The smallness problem for C^*-algebras

Kazuyuki Saitō
2-7-5 Yoshinari, Aoba-ku, Sendai, 989-3205, Japan

A R T I C L E I N F O

Article history:
Received 28 May 2009
Available online 12 June 2009
Submitted by J.D.M. Wright

Keywords:
Monotone complete C^*-algebras
Complete isometry
C^*-algebras
State spaces
Weak*-separability

A B S T R A C T

Akemann showed that any von Neumann algebra with a weak* separable dual space has a faithful normal representation on a separable Hilbert space. He posed the question: If a C^*-algebra has a weak* separable state space, must it have a faithful representation on a separable Hilbert space? Wright solved this question negatively and showed that a unital C^*-algebra has the weak* separable state space if and only if it has a unital completely positive map, into a type I factor on a separable Hilbert space, whose restriction to the self-adjoint part induces an order isomorphism. He called such a C^*-algebra almost separably representable. We say that a unital C^*-algebra is small if it has a unital complete isometry into a type I factor on a separable Hilbert space. In this paper we show that a unital C^*-algebra is small if and only if the state spaces of all n by n matrix algebras over the C^*-algebra are weak*-separable. It is natural to ask whether almost separably representable algebras are small or not. We settle this question positively for simple C^*-algebras but the general question remains open.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let us call a topological space separable if it has a countable dense subset. There are many examples of separable compact Hausdorff spaces which are not metrizable and which do not have a countable base. Many years ago, C.A. Akemann [1] showed that if the dual space of a von Neumann algebra is weak* separable then the algebra has a faithful normal representation on a separable Hilbert space. He posed the question: if a C^*-algebra has a separable state space must it have a faithful representation on a separable Hilbert space?

Wright [13] solved Akemann's problem negatively by exhibiting unital C^*-algebras which had separable state spaces but did not have faithful representations on a separable Hilbert space. Wright called such algebras almost separably representable. His results give:

Let A be a unital C^*-algebra. Then A is almost separably representable if and only if there exist a separable Hilbert space \mathcal{H} and a completely positive unital map Γ from A into $L(\mathcal{H})$ such that Γ induces an isometric order isomorphism of the self-adjoint part of A into the self-adjoint part of $L(\mathcal{H})$.

By adjoining units we could talk about general C^*-algebras but, for convenience, we shall assume that all algebras we consider are unital.

Fairly recently, inspired by [6], we [10] used the notion of small C^*-algebras, which are defined as follows. A C^*-algebra, A is said to be small if there exists a complete isometry γ from A into $L(\mathcal{H})$, where \mathcal{H} is separable and $\gamma(1) = 1$. When such a γ exists, it is completely positive. It turns out that all small C^*-algebras are almost separably representable. What about the converse? Is every almost separably representable C^*-algebra small?

This problem is open, although we shall settle the question positively for certain classes of algebras, for example, simple C^*-algebras (see Corollary 14 and Theorem 7).

E-mail address: yk.saito@beige.plala.or.jp.

0022-247X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.06.033
We shall see that every almost separably representable C*-algebra would be small if whenever \(A \) has a separable state space then so also does \(M_2(A) \). (See Lemma 8 and the remark after Lemma 11.)

We shall show that \(A \) has a separable state space if and only if the unit ball of the dual, \(A^* \) is separable in the (compact) weak* topology (see Proposition 5).

If \(A \) has a separable dual ball then, clearly, so does \(A \oplus A \oplus A \oplus A \). The latter is isomorphic, as a Banach space, to \(M_3(A) \), although these are very different as C*-algebras. Suppose we knew that when two Banach spaces are isomorphic and one of them has a separable dual ball, then so also does the other space. Then we could apply this to deduce that \(M_2(A) \) has a separable dual ball. But this approach does not work. Because, by using an ingenious construction of Richard Haydon, see Example 6, we shall show that having a separable dual ball is a property which is not preserved under Banach space isomorphisms. We are driven back from a Banach space approach to adopting C*-methods.

2. A characterization of small C*-algebras

We shall characterize small C*-algebras by making use of their state spaces. Assume that all C*-algebras, we consider, are unital.

For a C*-algebra \(B \), we denote the set of all states on \(B \) by \(\mathcal{S}_B \). Let us mind that \(\mathcal{S}_B \) is a weak* compact set that is the weak* closed convex hull of the set \(\mathcal{S}_0(B) \) of all pure states on \(B \).

The main theorem in this section is the following:

Theorem 1. Let \(A \) be a C*-algebra. Then, \(A \) is small if and only if \(\mathcal{S}_{M_n(A)} \) is weak*-separable for every \(n \in \mathbb{N} \). Here \(M_n(A) \) is the C*-algebra of all \(n \times n \) matrices over \(A \).

To prove the "only if part", suppose that \(A \) is small. We show that, for every \(n \in \mathbb{N} \), \(\mathcal{S}_{M_n(A)} \) is weak*-separable, however this is a direct consequence of the following lemma.

Lemma 2. Let \(B \) be any C*-algebra. Suppose that there exist a separable Hilbert space \(K \) and a unital isometry \(\Psi : B \rightarrow \mathcal{L}(K) \). Then \(\mathcal{S}_B \) is weak*-separable.

Proof. Since \(K \) is separable, there exists a countable norm dense subset \(\{ \xi_n \mid n = 1, 2, \ldots \} \) in the closed unit sphere \(\mathcal{S} \) of \(\mathcal{H} \).

Clearly, \(\{ \omega_{\xi_n} \mid n \in \mathbb{N} \} \) is norm dense in the set \(\mathcal{S}_{\mathcal{L}(K)} \), of all pure normal states, where \(\omega_{\xi} \) is the pure vector state on \(\mathcal{L}(K) \) defined by \(\omega_{\xi}(T) = \langle T\xi, \xi \rangle \in \mathbb{C} \). We show that the weak*-convex hull \(\mathcal{S}_B \) of \(\mathcal{S}_{\mathcal{L}(K)} \) is \(\mathcal{S}_{\mathcal{L}(K)} \). If there exists \(\varphi \in \mathcal{S}_{\mathcal{L}(K)} \setminus \mathcal{S}_B \), then by Hahn–Banach theorem, there exists \(T \in \mathcal{L}(K)_{sa} \) such that

\[
|\varphi(T)| > \sup \{|\psi(T)| \mid \psi \in \mathcal{S}_B\}.
\]

