leptonic width of a quarkonium vector state is
primarily sensitive to the square of its radial WFO, though pertur-
bative and nonperturbative corrections are large indeed. Yet the
unknown parameters in Eq. (2) do not allow its direct comparison
with experiment.

5. Testing the nature of heavy quarkonium

In the leptonic width ratio of two S-wave states, however, sev-
eral terms cancel out, leading to

Γ [Υ (nS) → e+e−]
Γ [Υ (r S) → e+e−] = |Rn(0)|2

|Rr(0)|2 × [1 + δnr] (5)

up to corrections of order O(vq), where q will be later determined
in our analysis, providing an insight on the nature of heavy quarko-
nium and a hint at the velocity scaling rules to be applied.

The correcting factor δnr is given by

δnr =
(

Im gee(
3 S1)

Im fee(3 S1)
− 2ε3(2mb)

9

)
×

[
E(0)

n − E(0)
r

mb

]

and using Eqs. (3)–(4) we get

δnr =
(

ree + 2ε3(2mb)

9

)
×

[
E(0)

r − E(0)
n

mb

]
(6)

where we have defined ree up to O(α2
s ) corrections,

ree = 4

3
×

[
1 + 8αs(2mb)

3π

]
.

Now, taking into account that En = Mn − 2mb with Mn being the
meson mass [39], we can safely use the following relation

E(0)
r − E(0)

n 	 Er − En = Mr − Mn.

Hence Eq. (6) can be rewritten as

δnr =
(

ree + 2ε3(2mb)

9

)
×

[
Mr − Mn

mb

]
. (7)

On the other hand, ε3(μ) stands as the only nonperturbative
gluonic parameter in (6), all others cancelling out in the ratio (5)
at the desired accuracy. There is an experimental determination of
this long-distance parameter2 in [40]:

ε3(1 GeV) = 1.8+1.2
−0.7

where the error bars are experimental only. Additional theoreti-
cal uncertainties associated to subleading operators in the power
counting and perturbative expansion are not taken into account in
the above uncertainty.

Finally, we need to know ε3 at the bottomonium scale. To this
aim we can use the scale evolution

ε3(μ
′) = ε3(μ) + 24C F

β0
ln

αs(μ
′)

αs(μ)
(8)

where C F = 4/3, β0 = 11C A/3 − 4n f T F /3 with C A = 3, T F = 1/2
and n f = 5 in our case.

Setting ε3(1 GeV) = 1.8, yields ε3(2mb) 	 4.2 which can be
then used as an input in Eq. (7).

5.1. Lattice estimates of V (1)/mb shape and size

As commented previously, the V (1)/mb potential has the form
1/r2 relying on perturbation theory in the short-distance region.
However, since the binding energy of the b–b̄ system, typically of
order mb v2, can be similar or even smaller than ΛQCD due to the
non-relativistic nature of the system, it is essential to determine
the potential nonperturbatively. Monte Carlo simulations of lattice

2 Let us note a factor NC = 3 of difference between the definitions of the gluonic
parameter ε in [40] and ε3 in [25].
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Table 2
Values of the predicted and experimental mass (in GeV), WFO squared (or derivative) in GeV3+2� , mean square radius (in fm) and typical quark velocity for the
Υ (1S,2S,3S,4S), χb(1P ,2P ) and Υ (1D) states when the improved Cornell-type (Corn-mod) potential of Eq. (10) is employed. For comparison, we present in the first
column the masses obtained using a Cornell (Corn) potential [36]

Resonance Mass (Corn) Mass (Corn-mod) Exp. |R�′
n�(0)|2 〈r2〉1/2 〈v2〉

Υ (1S) 9.4603 9.4603 9.4603 12.65 0.23 0.090
χb(1P ) 9.96 9.8929 9.9001 1.409 0.40 0.071
Υ (2S) 10.05 10.0236 10.0233 6.444 0.51 0.087
Υ (1D) 10.20 10.1476 10.1622 0.562 0.53 0.078
χb(2P ) 10.31 10.2729 10.2600 1.854 0.63 0.089
Υ (3S) 10.40 10.3750 10.3552 5.404 0.71 0.103
Υ (4S) 10.67 10.6477 10.5794 5.194 0.88 0.120
QCD provide a powerful tool for a nonperturbative determination
of the potential [41,42].

In a former analysis presented in Ref. [41], V (1)(r)/mb was
found to be comparable with the Coulombic term of the static po-
tential (i.e. V (1)/mb ∼ 1/r) when applied to bottomonium states up
to r = 0.6 fm. Consequently, if V (1)(r) is nonperturbative, the piece
V (1)(r)/m in the potential should not be considered as subleading
with respect to V (0)(r).

