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Multicellular organisms possess very sophisticated defense mechanisms that are designed
to effectively counter the continual microbial insult of the environment within the vertebrate
host. However, successful microbial pathogens have in turn evolved complex and efficient
methods to overcome innate and adaptive immune mechanisms, which can result in disease
or chronic infections. Although the various virulence strategies used by viral and bacterial
pathogens are numerous, there are several general mechanisms that are used to subvert
and exploit immune systems that are shared between these diverse microbial pathogens.
The success of each pathogen is directly dependant on its ability to mount an effective
anti-immune response within the infected host, which can ultimately result in acute disease,
chronic infection, or pathogen clearance. In this review, we highlight and compare some of
the many molecular mechanisms that bacterial and viral pathogens use to evade host im-
mune defenses.
Introduction

The three biggest global infectious disease threats to hu-

mans are HIV, tuberculosis, and malaria, each killing one

to two million people worldwide each year (Morens

et al., 2004; Fauci, 2005). Each of these three causative

agents (which represent a virus, a bacterium, and a para-

site) have developed highly effective mechanisms to sub-

vert the human immune system, which explains why de-

veloping vaccines and controlling these pathogens have

been so difficult. Successful pathogens have evolved

a range of anti-immune strategies to overcome both in-

nate and acquired immunity (Table 1), which play critical

roles in their abilities to cause disease. In this short review,

we can highlight only a few of the myriad of molecular

mechanisms that bacterial and viral pathogens use to ef-

fectively overcome host immune defenses. Although at

first glance the immunomodulatory mechanisms used by

viruses and bacteria might appear quite different, there

are a surprising number of similarities and shared mecha-

nistic concepts. Both types of pathogens have to over-

come the same host immune mechanisms, and it is illustra-

tive to see how they have developed parallel strategies to

neutralize host immunity. Moreover, viral and bacterial dis-

eases are often linked, exploiting weaknesses in host de-

fenses that are caused by another pathogen. For example,

influenza infections predispose humans for subsequent

pneumococcal pneumonia, and HIV infections are often

associated with an increased incidence of tuberculosis

and salmonellosis.
The field of microbial ‘‘anti-immunology’’ is rapidly ex-

panding. To comprehensively review the entire field of vi-

ral and bacterial mechanisms would require a very large

review, and the reader is referred to other more compre-

hensive and specific reviews (Hornef et al., 2002; Rose-

nberger and Finlay, 2003; Bieniasz, 2004; Coombes

et al., 2004; Hilleman, 2004).

Instead, we have chosen to highlight some key con-

cepts that viral and bacterial pathogens use to ensure their

success. These concepts are then followed by a small

number of illustrative examples. We have also chosen to

focus more on pathogens that cause human disease or

mimic these diseases in animal models.

Surface Expression and Secretion

of Immune Modulators

The external surface of viral and bacterial pathogens is the

central interface between host and pathogen, and recog-

nition of the exposed surface by immune systems pro-

vides the host a key signature to initiate microbial clear-

ance. It also affords the pathogen significant opportunity

to present mimics of host immune modulators, to alter

host immune responses (or avoid them), to express adhe-

sins or receptor ligands to anchor the pathogen to host

surfaces, and to present invasins or fusion proteins to me-

diate uptake into host cells. Other surface molecules, such

as protective capsules or even captured host proteins,

can enhance survival within the host.
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Table 1. Anti-Immune Strategies of Viruses and Bacteria

Strategy Viral Examples Bacterial Examples

(1) Secreted modulators or toxins - ligand mimics (virokines)

- receptor mimics (viroceptors)

- many toxins

- proteases

(2) Modulators on the
pathogen surface

- complement inhibitors
- coagulation regulators

- immune receptors

- adhesion molecules

- Lipid A of LPS
- carbohydrates such as capsules

- outer membrane proteins

- adhesins and invasins

(3) Hide from immune surveillance - latency
- infect immunopriviledged tissues

- avoid phagolysosomal fusion
- inhibit phagocytosis

(4) Antigenic hypervariability - express error-prone replicase

- escape from antibody recognition
- ‘‘outrun’’ T cell recognition

- vary many surface structures

- pili, outer membrane proteins, LPS
- strain to strain variation

(5) Subvert or kill immune

cells/phagocytes

- infect and kill immune cells (DCs, APCs,

lymphocytes, macrophage, etc.)
- inhibit CTL/NK cell killing pathways

- alter immune cell signaling, effector

functions, or differentiation
- express superantigens

- superantigens

- avoid phagolysosomal fusion
- block inflammatory pathways by

injecting effectors

- replicate within and overrun immune cells

(6) Block acquired immunity - downregulate MHC-I or –II

- block antigen presentation/proteosome

- prevent induction of immune response
genes

- IgA proteases

- block antigen presentation

(7) Inhibit complement - soluble inhibitors of complement

cascade
- viral Fc receptors

- proteases to degrade complement

- produce capsules and long chain LPS
to avoid complement deposition and

MAC attack

(8) Inhibit cytokines/
interferon/chemokines

- inhibit ligand gene expression
- ligand/receptor signaling inhibitors

- block secondary antiviral gene induction

- interfere with effector proteins

- block inflammatory pathways
- activate alternate pathways

- secrete proteases to degrade

(9) Modulate apoptosis/autophagy - inhibit or accelerate cell death

- block death signaling pathways

- scavenge free radicals
- downregulate death receptors or ligands

- inactivate death sensor pathways

- inhibit apoptosis

- activate death signaling pathways

- alter apoptotic sigaling pathways

(10) Interfere with TLRs - block or hijack TLR signaling

- prevent TLR recognition

- alter TLR ligands to decrease recognition

- bind to TLR to dampen inflammation
- inject effectors to inhibit downstream

inflammation signaling

(11) Block antimicrobial
small molecules

- prevent iNOS induction
- inhibit antiviral RNA silencing

- secrete proteases to degrade
- alter cell surface to avoid peptide

insertion

- use pumps to transport peptide
- directly sense small molecules to trigger

defense mechanisms

(12) Block intrinsic cellular
pathways

- inhibit RNA editing
- regulate ubiquitin/ISGylation pathways

- alter ubiquitin pathway
- alter transcriptional programs
Modulators on Virion Surfaces

One of the first ways that an infecting virus can impinge on

the immune system prior to infecting susceptible cells is

via molecules that decorate the virion external surface. Vi-

rus particle surfaces not only can be studded with poten-

tially immunomodulatory viral proteins but, particularly in
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the case of enveloped viruses, can also display a wide di-

versity of host-derived proteins (Cantin et al., 2005). These

virion-embedded host proteins can be immunoregulators,

CD-family receptors, complement inhibitors, signaling li-

gands, or adhesion molecules, any of which can transform

the extracellular virus particle into a ‘‘macro-ligand’’ that



can stimulate immunomodulatory responses even in non-

permissive host cells. The most extensively studied im-

mune modulators located on virions are virus encoded,

and one of the best studied examples of this is the

gp120 env glycoprotein of HIV, which in addition to medi-

ating virus binding and entry is a potent signaling ligand in

its own right (Ahr et al., 2004; Badr et al., 2005; Perfetti

et al., 2005). Env is the only viral protein that protrudes

through the HIV virion membrane, forming the characteris-

tic virion spikes, and it is thought to play a significant role in

the bystander killing of uninfected T lymphocytes during

late-stage AIDS progression (Gougeon, 2005; Petrovas

et al., 2005). Although much is now known about the

role of the major conformational shift that gp120 un-

dergoes when it binds to the cellular receptors (Chen

et al., 2005), less is known about how the virion bound

gp120 mediates its effects as a signaling ligand. There

are some clues, however, that gp120 bioactivity can be af-

fected by host proteins on the virion because virus parti-

cles with higher levels of captured MHC-II and B7-2 are

more efficient at killing uninfected CD4+ T cells (Holm

and Gabuzda, 2005). Consequently, the immunomodula-

tory properties of virion particles from other virus families

may also depend on the precise synergism between host

and viral proteins.