Since \(\omega_{\xi} \in \mathcal{S}_B \) for all \(\xi \in K \) with \(\|\xi\| = 1 \), it follows that \(\|T\| \geq \|\varphi(T)\| > \|T\| \). This is a contradiction. Hence \(\mathcal{S}_B = \mathcal{S}_{\mathcal{L}(K)} \). So, \(\mathcal{S}_{\mathcal{L}(K)} \) is weak*-separable. Note that the transposed map \(\Psi': \mathcal{S}_{\mathcal{L}(K)} \rightarrow \mathcal{S}_B \) is an affine weak*-continuous map, because \(\Psi \) is unital. Moreover, since the map \(\Psi \) is an isometry, the above map is onto. Indeed, since \(\mathcal{S}_{\mathcal{L}(K)} \) is weak*-compact, \(\Psi'(\mathcal{S}_{\mathcal{L}(K)}) \) is closed and convex in \(\mathcal{S}_B \) with respect to the weak*-topology. Suppose that there exists \(\psi \in \mathcal{S}_B \) such that \(\psi \neq \Psi'(\varphi) \). Again, by Hahn–Banach theorem, there exists \(s \in B_{sa} \) such that

\[
|\psi(s)| > \sup \{|\eta(\psi(s))| \mid \eta \in \mathcal{S}_{\mathcal{L}(K)}\}.
\]

Since \(\|s\| \geq |\psi(s)| > \|\psi(s)\| = \|s\| \), this is a contradiction. Hence it follows that \(\psi(\mathcal{S}_{\mathcal{L}(K)}) = \mathcal{S}_B \). So, \(\mathcal{S}_B \) is also weak*-separable. \(\square \)

A proof of Theorem 1 "the only if part": Since \(A \) is a small C*-algebra, there exist a separable Hilbert space \(\mathcal{H} \) and a complete isometry \(\Phi : A \rightarrow \mathcal{L}(\mathcal{H}) \). Take any \(n \in \mathbb{N} \). Since \(\Phi \) is a complete isometry,

\[
\Phi_n : M_n(A) \rightarrow M_n(\mathcal{L}(\mathcal{H})) \cong \mathcal{L}(\mathcal{H} \otimes \mathbb{C}^n)
\]

is a unital isometry. Here \(\Phi_n \) is the map defined by

\[
\Phi_n((a_{ij})) = (\Phi(a_{ij})) \quad ((a_{ij}) \in M_n(A)).
\]

Let \(\pi \) be the canonical *-isomorphism from \(M_n(\mathcal{L}(\mathcal{H})) \) onto \(\mathcal{L}(\mathcal{H} \otimes \mathbb{C}^n) \). Since \(\mathcal{H} \otimes \mathbb{C}^n \) is separable and \(\pi \circ \Phi_n \) is a unital isometry, by Lemma 2, \(\mathcal{S}_{M_n(A)} \) is also weak*-separable. This completes the proof of the only if part.

The "if part": Take any C*-algebra \(A \) and suppose that for every \(n \in \mathbb{N} \), \(\mathcal{S}_{M_n(A)} \) is weak*-separable. We show that \(A \) is small. Take any \(n \in \mathbb{N} \). Note that \(M_n(H) \cong A \otimes M_n(\mathcal{C}) \) via the canonical isomorphism \(\pi_0 \). Let \(\Phi_n = \pi_0^{-1} \circ (\Phi \otimes 1_{M_n(\mathcal{C})}) \circ \pi_0 \). We may assume that \(M_n(A) = A \otimes M_n(\mathcal{C}) \). Here \(\pi_0 \) is given in the following manner. Let \(\{ e^{(n)}_{ij} \}_{1 \leq i, j \leq n} \) be the standard system of matrix units in \(M_n(\mathcal{C}) \) and \(\pi_0 \) is the map defined by

\[
\pi_0((a_{ij})) = \sum_{1 \leq i, j \leq n} a_{ij} \otimes e^{(n)}_{ij} \quad ((a_{ij}) \in M_n(A)).
\]
Since $\mathcal{A}_{\mathcal{M}_n(A)}$ is weak*-separable, a weak*-dense subset $\{\varphi(p, n) \mid p = 1, 2, \ldots\}$ in $\mathcal{A}_{\mathcal{M}_n(A)}$ does exist. Let us take any $p \in \mathbb{N}$ and let $\{\pi(p, n), \mathcal{H}(p, n), \xi(p, n)\}$ be the GNS-representation induced by $\varphi(p, n)$ of $\mathcal{M}_n(A)$. On noting that $\pi(p, n)(a \otimes 1_{C_n})(\pi(p, n)(1_a \otimes e_{ij}^{(n)})) = \pi(p, n)(1_a \otimes e_{ij}^{(n)})(\pi(p, n)(a \otimes 1_{C_n}))$ for every $a \in A$ and $1 \leq i, j \leq n$, it follows that $\phi(p, n)((a_{ij})) = (\pi(p, n)((a_{ij}))\xi(p, n), \xi(p, n))$ and

$$(\pi(p, n)((a_{ij}))\xi(p, n), \xi(p, n)) = \sum_{1 \leq i, j \leq n} (\pi(p, n)(a_{ij} \otimes e_{ij}^{(n)}))\xi(p, n), \xi(p, n))$$

$$= \sum_{1 \leq i, j \leq n} (\pi(p, n)(a_{ij} \otimes 1_{C_n}))\pi(p, n)(1_a \otimes e_{ij}^{(n)})\pi(p, n)(1_a \otimes e_{ij}^{(n)}))\xi(p, n), \xi(p, n))$$

$$= \sum_{1 \leq i, j \leq n} (\pi(p, n)(a_{ij} \otimes 1_{C_n}))\pi(p, n)(1_a \otimes e_{ij}^{(n)}))\xi(p, n), \xi(p, n))$$

for all $(a_{ij}) \in \mathcal{M}_n(A)$.

Let $\sigma(p, n)(a) = \pi(p, n)(a \otimes 1_{C_n})$ ($a \in A$).

Let $\{\pi, \mathcal{K}\}$ be the direct sum of $\{(\sigma(p, n), \mathcal{H}(p, n)) \mid n, p \in \mathbb{N}\}$. Then, π is faithful, because $\{\varphi(p, n) \mid p \in \mathbb{N}\}$ is weak*-dense in $\mathcal{A}_{\mathcal{A}}$.