However, in a later study involving further long distance data
up to r = 0.9 fm [42], the same authors found that the 1/r function
was not supported by the fit, while the functional form 1/r2 with
the linear term could fit the data well. It is interesting to note that
V (1)/mb turns out to have the same functional form as expected
from perturbative theory.

The V (1)/m term cannot be neglected as compared to the static
potential V (0) and has to be incorporated into the quarkonium po-
tential for the sake of coherence. Thus the leading-order potential
V LO should read

V LO = V (0) + V (1)

mb
(9)

yielding a potential of the form

V Corn-mod(r) = − c

r
− c′

r2
+ σ r + μ. (10)

We will refer to (10) as a Cornell-modified potential, since the func-
tional form has been improved by the additional −c′/r2 piece; be-
sides, the contribution from the V (1)/m term also alters the value
of σ [42].

In our approach the values of the parameters mb, c, c′, σ and
μ are obtained through a fitting procedure to the bottomonium
spectrum (Υ (1S) and Υ (2S) states), not from lattice estimates. We
obtain from the fit the following values for the parameters of the
potential (10):

σ = 0.217 GeV2, c = 0.400, c′ = 0.010 GeV−1

and mb = 4.7 GeV.3

The values of the predicted masses, WFOs and other properties
of interest for different bottomonium states using this potential are
shown in Table 2. An excellent agreement with the experimental
mass values of different resonances in the spectrum can be ob-
served.

5.2. Discussion

The WFOs corresponding to the Cornell-modified potential were
obtained using our code based on a Numerov technique. (See
Ref. [29] for a thorough description of the QQ-onia package.)
A comparison of the WFOs of the Υ (1S,2S,3S) states obtained
using different potentials can be found in Table 3.

3 A significant coincidence is found between the mb value used in the lattice
calculation [42] and required in our fit.
Table 3
|RLO

n (0)|2 (in GeV3) values of Υ (ns) states (n = 1,2,3) for several potentials:
Buchmuller–Tye (mb = 4.88 GeV) [18]; Cornell [18] (mb = 5.18 GeV); Cornell-
modified (including a −c′/r2 piece, mb = 4.7 GeV)

Resonance |RLO
n (0)|2B-T |RLO

n (0)|2Corn |RLO
n (0)|2Corn-mod

Υ (1S) 6.477 14.07 12.65
Υ (2S) 3.234 5.669 6.444
Υ (3S) 2.474 4.271 5.404

Let us remark that the inclusion of the −c′/r2 term in the Cor-
nell potential has a non-straightforward effect on the new resulting
WFOs, for it implies a modification of both the Coulombic term
and the b-quark mass obtained from the fit. Let us also note that
the c′ value is determined to a large extent by the Υ (2S) reso-
nance in our fitting method (see [29] for more details).

On the other hand, as already pointed out in Section 5.1, the
perturbative calculation of V (1)/mb yields the same functional r-
dependence as suggested by lattice studies. Therefore, one may
look upon V (1)/mb as an interpolating term between the pertur-
bative and non-perturbative regimes, rendering the fit meaningful
even using both Υ (1S,2S) states. As a check of the fitting proce-
dure (see Table 2), the predicted meson masses for the bottomo-
nium family obtained from the Cornell-modified potential improve
with respect to the Cornell potential [36], when compared with
the experimental spectrum [30].

Moreover, the values of the WFOs shown in Table 3 look
self-consistent: the (absolute) relative variations for the Cornell-
modified versus the Cornell potential are ∼ 10%, 14% and 26%
for the Υ (1S,2S,3S) resonances, respectively. Indeed, one could
naively expect a O(v2) effect in the perturbative regime as a con-
sequence of incorporating the new term into the potential, but
increasingly larger variations for higher (thus dominantly nonper-
turbative) states.

Finally, note that the V (2)/m2
b (and higher) terms neglected

in the expansion (1) of the QCD potential should likely provide
corrections of relative order O(v2) to the WFOs obtained by solv-
ing the Schrödinger equation with the leading-order potential (10).
This counting is supported by the spin-dependent splitting experi-
mentally found in the bottomonium spectrum. In fact, if the static
potential were exact, then the potential model would reproduce
QCD up to corrections of relative order v2 [22].