Modulators on Bacterial Surfaces

Bacterial surfaces are complex structures which, from the

host’s viewpoint, present many diverse antigenic targets.

A major difficulty for bacterial pathogens is hiding this

complex surface of proteins and carbohydrates from im-

mune surveillance and TLR recognition yet exposing key

molecules such as adhesins and invasins. A common

mechanism of masking bacterial surfaces is to express

a carbohydrate capsule. This mechanism is used by

most extracellular bacterial pathogens that circulate sys-

temically within the body. For example, the pneumococ-

cus (Streptococcus pneumoniae) relies extensively on

its capsule to prevent antibody and complement deposi-

tion on its surface, thereby avoiding opsonization and

phagocytic clearance. Similarly, bacteria that cause men-

ingitis (Haemophilus influenzae, Escherchia coli K1, and

Neisseria meningitidis) rely extensively on capsules to

promote their extracellular lifestyle within the host by pre-

venting antibody and complement deposition and inser-

tion. Pathogens expressing surface capsules also often

have filamentous adhesins (fimbriae and pili) that protrude

through the capsular surface, enabling the adhesins to

bind to host receptors yet keeping the bacterial surface

hidden.

Lipopolysaccharide (LPS) is a major surface-exposed

component of the Gram negative bacteria. LPS is a key

molecule from both the pathogens’ and hosts’ points of

view. The essential core component of LPS, lipid A, is

highly conserved among most Gram negative organisms

and thus plays a central role in activation of TLRs such

as TLR4. However, the outer part of LPS is made of highly

variable carbohydrates, giving each strain their particular

serotype (O antigen). Thus different strains of the same
species can often reinfect the same host due solely to dif-

ferences in O antigen. LPS is surface exposed, and a tar-

get of complement, but since it protrudes from the sur-

face, membrane insertion by the membrane attack

complex does not occur in the cellular membrane.

Bacterial pathogens, especially Gram negatives, have

developed secretion systems to export virulence factors

across the bacterial membranes and either into the super-

natant or even directly into host cells. In Gram negative or-

ganisms, these are named according to the type, and

there are at least seven secretion systems in addition to

the general secretion system. Secretion of virulence fac-

tors such as toxins and immune modulators is a major

use of these secretion systems, as well as conjugal DNA

transfer. In Gram negative pathogens, both type III secre-

tion systems (T3SS) and type IV secretion systems (T4SS)

can insert various molecules directly into host cells (Chris-

tie et al., 2005; Mota and Cornelis, 2005). These two types

of systems are not genetically related, although they both

have a very diverse repertoire of secreted molecules

(called effectors) that can be delivered into host cells.

These include toxins (to kill host cells), molecules that me-

diate bacterial uptake (invasion), effectors that reprogram

vesicular transport to enhance intracellular parasitism,

mechanisms to paralyze phagocytosis, molecules that

form receptors for bacteria to adhere to, and many diverse

effectors that alter immune functions to enhance immune

evasion.

Although Gram positive surfaces are more simple (one

membrane surrounded by peptidoglycan), there are sug-

gestions that even Gram positive organisms can form lo-

calized pores in host cells to deliver bacterial molecules

into host cells. For example, Streptococcus pyogenes

has a cholesterol-dependent cytolysin (making it host

specific) that is needed to deliver a NAD-glycohydrolase

into host cells to trigger cytotoxicity (Madden et al.,

2001). Similarly, Mycobacterium tuberculosis has a spe-

cialized secretion system that is needed to deliver major

T cell antigens (ESAT-6 and CFP-10) and presumably

other proteins that are needed for bacterial replication in-

side macrophages and virulence (Stanley et al., 2003). The

ability to drive bacterial molecules directly into host cells is

a major strategy used by diverse bacterial pathogens to

subvert and overcome host defenses.

Avoiding Immune Surveillance

The ability to avoid detection by either the innate or ac-

quired immune system is a central feature for both viral

and bacterial pathogens. One strategy is to camouflage

the surface of the microbe or the infected cell such that

it is not recognized by host surveillance systems, while an-

other is to dampen immune responses such that a com-

plete immune response is avoided.

Viral Modulators that Are Secreted or at the Infected

Cell Surface

Unlike bacteria, which have their own secretory and pro-

tein trafficking pathways, viruses must rely on the infected

host cell to provide the machinery for protein transport to
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the cell surface, and for secretion of virus-encoded immu-

nomodulators into the extracellular environment. In gen-

eral, viral proteins that interact directly with the immune

system tend to be expressed at the infected cell mem-

brane, the virion surface, or are secreted into the extracel-

lular environment where they can act either locally or sys-

temically. In the case of viral immunomodulators that are

secreted and released from the infected cell, the literature

is vast and includes host targets that range from cyto-

kines, chemokines, interferons, complement, leukocytes,

inflammatory cascades, and immune recognition path-

ways. For details, the reader is referred to some of the

many specialty reviews for specific examples (Alcami,

2003; Seet et al., 2003; Nicholas, 2005). One recent devel-

opment of this field is that some of these secreted viral im-

munomodulatory proteins, which tend to exhibit potent

anti-inflammatory or anti-immune properties, have been

used as biopharmaceuticals to treat diseases of exacer-

bated inflammation or hyperacute inflammation (Lucas

and McFadden, 2004).

The spectrum of viral proteins that traffic to the cell sur-

face of the infected cell, and exhibit immunomodulatory

properties, is remarkably diverse and includes superanti-

gens, immune cell ligands, receptor mimics, CD-homo-

logs, complement inhibitors, binding proteins that se-

quester cytokines, and regulators of leukocyte

activation. Among the various classes of leukocytes that

can be regulated by viral proteins, particular attention

has been paid recently to NK cells, T cells, dendritic cells,

and macrophage (Ambagala et al., 2005; Andrews et al.,

2005; Lodoen and Lanier, 2005; Pollara et al., 2005).