The closed subspace of \mathcal{K}, generated by $\{\pi(p, n)(1_a \otimes e_{ij}^{(n)}))\xi(p, n) \mid i, j = 1, \ldots, n; n \in \mathbb{N} \text{ and } p \in \mathbb{N}\}$ shall be denoted by \mathcal{H}. Then clearly, \mathcal{H} is a separable Hilbert space. Let Q be the orthogonal projection $P_{\mathcal{H}}$ on \mathcal{H} and let us define the map Γ by $\Gamma(a) = Q \pi(a) Q |_{\mathcal{H}} (a \in A)$. Then, clearly, Γ is a C*-map from A into $\mathcal{L}(\mathcal{H})$ such that $\Gamma(1_a) = 1_{\mathcal{H}}$.

Take any $n \in \mathbb{N}$. Suppose that $(a_{ij}) \in \mathcal{M}_n(A)$ satisfies $\Gamma_n((a_{ij})) \geq 0$, that is, $(\Gamma((a_{ij})) \geq 0$. We show that $(a_{ij}) \geq 0$ in $\mathcal{M}_n(A)$. To show this, take any $x_1, \ldots, x_n \subseteq \mathcal{H}$ and $\xi \in \mathcal{H}$. Since $(\Gamma((a_{ij})) \geq 0$, it follows that

$$\left(\sum_{1 \leq i, j \leq n} x_i^* \Gamma(a_{ij}) x_j, \xi, \xi \right) \geq 0.$$

That is,

$$\left(\sum_{1 \leq i, j \leq n} x_i^* Q \pi(a_{ij}) Q x_j, \xi, \xi \right) \geq 0. \quad (1)$$

Note that $\pi(p, n)(1_a \otimes e_{ij}^{(n)})\mathcal{H}(n, p) \subset \mathcal{H}$ for all i and j with $1 \leq i, j \leq n$. Put $\xi = \xi(p, n)$ and $x_j = \pi(p, n)(1_a \otimes e_{ij}^{(n)})|_{\mathcal{H}} (j = 1, \ldots, n)$. Since $\pi|_{\mathcal{H}(n, p)} = \sigma(p, n)$, it follows that

$$Q \pi(p, n)(1_a \otimes e_{ij}^{(n)})\xi(p, n) = \pi(p, n)(1_a \otimes e_{ij}^{(n)})\xi(p, n) \quad (j = 1, \ldots, n).$$

Hence by (1), we have

$$\sum_{1 \leq i, j \leq n} (\sigma(p, n)(a_{ij}))\pi(p, n)(1_a \otimes e_{ij}^{(n)})\xi(p, n), \pi(p, n)(1_a \otimes e_{ij}^{(n)})\xi(p, n)) \geq 0.$$

So it follows that

$$\sum_{1 \leq i, j \leq n} (\pi(p, n)(a_{ij} \otimes e_{ij}^{(n)}))\xi(p, n), \xi(p, n)) \geq 0,$$

and hence, $\varphi(p, n)((a_{ij})) \geq 0$ for all $p \in \mathbb{N}$. Since $\{\varphi(p, n) \mid p \in \mathbb{N}\}$ is weak*-dense in $\mathcal{A}_{\mathcal{M}_n(A)}$, we have that $\varphi((a_{ij})) \geq 0$ ($\varphi \in \mathcal{A}_{\mathcal{M}_n(A)}$). This implies that $(a_{ij}) \in \mathcal{M}_n(A)$ and so $(a_{ij}) \geq 0$ follows. Thus, for any $(a_{ij}) \in \mathcal{M}_n(A)$, $\Gamma_n((a_{ij})) \geq 0$ if and only if $(a_{ij}) \geq 0$.

To show that Γ is a complete isometry, we need the following lemma:

Lemma 3 (Choi and Effros). (See [4, Proposition 1.3.2].) Let $n \in \mathbb{N}$ be any given and fix it. Let \mathcal{K} be a Hilbert space and let $B \in \mathcal{M}_n(\mathcal{L}(\mathcal{K}))$. Then, $\|B\| \leq 1$ if and only if $\|1_n B 1_n\| \geq 0$.

We show that Γ is a complete isometry. To prove this, take any $n \in \mathbb{N}$ and fix it. Since Γ_n is a unital completely positive map (CP-map), it follows that $\|\Gamma_n(x)\| \leq \|x\|$ for all $x \in \mathcal{M}_n(A)$. Hence we only have to check that $\|\Gamma_n(x)\| = \|x\|$ for all $x \in \mathcal{M}_n(A)$. To do this, take any $x \in \mathcal{M}_n(A)$ and suppose that $\|\Gamma_n(x)\| \leq 1$. Then, as was shown in Lemma 3, on noting that Γ_n is self-adjoint, $\Gamma_n(x^*)^* \Gamma_n(x^*) = 0 \in \mathcal{M}_{2n}(\mathcal{L}(\mathcal{H}))$. So, $0 \leq (\Gamma_n(x^*), \Gamma_n(x^*)^*) = \Gamma_n((x^* x)_{1,1})$, since for any $y \in \mathcal{M}_{2n}(A), \Gamma_{2n}(y) \geq 0$ if and only if $y \geq 0$, it follows that $\|1_n x^* 1_n, n \| \geq 0$ in $\mathcal{M}_{2n}(A)$. Hence by Lemma 3, we have that $\|x\| \leq 1$.
Now take any \(x \in M_n(A) \). For every positive real number \(\varepsilon \), consider \(y = \frac{x}{\| x \|_0 + \varepsilon} \in M_n(A) \). Clearly \(\| \Gamma(y) \| \leq 1 \). Hence by the argument in the above paragraph, it follows that \(\| y \| \leq 1 \), that is, \(\| x \| \leq \| \Gamma_n(x) \| + \varepsilon \) for all \(\varepsilon > 0 \). Hence we have \(\| x \| \leq \| \Gamma_n(x) \| \) for all \(x \in M_n(A) \). Thus \(\Gamma \) is a complete isometry from \(A \) into \(L(H) \). This implies that \(A \) is small. This completes the proof of Theorem 1.

3. When is an almost separably representable algebra small?

Wright [13] introduced the concept of almost separably representable \(C^* \)-algebras which can be characterized as \(C^* \)-algebras with the weak\(^*\)-separable state spaces.

The following question naturally arises.

Are almost separably representable \(C^* \)-algebras small?

That is, for any \(C^* \)-algebra \(A \), if \(\mathfrak{S}_A \) is weak\(^*\)-separable, then are all \(\mathfrak{S}_{M_n(A)} \) weak\(^*\)-separable for \(n \in \mathbb{N} \)?