6. Numerical results

Now we proceed to check the validity of formula (5) by recast-
ing it onto the following double (experimental to theoretical) ratio:

Γ [Υ (nS) → ee]/Γ [Υ (r S) → ee]
(|RLO

n (0)|2/|RLO
r (0)|2) × [1 + δnr]

= 1 + Δnr (11)

where we have introduced the dimensionless quantity Δnr (n, r =
1,2,3, n 
= r) parametrizing the deviation from unity for different
combinations of all three Υ (1S), Υ (2S), and Υ (3S) states.
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Table 4
Δnr (in %) for different potentials from Table 3 using ε3(2mb) = 4.2. Let us ob-
serve that Δ23 always remains smaller than Δ12 and Δ13, as expected if both states
Υ (2S,3S) were in the same (strong-coupling) regime

Potential B–T Cornell Cornell-modified

Δ13 20% 36% 12%
Δ12 15% 30% 14%
Δ23 9% 10% 1%

The following experimental and theoretical inputs have been
employed in our analysis:

(1) The experimental input for the electronic widths can be
readily obtained from Table 1, allowing a determination of the ra-
tios with relative error ∼ 1%

Γ [Υ (nS) → e+e−]
Γ [Υ (r S) → e+e−] (n, r = 1,2,3, n 
= r).

(2) The |RLO
n (0)|2 values for different potentials can be found in

Table 3. We have assumed in (11) that

|Rn(0)|2
|Rr(0)|2 = |RLO

n (0)|2
|RLO

r (0)|2 × [
1 + O

(
vq)]

where q is expected to be 2 on account of the arguments given in
the previous section.

(3) δnr were computed according to Eq. (7) (valid up to order
(v2,α2

s ) corrections). Experimental meson masses and mb values
for each potential were used (see Table 3); we set ε3(2mb) = 4.2
derived from Eq. (8) using ε3(1GeV) = 1.8 [40].

Thus, if the two quarkonium states n and r were in the same
(strong) regime, one should expect

Δnr � O
(

vq) ∼ 100 · vq(%). (12)

Conversely, one should expect Δnr > 100 · vq(%), if anyone of the
states is in the strong-coupling regime and the other in the weak-
coupling regime.

The values for Δnr obtained in our analysis for the Buchmuller–
Tye, Cornell and Cornell-modified potentials can be found in Ta-
ble 4, representing our main result.

In particular, it turns out that when the Cornell potential is em-
ployed we find that Δ13 is greater than Δ12, which in turn is larger
than Δ23, i.e.

Δ13 	 35% � Δ12 	 30% > Δ23 	 10%

in agreement with a counting rule providing q = 2 for the latter
case.

In sum, our results for the Cornell potential are thus consistent
with the expected level of accuracy (up to order v2) of Eq. (11),
provided that both Υ (2S) and Υ (3S) states belong to the strong-
coupling regime, while the Υ (1S) state does not.

Furthermore, once the −c′/r2 piece is included in the Cornell-
modified potential we get

Δ13 	 Δ12 	 10% > Δ23 	 1%

where Δ23 is now found to be remarkably small.
Of course, there is an uncertainty coming from the ε3 value in

the computation of δnr according to Eq. (7). Setting ε3(2mb) equal
to zero, we find that Δ23 becomes appreciably worse. Thereby a
non-null value of ε3(2mb) is clearly favoured in our analysis. De-
manding Δ23 = 0 in Eq. (11) we get ε3(2mb) = 3.2 from Eq. (7)
and, consequently, ε3(1 GeV) = 0.8 using the running equation (8).

7. Conclusions

In this Letter we have presented a phenomenological study of
the electronic width ratios of Υ resonances (below open bottom
production), finding evidence favouring both Υ (2S) and Υ (3S)

states in the strong coupling regime, at the same time disfavour-
ing the Υ (1S) in it, in accordance with the conclusions from the
analysis of Ref. [28] based on radiative decays of Υ resonances.

Moreover, the agreement between the experimental and pre-
dicted Υ (2S)/Υ (3S) ratios is even better than naively expected
from a conservative velocity counting once the Cornell potential
becomes improved by a −c′/r2 piece, motivated by recent lattice
studies [41,42]. Therefore we can conclude that our results (both
from lepton widths and spectroscopy) favour the inclusion of such
a nonperturbative term into the Cornell potential.

Let us also point out that a value of the gluonic nonperturbative
parameter: ε3(1 GeV) 	 1.8+1.2

−0.7 (as found in [40]) is compatible
within errors with our analysis on leptonic decays. Actually, one
might turn the question round extracting ε3(2mb) from Eq. (11)
using the experimental data from Table 1 and the Cornell-modified
potential, yielding ε3(2mb) = 3.2 (ε3(1 GeV) = 0.8) with an es-
timated uncertainty of ∼ 30% assuming a v2 ∼ 10% accuracy in
Eq. (7). Additional theoretical uncertainties should increase the al-
lowed range though values of ε3(1 GeV) around unity are preferred
as a general result of our analysis.

Finally, we want to stress the relevance of further accurate ex-
perimental measurements of leptonic widths (among other prop-
erties) of heavy quarkonia to carry out precise tests of effective
theories of QCD (likely useful to deal with nonperturbative effects
showing up at the LHC) and even direct searches for new physics
[9,10]. A future Super Flavour Factory would play an invaluable role
in this regard.
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