Some of these viral cell-surface proteins mimic the struc-

ture or function of host receptors but alter their biologic

properties to better suit the virus agenda. For example,

herpesviruses and poxviruses are known to collectively

encode over 40 viral members of the seven transmem-

brane-spanning G protein-coupled chemokine receptor

(vGPCR) superfamily (Sodhi et al., 2004; Couty and Ger-

shengorn, 2005; Nicholas, 2005; Rosenkilde, 2005). Dis-

secting how these viral vGPCRs contribute to the biology

of the viruses that express them has only begun, but some

exhibit properties, such as ligand-independent signaling,

that allow the constitutive activation of intracellular path-

ways that are normally only inducible for uninfected cells.

The spectrum of immunomodulatory viral membrane pro-

teins is simply too broad to be covered here, but it is worth

noting that many of these proteins are not just transiently

en route to being incorporated into virions that bud from

the surface but rather function as true anti-immune recep-

tors at the infected cell surface.

Bacterial Surface Modulators

Camouflaging a complex bacterial surface is a major

problem. Capsules are effective at hiding many bacterial

surfaces and preventing opsonization. However, there

are predominant molecules on bacterial surfaces that

the host’s immune system uses as key signatures. These

are often TLR agonists such as lipid A of LPS, flagella, and

peptidogycan. Bacterial pathogens have evolved ways of
770 Cell 124, 767–782, February 24, 2006 ª2006 Elsevier Inc.
altering these molecules such that they are less well rec-

ognized by immune surveillance systems. Many Gram

negative pathogens modify lipid A to alter TLR4 responses

(Portnoy, 2005). For example, Salmonella has a two-com-

ponent sensor (PhoP/PhoQ) that senses host environ-

ments, regulating many virulence genes. Some of these

genes are enzymes involved in lipid A modification, includ-

ing a 3-O-deacylase (PagL) and a lipid A palmitoyltransfer-

ase (PagP) (Kawasaki et al., 2004). These modified forms

of lipid A are up to 100-fold less active for TLR4 activation

and NFkB production. Although lipid A is fairly well con-

served, some organisms produce lipid A structures that

are not efficient TLR2 and 4 activators. For example, Por-

phyromonas gingivalis, a major dental pathogen, contains

multiple lipid A species which function as both agonists

and antagonists of TLR2 and 4 (Darveau et al., 2004), se-

lectively moderating the inflammatory response.

Another major signature of bacterial pathogens is pep-

tidoglycan. Nod1 and Nod2 are leucine rich repeat (LRR)

intracellular proteins that function analogously to TLRs

to detect peptidoglycan inside host cells (Philpott and

Girardin, 2004; Inohara et al., 2005). Human Nod1 detects

N-acetylglucosamine-N-acetylmuramic acid, a tripeptide

motif characteristic of Gram negative organisms (Girardin

et al., 2003a), while Nod2 detects a N-acetylglucosamine-

N-acetylmuramic acid dipeptide (Girardin et al., 2003b).

Activation of either Nod leads to NFkB activation and in-

flammatory responses. Bacterial pathogens have devel-

oped ways to avoid peptidoglycan processing and recog-

nition by Nods (Boneca, 2005). Genes involved in

peptidoglycan synthesis, turnover, and recycling have

been identified as virulence factors. For example, Listeria

monocytogenes resides in the cytosol of macrophages

and other host cells. Surface-located and -secreted pep-

tidoglycan hydrolases have been identified that are also

virulence factors (Lenz et al., 2003; Cabanes et al.,

2004). This work suggests that cleavage of peptidoglycan

promotes a virulence mechanism involving exploitation of

Nod2 and the innate inflammatory response to promote

Listeria pathogenesis (Lenz et al., 2003).

Antigenic Variation in Bacteria

Another classic mechanism viral, bacterial, and parasitic

pathogens use to avoid immune responses is to vary im-

munodominant molecules (known as antigenic variation).

Acquired immunity relies on memory of previous exposure

to antigens, and thus antigenic variation is especially ap-

propriate for circumventing humoral and cellular re-

sponses. There are few, if any, examples of antigenic var-

iation being used to escape innate immunity. Although

strain to strain variation in antigenic molecules is common,

antigenic variation refers to a single strain specifically

changing a subset of its antigens, either to sustain an on-

going infection or reinfect hosts even though the first in-

fection was successfully cleared.

The molecular mechanisms used by bacterial patho-

gens to cause antigenic variation are diverse but very

well studied (Finlay and Falkow, 1997). These mecha-

nisms usually involve one of three mechanisms: (1) having



multiple but different copies of a molecule, each of which

is under an independent on/off switch; (2) having one ex-

pression locus plus many silent copies of the gene, and

constantly changing which gene is expressed; or (3) hav-

ing a highly variable region in a molecule that is constantly

changing. Neisseria species (which cause meningitis and

gonorrhea) are perhaps the best bacterial models of anti-

genic variation, using all three of these concepts and em-

phasizing why a vaccine to these organisms has not been

successful. The gonococcus contains 10–11 outer mem-

brane Opa proteins, each of which is antigenically differ-

ent. Each gene is under a genetic switch that indepen-

dently controls expression of each Opa. During infection,

multiple Opas are expressed in various combinations.

The Neisseria pilus is expressed at the pilE locus. How-

ever, these organisms have many silent copies of partial

pilin genes stored in ‘‘silent’’ (pilS) loci. By genetically re-

combining various pil alleles into the expression locus,

a constantly shifting pilus is made. Because these organ-

isms are naturally competent, they acquire additional pilin

gene sequences and incorporate them into pilS loci.

N. menigitidis also varies its lipooligosaccharide (LOS,

similar to LPS) structure in a phase variation mechanism.

It can express up to 13 different immunotypes by switch-

ing various terminal sugar structures. This is achieved by

varying expression of various carbohydrate biosynthesis

genes. For example, glycosultransferase activity is regu-

lated by slipped strand mispairing, resulting in incorpora-

tion of different sugars in LOS (Kahler and Stephens,

1998). There are several other examples of antigenic var-

iation of surface molecules with Neisseria species, en-

abling it to survive and replicate within normally sterile

sites within the host such as the CNS.

Antigenic Variation in Viruses

Antigenic hypervariation has been more effectively adop-

ted by RNA viruses than DNA viruses, most likely because

of the higher mutational frequency of RNA replicases

compared to most viral DNA polymerases (Elena and San-

juan, 2005). In some cases, such as Hepatitis C and HIV,

the antigenic drift rate is so rapid that it effectively outpa-

ces not only development of an effective immune re-

sponse in the individual infected host but also confounds

our attempts to develop prophylactic vaccines (Bowen

and Walker, 2005; Derdeyn and Silvestri, 2005; Letvin,

2005; Wieland and Chisari, 2005). In general, viral RNA

replicases lack proofreading capacity and generate

swarms of genetic variants of progeny viruses that be-

come subject to selection pressure for fitness, particularly

in the form of immune bypass variants. However, even

DNA viruses can undergo significant levels of mutational

drift and thus become subject to immune selection. For

example, single-stranded DNA viruses can exhibit muta-

tional frequencies that rival the RNA viruses (Shackelton

et al., 2005), and even double-stranded DNA viruses

with high-fidelity polymerases like cytomegalovirus can

still spin off a sufficiently diverse set of progeny to permit

selective escape from host elements of innate immunity,

such as NK cell clearance (French et al., 2004).
Subversion of Immune Response Pathways

A central component of the innate response is the deploy-

ment of specialized cells such as phagocytes to counter

infectious agents that may have breached the initial phys-

ical barriers. Phagocytic cells have the ability to internalize

microbes and kill them, as well as to recruit additional im-

mune cells and amplify the innate response if needed.