The next proposition, which is proved by Takesaki, implies that to show that any almost separably representable \(C^* \)-algebra is small, we only have to check that the closed unit ball of the dual \(M_2(A) \) of \(M_2(A) \) is separable in the weak\(^*\)-topology if the closed unit ball of the dual \(A^* \) of a \(C^* \)-algebra \(A \) is separable in the weak\(^*\)-topology.

Lemma 4. Let \(\phi \) be a pure state of a unital \(C^* \)-algebra \(A \). Then \(\phi \) is an extreme point of \(S_{R_1} \). Here \(S_{R_1} \) is the unit ball of the dual \(A_{sa}^* \) of the real Banach space \(A_{sa} \).

Proof. Assume that this is false. Then \(\phi = t f + (1 - t) g \) where \(0 < t < 1 \) and \(f, g \) are in \(S_{R_1} \), with \(f \neq g \). So

\[
1 = \phi(1) = t f(1) + (1 - t) g(1) \leq t \| f \| + (1 - t) \| g \| \leq t + (1 - t) = 1.
\]

From this it follows that \(f(1) = \| f \| = 1 \) and \(g(1) = \| g \| = 1 \). Hence \(f \) and \(g \) are states. But this implies that \(\phi \) is not an extreme point of the state space \(\mathfrak{S} \) of \(A \). This is a contradiction. \(\square \)

Proposition 5. If \(A \) is a unital \(C^* \)-algebra such that the closed unit ball \(S \) of the dual \(A^* \) admits a countable weak\(^*\)-dense subset, then the state space \(\mathfrak{S}_A \) of \(A \) admits a countable weak\(^*\)-dense subset.

Proof. Let \(C \subset S \) be a countable subset of the unit ball \(S \) of the dual space \(A^* \) which is weak\(^*\)-dense in \(S \). Let \(C_{R_1} = \{ \frac{\varphi_{++} + \varphi_{--}}{2} : \varphi \in C \} \cap A_{sa}^* \subset S_{R_1} \). Then \(C_{R_1} \) is weak\(^*\)-dense in the unit ball of the Banach space dual \(A_{sa}^* \) of the self-adjoint part \(A_{sa} \) of \(A \). Let \(D_0 \) be the algebraic convex hull of \(C_{R_1} \) which is still countable. Then \(D_0 \) is weak\(^*\)-dense convex subset of \(S_{R_1} \). Replacing \(D_0 \) by \(\overline{\text{conv}}(D_0 \cup (-D_0)) \) if necessary, we may and do assume that \(D_0 = -D_0 \). Each point \(\varphi \in D_0 \) has a unique decomposition:

\[
\varphi = \lambda \varphi_{++} - \mu \varphi_{--}, \quad \| \varphi \| = \lambda + \mu, \quad \varphi_{++}, \varphi_{--} \in \mathfrak{S}_A.
\]

Set \(E_0 = \{ \varphi_{++}, \varphi_{--} : \varphi \in D_0 \} \). Let \(F_0 \) be the algebraic convex hull of \(E_0 \subset \mathfrak{S}_A \). The weak\(^*\) closure \(K \) of \(F_0 \) is a weak\(^*\) compact subset of \(\mathfrak{S}_A \). The convex hull of \(K \cup (-K) \) contains \(D_0 \) and weak\(^*\) compact, so that \(S_{R_1} = \overline{\text{conv}}(K \cup (-K)) \). The extreme boundary of \(S_{R_1} \) is then contained in \(K \cup (-K) \). Namely \(K \) contains all pure states of \(A \) by the above lemma and hence it contains \(\mathfrak{S}_A \). That is, \(\mathfrak{S}_A = K \). \(\square \)

If the unit ball of the dual \(A^* \) is separable in the weak\(^*\)-topology, then clearly, so does \(A \oplus A \oplus A \oplus A \). The latter is isomorphic, as a Banach space, to \(M_2(A) \), although these are very different \(C^* \)-algebras.

Suppose we knew that when two Banach spaces are isomorphic and one of them has a separable dual ball, then the other does as well. Then this would imply that \(M_2(A) \) has a separable dual ball.

But the following ingenious example by Haydon tells us that having a separable dual ball is a property which is not preserved under Banach space isomorphisms. Let \(A \) be the set of all real numbers. Then \(\text{Card}(A) \geq \aleph_1 \). Let \(e_A^t \) be the Banach space of all functions \(f : A \to \mathbb{C} \) such that \(\sum_{t \in A} |f(t)| < \infty \) and \(\| f \| = \sum_{t \in A} |f(t)| \). Then \(f \) is 0 except for a countable set of values of \(t \).

Let \(K = [-1, 1]^A \) with the weak topology. Then \(K \) is a separable \([7] \) and compact group with a unique normalized Haar measure \(\mu \).

Example 6 (Richard Haydon). Let \(\mathcal{C}(K) \) be the \(C^* \)-algebra of all complex-valued continuous functions on \(K \). Then the closed unit ball \(\mathfrak{B} \) of the dual space \(\mathcal{C}(K)^* \) is weak\(^*\)-separable. We can think of \(L^1(K, \mu) \) as a subspace of \(\mathcal{C}(K)^* \). The coordinate functions \(r_a : K \to [-1, 1] \) (\(a \in A \)) are independent Rademacher functions in \(L^1(K, \mu) \) (that is, \(r_a \) is defined by, for each \(a \in A \), \(r_a(k) = k(a) \) \((k \in K) \)) and let \(\text{Rad}_A^1 \) be the set \(\{ \sum_{a \in A} f(a)r_a \mid f \in e_A^1 \} \) with \(\| f \|_1 \leq 1 \). Then each element of \(\text{Rad}_A^1 \) is an element of \(\mathfrak{B} \) and \(\text{Rad}_A^1 \) is weak\(^*\)-compact. Fix \(\delta > 0 \) and consider the set \(\mathfrak{B}_1 \) defined to be the absolute convex hull of \(\mathfrak{B} \cup (1 + \delta) \text{Rad}_A^1 \). This is weak\(^*\)-compact and not weak\(^*\)-separable. So the dual unit ball \(\mathfrak{B} \) for \(\mathcal{C}(K) \) is weak\(^*\)-separable for its usual supremum norm but not for the \((1 + \delta)\)-equivalent norm with dual ball \(\mathfrak{B}_1 \).
We show that Rad^1_Λ is a weak* compact subset of \mathcal{B}. As $\mathcal{C}(K) \subset L^\infty(K, \mu)$, we may assume that $L^1(K, \mu) \subset \mathcal{C}(K)^*$. Since $\varphi = \sum_{a \in A} f(a) r_a \in L^1(K, \mu)$ with $\|\varphi\| \leq \|f\|_1$ for each $f \in \ell^1_\Lambda$, it follows that $\text{Rad}^1_\Lambda \subset \mathcal{B}$ and so, to prove that Rad^1_Λ is weak* compact, we only have to check that it is weak* closed. We show, for any different $a_1, \ldots, a_n \in \Lambda$,

$$
\int_K r_{a_1} r_{a_2} \cdots r_{a_n} d\mu(k) = 0.
$$

(2)