Successful pathogens have developed a variety of ways

of counteracting phagocytic cells.

Bacterial Subversion of Phagocytes

Because of their size (1–3 microns), bacteria make partic-

ularly appropriate phagocytic targets. Several bacterial

pathogens have developed ways of avoiding phagocyto-

sis (Celli and Finlay, 2002). For example, Yersinia species,

including the causative agent of plague (Y. pestis), use

their type III secretion system to inject several T3SS effec-

tors that effectively neutralize phagocytic activity (Mota

and Cornelis, 2005; Viboud and Bliska, 2005) Because ac-

tin is central to phagocytosis, many of these effectors tar-

get this part of the cytoskeleton. These include YopH,

which is a tyrosine phosphatase that dephosphorylates

key actin cytoskeletal proteins such as FAK, paxillin, and

p130cas; YopE, which is a Rho GTPase-activating protein

(GAP), thereby inactivating this key actin regulator; YopO,

which is a serine/threonine kinase; and YopT, which is

a cysteine protease that cleaves Rho GTPases. For organ-

isms that use insect bites to introduce organisms directly

in the blood (such as Y. pestis, transmitted by flea bites),

the first host immune cells that would be encountered are

patrolling phagocytes. The ability to avoid internalization

and killing plays a central role in their virulence strategy.

For organisms that are internalized, they generally

choose three strategies to avoid intracellular killing—es-

cape from the phagosome (moderately common), block-

age of phagosome-lysosome fusion (most common), or

utilization of mechanisms to allow survival in phagolyso-

somes (rare) (Rosenberger and Finlay, 2003). Species of

Shigella and Listeria monocytogenes and some Rickettsia

species secrete lysins that are highly effective at lysing the

vacuolar membrane that engulfs internalized organisms

(Sansonetti, 2004). Lysteriolysin O is a key virulence factor

for L. monocytogenes. Many intracellular pathogens re-

side within an intracellular vacuole that differs in compo-

sition from normally microbicidal phagolysosomes.

However, the mechanisms by which these pathogens

subvert and alter normal vesicle transport are not well un-

derstood. It is thought that intracellular bacterial patho-

gens secrete effectors via type III and type IV secretion

systems into the host cytosol where they disrupt normal

vesicular trafficking. Legionella pnumophila uses its type

IV secretion system (Dot/ICM) to target the organism to

a privileged intracellular niche. The effector, RalF, is a

GTPase exchange factor (GEF) that targets ARF-1, a small

GTPase that is then activated on Legionella phagosomes

(Nagai et al., 2002). Similarly, Salmonella species use their

Spi-2 type III secretion system to secrete effectors such

as SifA into the host cytosol and membranes, which alter

the composition of the Salmonella-containing vacuole
Cell 124, 767–782, February 24, 2006 ª2006 Elsevier Inc. 771



(Rosenberger and Finlay, 2003). M. tuberculosis, which is

probably the most successful intracellular human patho-

gen, has many surface glycolipids and carbohydrates

that prevent phagosome acidification and alter phago-

somes (Russell, 2001).

The ability to alter inflammatory responses within

phagocytic cells provides significant advantages to path-

ogens. Although blockage of inflammatory responses is

the predominant (and most obvious) survival strategy,

ironically some pathogens actually activate inflammatory

pathways. Recruitment of inflammatory cells may provide

replicative niches for pathogens that cause serious inflam-

matory diseases (Portnoy, 2005). For example, species of

Shigella and Salmonella which cause severe intestinal in-

flammation use their T3SS to secrete effectors (IpaB and

SipB, respectively) that bind to and activate caspase-1,

which cleaves and activates IL-1b and IL-18, and the

downstream proinflammatory pathway, which provides

additional host cells to promote the infection (Navarre

and Zychlinsky, 2000). This also activates rapid apoptosis

of macrophages (see later), thereby neutralizing these key

defense cells.

There are increasing numbers of examples of patho-

gens that produce and secrete molecules that dampen in-

flammation. A common target of many of these pathways

is to target the MAP kinase and NFkB signaling pathways.

For example, Yersinia species have a type III effector,

YopJ(YopP), which is a ubiqutin-like cysteine protease

that targets and downregulates both of these pathways

(Navarro et al., 2005). YopJ binds multiple members of

the MAPK kinase superfamily, including MKKs and IkB ki-

nase b. Cleavage of ubiquitin and ubiqutin-like proteins

from these substrates blocks their ability to activate these

inflammatory pathways. Similarly, Bacillus anthracis lethal

factor (a key component of anthrax toxin) cleaves MKKs

that activate p38 MAPKs, also blocking activation of

NFkB target genes (Park et al., 2002).

Viral Subversion of Phagocytes

Many viruses have evolved protective mechanisms to

counter the antimicrobial functions of nitric oxide and re-

active oxygen radicals generated by activated phago-

cytes, particularly macrophage. In some cases, virus in-

fection induces the synthesis of inducible nitric oxide

synthase (iNOS), which generates nitric oxide by the oxi-

dation of L-arginine, whereas other viruses have evolved

strategies to prevent iNOS induction. The iNOS gene is

under the control of NFkB and STAT-1, which many vi-

ruses directly modulate as a component of their anti-inter-

feron strategies (Bowie et al., 2004; Weber et al., 2004).

Thus, viruses that block the induction of type I interferon

also frequently repress iNOS gene expression, whereas

viruses that induce iNOS generally exploit the immunoreg-

ulatory or proinflammatory properties of NO to augment

their pathogenesis or dissemination strategies. In some

cases, viruses have been shown to express modulatory

proteins that directly affect phagocyte activation. For ex-

ample, herpesviruses and poxviruses express surface

proteins that mimic CD200 (Foster-Cuevas et al., 2004;
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Cameron et al., 2005), a host regulator of immune toler-

ance that delivers inhibitory signals to macrophage.

TLRs: Viral Subversion Strategies

The discovery that TLRs recognize pathogen-associated

molecular patterns (PAMPs) has stimulated a barrage of

research into the various ways that microbes can be rec-

ognized by TLR-expressing sentinel cells, particularly

macrophage and dendritic cells. At present, 10 TLRs are

expressed in man and 12 in the mouse, and many have

been assigned viral PAMPs that can be recognized as li-

gands (Bowie and Haga, 2005; Kawai and Akira, 2005).