Note that $r_{a_1} r_{a_2} \cdots r_{a_n}$ are in $L^1(K, \mu)$. On the other hand, if we take $i \in \{1, 2, \ldots, n\}$ and let $k_i(a) = -1$ if $a = a_i$ and 1 if $a \neq a_i$, then k_i is an element of the compact topological group K and for each $i \neq j$, we have $r_{a_i}(k_i) = (k_i) k_i(a) = k_i(k_i(a)) = k_i(k_i(a)) = r_{a_i}$ for all $k_i \in K$. Moreover, we have $r_{a_i}(k)(k_i) = (k_i) k_i(a_i) = k_i(k_i(a)) = -k_i(a) = -r_{a_i}(k)$ for all $k_i \in K$. Let $E_i = \{ k_i \in K | k_i(a_i) = 1 \} = \{ k_i \in K | r_{a_i}(k) = 1 \}$. Then E_i is a closed and open subset of K such that $k_i k_i \in E_i$ if and only if $k_i \in E_i^c = K \setminus E_i$ for each i. Hence it follows that $E_i = k_i(E_i^c)$ for each i. Since we have that $r_{a_i} = \chi_{E_i} - \chi_{E_i^c}$, for any $f \in L^1(K, \mu)$ with $f(k_i) = f(k)$ for all $k_i \in K$, we have

$$
\int_K r_{a_1} f \mu = \int_K \chi_{E_1} f \mu - \int_K \chi_{E_1^c} f \mu = \int_K \chi_{E_1} f \mu - \int_K \chi_{E_1} f(k_i) \mu(k).
$$

Since $f = r_{a_1} \cdots r_{a_n}$ satisfies $f(k_i) = f(k)$ for all $k_i \in K$, (2) follows. Let $\{\varphi_{a_1} \subset \text{Rad}^1_\Lambda$ such that $\varphi_{a_1} \rightarrow \varphi$ (weak*) for some $\varphi \in \mathcal{B}$. Since each $r_a \in \mathcal{C}(K)$, it follows that $\varphi_a(r_a) \rightarrow \varphi(r)$ for each $a \in A$. Since each φ_a can be written in the form $\varphi_a = \sum_{b \in A} f^a(b) r_b$ with $\sum_{b \in A} |f^a(b)| \leq 1$. As was noted before, there exists a countable subset $\Lambda(\alpha) = \{ b \in A | f^a(b) \neq 0 \}$. So we have $\varphi_a = \sum_{b \in \Lambda(\alpha)} f^a(b) r_b$. Hence, for each α, we have

$$
\varphi_a(r_a) = \int_K \left(\sum_{b \in \Lambda(\alpha)} f^a(b) r_b(k) \right) r_a(k) \mu(k) = \sum_{b \in \Lambda(\alpha)} f^a(b) \int_K r_b(k) r_a(k) \mu(k) = f^a(\alpha) \int_K r_a(k)^2 \mu(k) \quad \text{(by (2))}
$$

$$
= f^a(\alpha), \quad \text{because } \mu \text{ is normalized.}
$$

Hence it follows that $f^a(\alpha) \rightarrow \varphi(r)$ for each $a \in \Lambda$. Take any finite subset J of Λ and we have $\sum_{b \in J} |f^a(b)| \leq 1$ for all α. On putting $f(a) = \varphi(r_a)$ ($a \in \Lambda$), we get that $\sum_{b \in J} |f(b)| \leq 1$ for every finite subset of Λ. Hence it follows that $f \in \ell^1_\Lambda$ and $\|f\|_1 \leq 1$. We show that $\varphi = \sum_{b \in A} f(b) r_b \in \text{Rad}^1_\Lambda$. Let $\varphi_0 = \sum_{b \in \Lambda} f(b) r_b \in \text{Rad}^1_\Lambda$. As was shown above we have $\varphi_a(r_a) \rightarrow \varphi_0(r_b)$ for each $b \in A$. We note also that, by (2),

$$
\int_K \varphi_a \mu = \sum_{b \in \Lambda(\alpha)} f^a(b) \int_K r_b \mu(k) = 0.
$$

Similarly we have $\int_K \varphi_0(k) \mu(k) = 0$. Hence it follows that $\varphi_0(1) \rightarrow \varphi_0(1)$.

Take any $a_1, \ldots, a_n \in A$ with $a_i \neq a_j$ if $i \neq j$. Put $f_{1,2,\ldots,n} = r_{a_1} r_{a_2} \cdots r_{a_n}$. Calculation shows

$$
\int_K \varphi_{a_1} f_{1,2,\ldots,n} \mu = \int_K \left(\sum_{b \in \Lambda(\alpha)} f^a(b) r_b \right) r_{a_1} f_{2,\ldots,n} \mu = \sum_{b \in \Lambda(\alpha)} f^a(b) \int_K r_b r_{a_1} f_{2,\ldots,n} \mu = f^a(\alpha_1) \int_K f_{2,\ldots,n} \mu + \cdots + f^a(\alpha_n) \int_K f_{1,\ldots,n-1} \mu \rightarrow \int_K \varphi_0 f_{1,2,\ldots,n} \mu.
$$