Cell-surface TLRs like TLR2 and 4 are thought to recog-

nize virion components, while intracellular TLRs like

TLR3, 7, 8, and 9 are thought to detect viral nucleic acids

or nucleoprotein complexes. There is growing evidence

that TLRs transduce the earliest signals of the innate im-

mune responses to microbial infections and that anti-

TLR strategies are likely common amongst all successful

pathogens. For viruses, a major focus of current research

has been to characterize the viral strategies to neutralize

either recognition or the downstream TLR signaling path-

ways that alert cells to viral infection (Boehme and Comp-

ton, 2004; Finberg and Kurt-Jones, 2004; Netea et al.,

2004; Bowie and Haga, 2005). Intriguingly, the precise

roles that the various specific TLR family members play

during viral pathogenesis in vivo has sometimes been dif-

ficult to pin down, for example by infecting knockout mice,

likely because of overlapping TLR redundancies and com-

plex cellular expression profiles. For example, TLR3-mi-

nus mice infected with a variety of RNA viruses undergo

normal pathogenesis and immune responses (Edelmann

et al., 2004; Schroder and Bowie, 2005), whereas TLR3

is critical for responses to at least one DNA virus, murine

cytomegalovirus (Tabeta et al., 2004). In some cases,

TLR3 can actually exacerbate viral pathogenesis (Wang

et al., 2004). In all likelihood, TLRs crosscover for each

other, and the role of specific TLRs may vary widely ac-

cording to the specifics of such parameters as entry route,

tissue tropism, and viral replication specifics for any given

virus infection.

One area of particular interest relates to the signaling

pathways that TLRs utilize to communicate PAMP en-

gagement to the nucleus (Moynagh, 2005). In general,

TLR engagement on immune effector cells, such as mac-

rophage, NK cells, and neutrophils, induces proinflamma-

tory pathways or cell activation, while dendritic cells and

professional antigen-presenting cells upregulate IL-12,

type I interferon, and costimulatory molecules such as

CD80 and CD86 that kick-start the innate responses and

harken the initiation of adaptive immune responses. The

transcription factors activated by TLR signaling include

NFkB and IRF3, both of which are key tranducers of the

host antiviral responses (Kawai and Akira, 2005; Bowie

and Haga, 2005). In some cases, the link between TLRs

and the signaling molecules activated by viruses remains

unclear. For example, several intracellular dsRNA sensors

are now known, such as TLR3, PKR, and RIG-I. RIG-I in

particular is believed to be an important cytoplasmic



sentinel for virus infection (Yoneyama et al., 2004) that sig-

nals via a mitochondrial checkpoint (Freundt and Lenardo,

2005; Seth et al., 2005; Xu et al., 2005), but the link between

virus infection and TLR signaling is very cell specific and

needs to be better defined in terms of the organism-wide

responses (Kato et al., 2005). Our understanding of how vi-

ruses manipulate signaling by TLRs, or sensors like RIG-I,

is also still in its infancy, and to date only a few examples of

viral proteins that interrupt these pathways are docu-

mented for poxviruses (Harte et al., 2003; DiPerna et al.,

2004; Stack et al., 2005) and Hepatitis A & C viruses (Brei-

man et al., 2005; Fensterl et al., 2005; Foy et al., 2005; Li

et al., 2005a, 2005b; Sumpter et al., 2005), but likely

many other examples remain to be uncovered.

The literature describing how viruses block interferon is

now vast and is far beyond the scope of this commentary,

but the reader is referred to a few of the many excellent re-

views now available (Weber et al., 2004; Bonjardim, 2005;

Hengel et al., 2005).

Bacterial Subversion of Innate Pathways

Evidence of bacterial pathogens that are capable of di-

rectly interfering with TLR signaling is limited. However,

there are several examples of downstream modulation of

TLR responses, altering many of the cytokines that are

key to efficient innate responses (Underhill, 2004). Yersinia

species secrete a virulence (V) antigen, LcrV. This mole-

cule signals in a CD-14- and TLR2-dependent manner to,

ironically, trigger IL-10 secretion and mediate immunosup-

pression (Sing et al., 2002). Emphasizing the contribution

to virulence is the observation that TLR2-deficient mice

are more resistant to infection with Y. enterocolitica. It

has recently been shown that a particular residue in the

N-terminal region of LcrV targets TLR2 and is required

for altering IL-10 induction via TLR2 (Sing et al., 2005).

Small cationic peptides are a major component of the

innate response in controlling diverse infections (Han-

cock, 2001). They have significant antimicrobial activity,

which appears to be mediated by direct insertion of cat-

ionic and amphipathic peptides into negatively charged

bacterial membranes, as well as many additional immuno-

modulatory activities central to innate responses (Han-

cock, 2001). Such peptides include defensins and cathe-

licidins. Resisting the antimicrobial activity of these

peptides is critical to overcoming host innate defenses.

Analogous to antibiotic resistance, pathogens will alter

their surface structure to decrease insertion of peptide

and resulting lysis, they can encode transport systems

that remove the peptides, and they can secrete proteases

that degrade these peptides. Salmonella species provide

an excellent example of pathogens that utilize all three of

these defense strategies. Salmonella species are intracel-

lular pathogens, and macrophages and neutrophils pro-

duce several cationic antimicrobial peptides to control in-

tracellular organisms. Intracellular Salmonella are capable

of resisting these activities (Rosenberger et al., 2004). As

discussed above, Salmonella modify lipid A by various

mechanisms including deacylation, palmitylation, addition

of aminoarabinose, and other modifications to its LPS. In
C

addition to decreasing recognition by TLR2 and 4, this re-

sults in a net decrease in the membrane negative charge,

which increases resistance to cationic peptide insertion

(Ernst et al., 2001). Salmonella also express an outer mem-

brane protease, PgtE, which promotes resistance to a-

helical cationic antimicrobial peptides by cleaving these

molecules. Salmonella also encode a locus (sapA-F) that

mediates cationic peptide resistance. SapD and SapF ex-

hibit homology to members of the ATP binding cassette

(ABC) family of transporters and are thought to transport

cationic peptides to the cytosol (Parra-Lopez et al.,

1993). To fully coordinate these various resistance mech-

anisms, all of the above resistance mechanisms are all un-

der the control of a global two-component regulator,

PhoP/Q. It has recently been shown that PhoQ, the sensor

domain, directly binds cationic peptides, which then acti-

vate the various transcriptional programs which mediate

the variety of antimicrobial resistance mechanisms (Bader

et al., 2005). Thus these pathogens actually sense innate

immune molecules to promote their virulence in a highly

programmed manner.