Let \mathcal{A}_0 be the linear span of elements of the form $r_{a_1} r_{a_2} \cdots r_{a_n}$ where a_1, \ldots, a_n runs through Λ and the constant function 1. It is easy to check that \mathcal{A}_0 is a unital *-subalgebra of $\mathcal{C}(K)$ which separates the points of K. So by the Stone–Weierstrass theorem, it follows that \mathcal{A}_0 is norm dense in $\mathcal{C}(K)$. By our previous argument, we have $\varphi_b(g) \rightarrow \varphi_0(g)$ for every $g \in \mathcal{A}_0$. Since $\|\varphi_a\|_n > 0$ is bounded by 1, it follows that $\varphi_a \rightarrow \varphi_0$ with respect to the weak* topology. Hence we have $\varphi = \varphi_0 \in \text{Rad}^1_\Lambda$. So, Rad$^1_\Lambda$ is an absolutely convex weak* compact subset of \mathcal{B}. Then, see [3], if X and Y are absolutely convex weak* compact sets, the absolute convex hull of $X \cup Y$ is compact and can be identified with $\text{co}(X \cup Y) = \{ sb + tz | b \in X, z \in Y, |s| + |t| \leq 1 \}$. So the weak* closed absolute convex hull of \mathcal{B} and $(1 + \delta) \text{Rad}^1_\Lambda$ is

$$
\mathcal{B}_1 = \{ sb + tz | b \in \mathcal{B}, z \in (1 + \delta) \text{Rad}^1_\Lambda, |s| + |t| \leq 1 \}.
$$
Suppose that \mathcal{B}_1 is weak* separable. Then a countable dense sequence will be of the form $\{snbn + tazn \mid n = 1, 2, \ldots\}$ where $b_n \in \mathcal{B}_1$, $z_n \in (1 + \delta)\mathcal{M}_1$, $|sn| + |azn| \leq 1$. But each z_n is of the form $(1 + \delta)\sum_{a \in A} f(a)r_a$ where $f \in \ell^1$. So there is a countable set $\mathcal{A}_n \subseteq A$ such that $(1 + \delta)\sum_{a \in \mathcal{A}_n} f(a)r_a$ converges to $f \in \ell^1$. Hence each z_n is of the form $(1 + \delta)\sum_{a \in \mathcal{A}} f(a)r_a$ where $f \in \ell^1$. Let \mathcal{D} be the countable set $\bigcup_{n=1}^{\infty} \mathcal{A}_n$. Hence each z_n is of the form $(1 + \delta)\sum_{a \in \mathcal{D}} f(a)r_a$ where $f \in \ell^1$. Let $\mathcal{D}_n = \{\sum_{a \in \mathcal{D}} f(a)r_a \mid f \in \ell^1\}$. If $x \in \mathcal{D} \setminus \mathcal{D}_n$, we then have $(1 + \delta)r_{sn} = sb + t(1 + \delta)z$ for some $z = \sum_{a \in \mathcal{D}} f(a)r_a$, with b in the unit ball of \mathcal{B} and $z \in \mathcal{D}_n$. We note here that $\mathcal{A} \setminus \mathcal{D}_n \neq \emptyset$, because \mathcal{A} is uncountable. Since the Rademacher functions are bounded functions, we can think of them as belonging to $L^\infty(K, \mu) \cap L^1(K, \mu)$. Hence b can be identified with a function in the unit ball of $L^1(K, \mu)$. So \mathcal{B}_1 is a weak*-compact convex subset of $C(K)^*$, which is not separable. But it corresponds to an equivalent norm on $C(K)$.

Hence we are forced back from a Banach space approach to adopting C**-methods. Wright [14] showed that if a C**-algebra is almost separably representable, then the regular σ-co-completion $\hat{\mathcal{A}}$ is a monotone complete algebra which is also almost separably representable. Hence, the first question in this section is equivalent to asking:

For any monotone complete C**-algebra A, if \mathcal{G}_A is weak*-separable, then are all $\mathcal{G}_{M_m(A)}$ weak*-separable for $m \in \mathbb{N}$?

That is,

If A is almost separably representable, then is it small?

We shall give a partial answer to this question:

Theorem 7. Let \mathcal{A} be a monotone complete C**-algebra. Suppose that \mathcal{A} does not have any direct summand that is isomorphic to a wild type II$_1$ algebra B which satisfies $M_\infty(B) \not\cong B$ for some $n \in \mathbb{N}$. If \mathcal{A} is almost separably representable, then \mathcal{A} is small.

Remark. We shall consider the following statement:

(WS) Let \mathcal{B} be a C**-algebra. If $\mathcal{G}_\mathcal{B}$ (or equivalently the unit ball of the dual B^*) is weak*-separable, then $\mathcal{G}_{M_2(B)}$ (or equivalently the unit ball of the dual $M_2(B)^*$) is also weak*-separable.

If (WS) holds true for every C**-algebra \mathcal{B}, then by mathematical induction, $\mathcal{G}_{M_m(B)}$ is weak*-separable for every $m \in \mathbb{N}$. Suppose that for every $m \in \mathbb{N}$, $\mathcal{G}_{M_m(B)}$ is weak*-separable. Since for every $n \in \mathbb{N}$, $\mathcal{G}_{M_n(B)}$ is \ast-isomorphic to a corner of $M_2\mathcal{B}$ for some $m \in \mathbb{N}$, by Lemma 8, $\mathcal{G}_{M_n(B)}$ is weak*-separable for every $n \in \mathbb{N}$. (See Lemma 8 for details.)

Lemma 8. Let \mathcal{A} be a C**-algebra and let B be a C**-subalgebra with unit e (e is not necessarily the unit of \mathcal{A} but $e \in \mathcal{A}$ is a projection). Suppose that \mathcal{G}_A is weak*-separable. Then \mathcal{G}_B is also weak*-separable.

Proof. By the Hahn–Banach theorem, $\mathcal{G}_\mathcal{B}$ can be identified with $\{\varphi|_\mathcal{B} \mid \varphi \in \mathcal{G}_\mathcal{A}, \varphi(e) = 1\}$. Let $\varphi_n \mid n \in \mathbb{N}$ be a weak*-dense subset of $\mathcal{G}_\mathcal{A}$. We show that $\{\varphi_n(x) \mid \varphi_n(e) \neq 0\}$ is weak*-dense in $\mathcal{G}_\mathcal{B}$.