Another very efficient way of controlling intracellular

pathogens by phagocytic cells is the production of reac-

tive species such as oxygen species and nitiric oxide

(NO). Inducible nitric oxide synthase (iNOS) plays a central

role in inflammation and immune regulation, both in terms

of producing NO for killing organisms and also using NO

as a key signaling molecule. Pathogens have evolved sev-

eral ways of avoiding NO-mediated killing (Chakravortty

and Hensel, 2003). Intracellular Salmonella, which reside

within a specialized membrane compartment called the

Salmonella-containing vacuole (SCV) in macrophages,

use a T3SS called Salmonella Pathogenicity Island 2

(Spi2) to mediate protection from reactive nitrogen inter-

mediates. If the bacteria lack Spi2, iNOS efficiently colo-

calizes with the intracellular organisms in the SCV. The

ability of Spi2 mutants to cause disease was partially re-

stored in iNOS (�/�) mice. The ability to avoid colocaliza-

tion with harmful host enzymes is a common theme for

successful intracellular pathogens. Similarly, Salmonella

Spi2 is also required to evade phagocyte NADPH oxi-

dase-mediated killing (Vazquez-Torres et al., 2000). Intra-

cellular organisms have also developed mechanisms to

detoxify NO-mediated effects (Chakravortty and Hensel,

2003). These include the ability to repair damage caused

by reactive nitrogen intermediates and methods to detox-

ify these molecules. Pathogens have evolved ways of not

activating or inhibiting iNOS activity. For example, the mu-

rine intestinal mucosal pathogen Citrobacter rodentium

causes a marked level in overall iNOS activity following in-

fection. However, local iNOS activity in intestinal areas di-

rectly surrounding the adherent bacteria is very low, while

in areas distant to the infection site iNOS activity is quite

high (Vallance et al., 2002).

Complement Inhibition by Viruses

The complement system comprises several dozen pro-

teins that circulate in serum, or are attached to cell sur-

faces, and which orchestrate three distinct cascades
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(called the classic, alternative, and lectin pathways) into

antimicrobial effector activities that range from the opsoni-

zation of foreign particles, the recruitment of phagocytes,

to the lysis of infected cells. All three cascades converge

by assembling a C3 convertase that can either initiate the

opsonization of the foreign body or continue to activate

C5 and thus propagate the cascade. Long considered to

be a key arm of the innate immune system response to

pathogens, there is growing evidence that the complement

system also participates in the development of the ac-

quired responses as well (Morgan et al., 2005). The com-

plement cascade is under tight cellular control by host

inhibitor proteins, and it is perhaps not surprising that

viruses have either hijacked or co-opted some of these

as an anticomplement defense system (Blom, 2004).

Some viruses, for example human cytomegalovirus, in-

duce the expression of cellular complement inhibitors

like DAF and MCP at the surface of infected cells, whereas

others like HIV, HTLV-I, and vaccinia incorporate host in-

hibitors into the virus envelop (Blom, 2004). Recently, this

strategy has been exploited for the construction of lentivi-

rus-based therapy vectors that can resist inactivation by

human complement (Schauber-Plewa et al., 2005).

Viral proteins that block the complement cascade seg-

regate into those that are virus specific and unrelated to

any know host regulators (i.e., orphan inhibitors) and those

that appear to be host derived (i.e., complement control

protein mimics). As an example of the former, the glyco-

protein C-1 of HSV is a virion component that participates

in virus binding to heparan sulfate on the surface of target

cells and that also binds and inhibits C3b (Spear, 2004;

Chang et al., 2005). Among the host-related viral comple-

ment control proteins, some are expressed at the cell sur-

face, like the GPI-anchored vCD59 homolog of HVS,

which blocks the formation of the complement membrane

attack complex, and kaposica, the complement control

protein of KSHV which inhibits both the classical and the

alternative complement cascades (Mark et al., 2004; Mul-

lick et al., 2005b). Additionally, several herpesviruses and

poxviruses express secreted complement control pro-

teins, such as the vaccinia complement control protein

that also blocks both the classical and alternative path-

ways (Jha and Kotwal, 2003; Mullick et al., 2005a). Inter-

estingly, the loss of the complement control gene of the

West African strain on monkeypox, compared to the

closely related strain from central Africa, may have con-

tributed to the low mortality observed during the 2003

monkeypox outbreak in the midwest of the USA (Chen

et al., 2005; Likos et al., 2005).

Bacteria can also inhibit complement activation. For

example, a recently identified staphylococcal comple-

ment inhibitor acts directly on C3 convertases (C4b2a

and C3bBb), thereby decreasing phagocytosis and killing

of Staphylococcus aureus by neutrophils (Rooijakkers

et al., 2005).

Inhibition of Cytokines and Chemokines by Viruses

Although any cytokine that plays a role in orchestrating im-

mune responses during a virus infection could technically
774 Cell 124, 767–782, February 24, 2006 ª2006 Elsevier Inc.
be called ‘‘antiviral,’’ several (especially the interferons,

TNFs, IL-1, and the chemokine superfamily) deserve spe-

cial status in that they have been repeatedly targeted for

manipulation by many viruses. As with the previously de-

scribed examples of the various anti-interferon viral strat-

egies, the range of anti-cytokine proteins expressed by vi-

ruses is remarkably broad and includes intracellular

modulators of gene expression, immune ligand mimics, vi-

ral growth factors, secreted and membrane bound cyto-

kine inhibitors, receptor homologs, and immune pathway

regulators that influence the stability, trafficking, or signal-

ing of infected cell receptors.

The examples of viral ‘‘anti-cytokinology’’ are too nu-

merous to document here, but some anti-immune lessons

taught by viruses in the chemokine field are particularly in-

structive. In addition to the previously mentioned exam-

ples of virus-encoded homologs of chemokine receptors,

the large DNA viruses can also express secreted chemo-

kine mimics that trigger host chemokine receptors inap-

propriately or chemokine binding proteins that interact

with host chemokines and inhibit the ability of host che-

mokines to attract and activate leukocytes to the sites of

virus infection (Lau et al., 2004; Boomker et al., 2005). In-

terestingly, there are two distinct binding mechanisms by

which viral chemokine binding proteins interact with target

chemokines. The first group (called type-1) interact with

low affinity to the conserved glycosaminoglycan binding

domains of chemokines and thus interfere with the gener-

ation of ligand gradients needed for directed chemotaxis,

while the second group (called type-2) bind with high affin-

ity to the receptor binding domain of chemokines and thus

occlude the chemokine/receptor interface (Webb and Al-

cami, 2005). The fact that both classes of viral chemokine

binding proteins can be effective at short circuiting diverse

models of inflammation in vivo (Lucas and McFadden,

2004) re-enforces the growing appreciation that viruses

are indeed well-versed in anti-chemokinology. In fact, in

addition to the classic strategy of interrupting chemo-

kine/receptor interactions, there is a recent upsurge in ef-

forts to modulate chemokines by blocking their interac-

tions with glycosaminoglycans for therapeutic purposes

to treat diseases of inflammation (Rot and von Andrian,

2004; Handel et al., 2005; Johnson et al., 2005).