Take any $\varphi \in \mathcal{G}_\mathcal{A}$. Note that φ can be thought of as a state on \mathcal{A} such that $\varphi(e) = 1$. Take any positive real number $\varepsilon \in (0, 1)$ and take any $x \in \varepsilon \mathcal{A}$. Then there exists $n \in \mathbb{N}$ such that $|\varphi(x) - \varphi_n(x)| < \frac{\varepsilon}{4}$ and $|\varphi_n(e) - 1| < \frac{\varepsilon}{4(|\varphi(x)| + 1)}$. Thus, $|\varphi_n(x)| < \frac{\varepsilon}{4}$. So it follows that

$$\frac{\varphi_n(x)}{\varphi_n(e)} = \frac{\varphi_n(x)}{\varphi_n(e)} \left|\frac{\varphi_n(x) - \varphi_n(x)}{\varphi_n(x)}\right| \leq \frac{1}{\varphi_n(e)} \left|\frac{\varphi(x) - \varphi_n(x)}{\varphi(x)} + \frac{\varphi(x)}{\varphi(x)} \cdot |1 - \varphi_n(e)|\right| \leq \frac{4}{3} |\varphi(x) - \varphi_n(x)| + \frac{4}{3} \frac{|\varphi(x)| \varepsilon}{4(|\varphi(x)| + 1)} < \varepsilon.$$

Thus, $\{\varphi_n \mid \varphi_n(e) \neq 0\}$ is weak*-dense in $\mathcal{G}_\mathcal{B}$.
is a wild AW^*-algebra of type I$_1$, which satisfies that $C \otimes \mathcal{M}_n(C) \cong C$ for all $n \in \mathbb{N}$ or $[0]$. Suppose that \mathcal{S}_A is weak*-separable. Upon noting that the finite direct sum of small C^*-algebras is also small, by Lemma 8, we may argue each summand separately.

Lemma 9. Let A be a C^*-algebra. Suppose that A is stable under the tensor product by every $\mathcal{M}_n(C)$, that is, $A \cong A \otimes \mathcal{M}_n(C)$ for each $n \in \mathbb{N}$. If \mathcal{S}_A (or equivalently the unit ball of the dual A^*) is weak*-separable, then A is small. In particular, every properly infinite AW^*-algebra which is almost separably representable is small.

Proof. Let A be a properly infinite AW^*-algebra. Then, for every $n \in \mathbb{N}$, $A \cong A \otimes \mathcal{M}_n(C)$ and so $\mathcal{S}_{\mathcal{M}_n(A)}$ is weak*-separable for every $n \in \mathbb{N}$. Hence by Theorem 1, A is small. □

Lemma 10. Let A be a commutative C^*-algebra. If \mathcal{S}_A (or equivalently the unit ball of the dual A) is weak*-separable, then A is small.

Proof. We show that for every $n \in \mathbb{N}$, $\mathcal{S}_{\mathcal{M}_n(A)}$ is weak*-separable. Since $\mathcal{M}_n(A) \cong A \otimes \mathcal{M}_n(C)$, we only have to show that $\mathcal{S}_{\mathcal{M}_n(A)}$ is weak*-separable. Since A is commutative, every pure state of $\mathcal{M}_n(A)$ is of the form $\omega_1 \otimes \omega_2$ for some pure states ω_1 of A and ω_2 of $\mathcal{M}_n(C)$. (See Theorem 4.14 in [11].) So, we have $\hat{\mathcal{A}}(\mathcal{A}_0 \otimes \mathcal{M}_n(C)) \subset \hat{\mathcal{A}}(\hat{\mathcal{A}}(\mathcal{M}_n(C)) \subset \mathcal{S}_{\mathcal{M}_n(A)} \otimes \mathcal{M}_n(C) \subset \mathcal{S}_{\mathcal{M}_n(A)} \otimes \mathcal{M}_n(C)$. Since $\mathcal{S}_{\mathcal{M}_n(A)}$ is the weak*-closure of the convex hull of $\hat{\mathcal{A}}(\mathcal{A}_0 \otimes \mathcal{M}_n(C))$, $\mathcal{S}_{\mathcal{M}_n(A)}$ is the weak*-closed convex hull of $\mathcal{S}_{\mathcal{M}_n(A)} \otimes \mathcal{M}_n(C)$. Since \mathcal{S}_A and $\mathcal{S}_{\mathcal{M}_n(A)}$ are weak*-separable, it follows that $\mathcal{S}_{\mathcal{M}_n(A)}$ is also weak*-separable. So, A is small. □

Remark. Let us consider the small commutative C^*-algebra $L^\infty[0,1]$. The set $\{\delta_k \mathcal{G}_{L^\infty[0,1]}\}$ of all pure states is not weak*-separable, because $C^\infty(\mathbb{N})$ is the only infinite dimensional $L^\infty(X)$ that satisfies $\delta_k \mathcal{G}_{L^\infty(X)}$ to be weak*-separable.

Lemma 11. Let A be a type I AW^*-algebra. If \mathcal{S}_A (or equivalently the unit ball of the dual A^*) is weak*-separable, then A is small.

Proof. By our assumption, there exists a weak*-dense subset $\{\varphi_n \mid n \in \mathbb{N}\}$ in \mathcal{S}_A. Let $\varphi = \sum_{n \geq 1} \frac{1}{n} \varphi_n$. Clearly φ is a faithful state on A and so A must be σ-finite. Since there exists an orthogonal sequence $\{z_n \mid n \geq 1\}$ of central projections in A such that $\sum_{n \geq 1} z_n = 1$ and for each $n \in \mathbb{N}$, $A z_n$ is \ast-isomorphic to $\mathcal{M}_{\ell_n}(\mathbb{Z}_{\ell_n})$ for some $\ell_n \in \mathbb{N}$ Here \mathbb{Z} is the centre of A.

Take $n \in \mathbb{N}$. ByLemma 8, $\{\frac{\varphi_n(z_n)}{\varphi_m(z_n)} \mid \varphi_m(z_n) \neq 0\}$ is weak*-dense in $\mathcal{S}_{A z_n}$. Since $\mathcal{M}_{\ell_n}(\mathbb{Z}_{\ell_n})$ has an abelian projection e such that $e \mathcal{M}_{\ell_n}(\mathbb{Z}_{\ell_n}) e \cong \mathbb{Z}_{\ell_n}$, by Lemma 8, $\mathcal{S}_{\mathbb{Z}_{\ell_n}}$ is weak*-separable. So also $\mathcal{S}_{\mathcal{M}_{\ell_n}(A z_n)}$ is weak*-separable for every $p \in \mathbb{N}$ by Lemma 8, because $\mathcal{M}_{\ell_n}(A z_n) \cong \mathcal{M}_{\ell_n}(\mathbb{Z}_{\ell_n})$. Hence $A z_n$ is small for each $n \in \mathbb{N}$. So there exist a separable Hilbert space \mathcal{H}_n and a unitary complete isometry $\Gamma_n : A z_n \hookrightarrow \mathcal{L}(\mathcal{H}_n)$. Let $\mathcal{H} = \bigoplus_{n \in \mathbb{N}} \mathcal{H}_n$. Clearly \mathcal{H} is separable. Let