Inhibition of Cytokines by Bacteria

There are many reported examples of bacterial pathogens

altering downstream inflammatory cytokines, although in

most cases the molecular mechanisms by which this is

achieved have not been elucidated (Tato and Hunter,

2002). Because of the complexity of bacteria and the di-

verse array of effectors and other immune modulators

produced by these organisms, it has been difficult to iden-

tify which components are responsible for triggering cyto-

kines versus those which selectively inhibit cytokine pro-

duction. However, there are now examples of pathogens

specifically targeting cytokine pathways to enhance path-

ogenesis. For example, Staphylococcus aureus protein A

binds directly to the TNFa receptor, TNFR1, on respiratory

epithelium, which then potentiates a chemokine and



cytokine cascade and subsequent disease (Gomez et al.,

2004). Shigella flexneri, which causes severe diarrhea, has

a type III effector, OspG, which is a protein kinase that tar-

gets ubiquitin-conjugated enzymes, thereby affecting

phospho-IkBa degradation and subsequent NFkB activa-

tion. Infection of rabbit ileal loops with the OspG mutant

results in increased inflammation due to the lack of

OspG immune downregulation (Kim et al., 2005).

Blockade of Cellular Immunity by Viruses

Acquired cellular immune responses to viruses are

thought to be critical for clearance and for quickly re-

sponding to re-infections. In terms of early cellular re-

sponses, the role of NK cells has assumed increasing

prominence as more has been learned about how these

cells discriminate host cells that are infected, or trans-

formed, and those that are not (Hamerman et al., 2005; La-

nier, 2005; Yokoyama, 2005). There is also increasing

awareness that NK cells also modulate the functions of

antigen-presenting dendritic cells, and vice versa, and

thus significantly contribute to the development of ac-

quired cellular immune responses (Andrews et al., 2005).

Although NK cells lack specific antigen receptors, much

has been published recently about the NK receptors that

are either activating or inhibitory, and the viral strategies

that have been discovered to counteract them (Lodoen

and Lanier, 2005; Rajagopalan and Long, 2005). NK dys-

regulation by viruses has been better studied for viruses

that cause chronic or persistent infections, like herpesvi-

ruses, but it is likely that even acute viral infections also

modulate NK cell functions as part of their early anti-im-

mune strategies. In general, viruses can interfere with ei-

ther NK receptor-mediated recognition of the virus-in-

fected cells, NK-activating cytokines, the intracellular

activation pathways, or their effector cascades. The viral

anti-NK strategies described to date include expressing

homologs of MHC-I, modulating infected cell MHC ex-

pression, blockade of NK-activating cytokines like type I

interferon, antagonism of NK receptor functions, or inhibi-

tion of NK effector pathways. Given the close similarities

between the killing mechanisms of CTLs and NK cells,

the viral strategies that target the granzyme/perforin or

Fas pathways likely serve to protect viruses from attack

by either class of activated lymphocyte. Activated NK cells

also produce interferon-g and chemokines (Dorner et al.,

2004), and as already described, many viruses have

evolved specific mechanisms to counter these cytokines

as well.

In contrast to NK cells, which do not need to undergo re-

ceptor rearrangement and antigen recognition to be capa-

ble of antiviral effector functions, CTLs and helper T cells

express selective antigen receptors that recognize non-

self-epitopes presented in conjunction with MHC mole-

cules. Thus, NK responses to virus infection tend to be

rapid, whereas educated T cell responses can take days

or even weeks to mature. Viruses can either undergo rapid

infections associated with acute disease and rapid resolu-

tion or can induce persistent infections that may balance

life-long accommodations with the immune system of
the host (Klenerman and Hill, 2005). Thus, the extent to

which any given virus manipulates acquired immunity

varies dramatically according to the biology of the specific

virus in question. Some viruses can inhibit MHC-I-re-

stricted antigen presentation pathway of the infected

cell, and collectively almost every step of the class I path-

way can be blocked by at least one known virus (Amba-

gala et al., 2005; Lilley and Ploegh, 2005; Lybarger et al.,

2005; Yewdell and Haeryfar, 2005). In contrast, much

less is known about virus manipulation of MHC class II-re-

stricted antigen presentation in part because APCs need

not be infected to present acquired viral epitopes to

CD4+ T cells. Recently, it has been shown that MHC class

II presentation can occur by processing viral antigens

through the ubiquitin/proteosome-dependant pathway

more usually associated with class I processing, rather

than the classical endosome-mediated degradation path-

way (Tewari et al., 2005), and it will be interesting to learn

whether any virus can manipulate this aspect of CD4+ T

cell biology during virus infections. Autophagy is also

known to promote processing of viral antigen into the

MHC-II pathway (Paludan et al., 2005), and given the po-

tential importance of autophagy in host responses to

pathogens (Deretic, 2005; Levine, 2005), it would be ex-

pected that this pathway was also manipulated by viruses.

Finally, it has been recently shown that several viruses can

inhibit the presentation of lipids to CD1a-restricted T cells

(Renukaradhya et al., 2005; Sanchez et al., 2005), sug-

gesting that viruses can manipulate the full spectrum of

T cell activation pathways in the host (Hegde and John-

son, 2005).

In terms of initiating cellular immune response to vi-

ruses, it is generally agreed that dendritic cells (DCs) are

critical for both early innate responses as well as priming

the slower MHC-restricted antigen-dependant T cell re-

sponses (Rossi and Young, 2005). Plasmacytoid DCs

are particularly important as virus sentinels and for induc-

ing type I interferon at peripheral sites of infection (Rinaldo

and Piazza, 2004; Freigang et al., 2005; Liu, 2005). Viruses

can interfere with DC functions in a variety of ways, but to

date the anti-DC strategies usually fall into one of two ma-

jor categories: either virus infection of DCs alters their dif-

ferentiation or signaling pathways or else specific viral

proteins modulate DC effector functions directly (Bautista

et al., 2005; Flano et al., 2005; Majumder et al., 2005;

Walzer et al., 2005).

Blockade of Acquired Immunity by Bacteria

Most bacterial pathogens avoid the acquired immune re-

sponse by avoiding its activation (see above), and there

are few examples of direct interference with acquired im-

munity. For example, Helicobacter pylori LPS binds to the

C type lectin DC_SIGN on gastric dendritic cells to block

Th1 development, thereby tilting the immune response

from Th1 to a mixed Th1/Th2 response (Bergman et al.,

2004). Helicobacter pylori also produces a vacuolating

toxin, VacA, which blocks T cell proliferation by interfering

with the T cell receptor/IL-2 signaling pathway, resulting in

decrease in nuclear translocation of nuclear factor of
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activated T cells (NFAT), a global regulator of immune re-

sponse genes (Gebert et al., 2003). Despite triggering an

inflammatory response, there is little specific immune

response to Neisseria gonorrhoeae, and there are de-

creased T lymphocytes. The Opa proteins of this organism

bind to CEACAM1, which is expressed on CD4+ T cells,

thereby suppressing their activation and proliferation

(Boulton and Gray-Owen, 2002).

Superantigens certainly alter the T cell response by af-

fecting their subset distribution, but the actual contribution

this plays in infection and disease is not well understood.

However, there is evidence that indicates superantigens

may play a role in disease severity. For example, strepto-

coccal disease severity is correlated to MHC haplotype,

suggesting that the interaction between superantigens

and MHC class II really influences the severity of disease

through their ability to regulate cytokine responses trig-

gered by streptococcal superantigens (Kotb et al., 2002).

Another strategy employed by several mucosal patho-

gens, including dental pathogens, is to secrete enzymes

such as IgA proteases that degrade immunoglobulins.

IgA is a secretory antibody that is found on mucosal sur-

faces and thought to play a key role in humoral defense

of these surfaces. Bacterial examples include Neisseria

species, Haemophilus influenzae (causes meningitis),

and various Streptococci. For Gram negative pathogens,

the IgA protease uses an autotransporter mechanism, in-

cluding a self-cleavage reaction, to facilitate its secretion

out of the bacterium.

Cell Death Manipulation by Viruses

When viruses infect somatic cells, the ability to control the

cell death pathway can be crucial to the outcome of the in-

fection, not only in terms of the ability of the virus to com-

plete its replication cycle and disseminate within the host

but also with respect to how the infected cell communi-

cates to the immune system. For example, phagocytosis

of infected apoptotic cells or subcellular fragments can

cause viral antigens to enter the MHC-I-restricted cross-

presentation pathway via uninfected macrophage or den-

dritic cells (Ackerman and Cresswell, 2004; Jutras and

Desjardins, 2005). Crosspresentation is important for reg-

ulating the type of T cell response to a virus infection be-

cause it can trigger acquired immunity via crosspriming

or induce T cell inactivation via crosstolerance. It is likely

that viruses capable of preventing the maturation of anti-

gen-presenting DCs would thereby favor the induction of

crosstolerance to viral antigens. In some cases, viruses

can hijack a costimulatory pathway of the T cell activation

(Cheung et al., 2005; Watts and Gommerman, 2005), and

it seems probable that this strategy is more common than

generally appreciated.

In general, viruses either accelerate or inhibit the cell

death pathways of the infected cell, depending on the bi-

ology of the specific virus. The subject of virus-encoded

modulators of death pathways is beyond the scope of

this commentary, but the diversity of these viral proteins

is quite impressive (Bowie et al., 2004; Boya et al., 2004;

D’Agostino et al., 2005).
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Cell Death Manipulation by Bacteria

Many bacterial pathogens also alter apoptotic pathways

as part of their virulence strategies. Like viruses, obligate

intracellular bacteria generally suppress apoptotic death.

Because apoptotic death is generally less inflammatory

than cytotoxic death, many nonobligate intracellular path-

ogens choose this strategy to neutralize a variety of host

cells. For example, Salmonella enterica utilize a variety

of strategies to both promote and inhibit host cell apopto-

sis as part of their virulence strategy during enteric infec-

tions (Guiney, 2005).

Chlamydia are obligate intracellular bacteria that reside

within a membrane bound inclusion in host cells. Not sur-

prisingly, they have devised several strategies to avoid the

host immune response, and to avoid triggering apoptosis

in infected cells. These mechanisms include blocking mi-

tochondrial cytochrome C release and inhibiting Bax, Bak,

and caspase-3 activation (Fan et al., 1998). They also de-

grade proapoptotic factors such as BH3-only proteins

Bim/Bod, Puma, and Bad, as well as several other re-

ported mechanisms. Although the bacterial factors are

not known, Chlamydia possess a type III secretion system

that appears to be involved in modulating the intracellular

environment and potentially apoptosis. Because of its ob-

ligate intracellular lifestyle, genetic experiments to further

define the bacterial factors are impossible.

The first cells encountered by Salmonella in the gut are

thought to be intestinal epithelial cells, which the organ-

isms enter into and replicate within. This is mediated

mainly by the Spi1 T3SS and several injected effectors

(see above). SopB/SigD is a phosphoinositide phospha-

tase that, following T3SS injection into the host cytosol,

causes a sustained activation of host Akt/protein kinase

B, which is a pro-survival kinase (Knodler et al., 2005).

This results in decreased levels of apoptosis within epithe-

lial cells, which presumably prolongs the life of the epithe-

lial cells harboring intracellular Salmonella. These patho-

gens then normally escape intestinal epithelial cells and

enter the underlying reticuloendothelial system. The inter-

actions with macrophages are more complex than epithe-

lial cells. The Spi1 T3SS delivers an effector (SipB), which

activates caspase-1 and causes release of IL-1b and IL-

18, which facilitates a rapid cell death that has features

of both apoptosis and necrosis. Ironically, animals lacking

caspase-1 are more resistant to Salmonella infection, and

these pathogens cannot disseminate to systemic tissues

in these mice (Monack et al., 2000). Thus this organism

appears to drive apoptosis (and inflammation) as a mech-

anism to breach Peyer’s patches and move to systemic

sites.

However, at least in culture, these organisms mediate

a delayed apoptosis via the Spi-2 type III secretion-medi-

ated system. Initially in infection, the organisms trigger ap-

optosis and inflammation via the Spi-1 system to facilitate

subsequent interactions with macrophages, which leads

to systemic spread. Then the Spi-2 system facilitates in-

tracellular survival and growth in these macrophages

while delaying the onset of apoptosis in these host cells.



Figure 1. An overview of the Various Mechanisms Used by Bacterial and Viral Pathogens to Overcome Innate and Acquired

Immune Systems

The major strategies used by both bacteria and viruses are discussed in more detail in the text.
A hallmark of apoptotic cells is their phagocytosis by other

phagocytic cells. Thus, as a host cell becomes depleted

by intracellular Salmonella, the delayed apoptosis then en-

ables the infected macrophage (and intracellular bacteria)

to be phagocytosed by other macrophages, providing

a fresh host cell reservoir for these organisms. Alterna-

tively, an attractive host defense mechanism would be

to deplete potential host cells (such as macrophages) by

promoting extensive apoptosis within infected organs,

thereby depriving the pathogens from additional host

cells.

Concluding Remarks

For a virus or a bacterium to be a successful vertebrate

pathogen it must overcome or alter many normally very ef-
C

fective host defense mechanisms, including both innate

and acquired immunity (Figure 1). Although the field of im-

munology is well established, pathogens serve as excel-

lent tools to probe immune function further. The use of rel-

evant animal infection models provides the necessarily

more complete set of chemical and cellular interactions

that occur during infections. Moreover, technological ad-

vances such as genomics, proteomics, in vivo gene ex-

pression, etc., now enable investigators to follow infec-

tions and the accompanying cell biology in real time.

Because of the robustness and generic mechanisms of in-

nate immunity, the ability to understand and exploit this

highly effective system provides an attractive method to

counter infectious agents (Finlay and Hancock, 2004).

The need to develop alternative antimicrobial therapies
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and preventatives are critical. By studying how pathogens

insinuate their own anti-immune systems into a suscepti-

ble vertebrate host, we can better understand the various

Achilles heels of host defense, and thereby more precisely

deconstruct the fundamental properties of microbial path-

ogenesis. With new infectious diseases continually arising

and classical infections ever present, this knowledge is

critical to contemplating new preventatives and thera-

peutics.
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