$$\Gamma(x) = \bigoplus_{n \in \mathbb{N}} \Gamma_n(z_nx) \quad (x \in A).$$

It is clear that Γ is a unital CP-map from A into $\mathcal{L}(\mathcal{H})$. We show that Γ is a complete isometry. Take any $m \in \mathbb{N}$ and consider $\Gamma_m = \Gamma \otimes t_m$ where t_m is the identity map of $\mathcal{M}_m(C)$ onto itself. Put $z_n = z_n \otimes 1_m$ for each $n \in \mathbb{N}$. Then, $\{z_n \mid n \in \mathbb{N}\}$ is an orthogonal sequence of central projections in $A \otimes \mathcal{M}_m(C)$ such that $\sum_{n \geq 1} z_n = 1$ and $\Gamma \otimes t_m(x) = \bigoplus_{n \geq 1} \Gamma_n(z_n \otimes t_m(z_nx))(x \in A \otimes \mathcal{M}_m(C))$. Since each $\Gamma_n \otimes t_m$ is an isometry, we have

$$\| \Gamma \otimes t_m(x) \| = \sup_{n \geq 1} \| \Gamma_n \otimes t_m(z_nx) \| = \sup_{n \geq 1} \| z_nx \| = \| x \|$$

for every $x \in A \otimes \mathcal{M}_m(C)$. Hence Γ is a complete isometry. So, A is small. □

Corollary 12. Let A be a postliminary C^*-algebra (see [2] and [8]). If A is almost separably representable, then it is small.

Proof. Let A be an almost separably representable postliminary C^*-algebra. Since A is almost separably representable, its regular σ-completions \hat{A} has a faithful state (see [14]). Hence \hat{A} is monotone complete (and so it is an AW^*-algebra). To show that A is small, we have to show that \hat{A} is of type I by the above lemma. For the case where A is separable, see [9]. To show that \hat{A} is of type I for the general A, it is sufficient to check that each direct summand of \hat{A} has a non-zero abelian projection. To show this, take some non-zero central projection p and put $\mathcal{I} = A \cap \hat{A}$. Then \mathcal{I} is a closed two-sided ideal of \hat{A} which is the kernel of the $*$-homomorphism $\pi : A \hookrightarrow \hat{A}(1 - z)$. We show that $\mathcal{I} \neq [0]$. If $\mathcal{I} = [0]$, then π is a unital injective $*$-homomorphism which is the restriction of the $*$-homomorphism $\rho : \hat{A} \hookrightarrow \hat{A}(1 - z) \to A$. Take any self-adjoint element $b \in \rho^{-1}(0)$. Since \mathcal{A}_{10} is order dense in \hat{A}_{10}, it follows that $b = \sup \{a \in \mathcal{A}_{10} \mid a \leq b\}$ in \hat{A}_{10}. So, $\rho(b) = 0$ implies $\pi(a) \leq 0$ for all $a \in \mathcal{A}_{10}$ with $a \leq b$. As π is injective, this implies that $a \leq 0$ for all $a \in \mathcal{A}_{10}$ with $a \leq b$. Hence we have $b \leq 0$. Since $-b \in \rho^{-1}(0)$, we also have that $b \geq 0$ and so $b = 0$ follows. That is, $[0] = \rho^{-1}(0) = \hat{A}_{10}$ and hence $z = 0$. But this is a contradiction. Hence \mathcal{I} is a non-zero closed two-sided ideal of A. Let $\{a_r\}$ be an increasing bounded approximate unit for \mathcal{I}. Since \hat{A} is monotone complete, there exists a non-zero central projection w in \hat{A} with $w \leq z$ such
that the regular (\(\sigma\)-)completion of \(C^*(I, w)\) is nothing but \(\hat{A}w\). (See the proof of Theorem 2.1 in [9].) As \(C^*(I, w)\) is a postliminary \(C^*\)-algebra (see [2]) which is almost separably representable, to find out a non-zero abelian projection in \(\hat{A}z\) (and so in \(\hat{A}w\)), we may assume that \(z = 1\).

Since \(A\) is postliminary, there exists a non-zero positive element \(x \in A\) such that \(\partial xAx\) is commutative (see Proposition 4.3.4 in [2] and Theorem 6.2.6 in [8]). Since \(A\) is the monotone closure of \(A\), \(xAXx\) is also commutative. Indeed let \(A = \{ y \in A_{sa} | xyw = wxyx \text{ for all } w \in xA_{sa}\} \). Then it is clear that \(A\) is a real subspace of \(A_{sa}\) which contains \(A_{sa}\). To show that \(A\) is monotone closed, take any increasing net \(\{ y_j \} \) in \(A\) such that \(y_j \not\rightarrow y\) in \(A_{sa}\) for some \(y \in A_{sa}\). We show \(y \in A\). Since \(xy_jxw \rightharpoonup xywx \) and \(wxyx_jx \rightharpoonup wxxyx \in A\) in the order (see [5]), it follows that \(xywx = wxxyx\) for all \(w \in xA_{sa}\). Hence we have \(y \in A\). So, \(A\) is monotone closed in \(A_{sa}\). Since \(A_{sa}\) is the smallest monotone closed set which contains \(A_{sa}\), it follows that \(A_{sa} \subset A\). Hence, \(wxxywx = wxxyxwxyx\) for every pair \(y \in A_{sa}\) and \(w \in A_{sa}\). Similarly, we can show that \(wxxywx = wxxyx\) for all \(y, w \in A\). So, it follows that \(xAXx\) is commutative.

Since \(A\) is an \(AW^*\)-algebra, there exists a non-zero projection \(e \in A\) and \(y \in A_{sa}\) such that \(e = xy\). So, we have \(eAe \subset A\) and hence it follows that \(eAe\) is commutative, that is, \(e\) is non-zero abelian projection in \(A\). This means that \(A\) is of type I. Hence by Lemma 11, \(A\) is small. \(\Box\)

A proof of Theorem 7: By Lemmas 9 and 11, it follows that \(A_1 \oplus A_2 \oplus A_3 \oplus A_4\) is small. Since \(A_2\) is a von Neumann algebra of type II1 and \(\mathcal{G}_{A_2}\) is weak*-separable, by Akemann’s theorem [1], \(A_2\) has a faithful separable representation. Since any faithful \(\ast\)-representation is completely isometric, \(A_2\) is small. Hence \(A\) is small. This completes the proof.

Corollary 13. Let \(A\) be a \(C^*\)-algebra. Suppose that \(A_{sa}\) has a countable order dense subset. Then, \(A\) is small.

Proof. Since \(A_{sa}\) itself has a countable order dense subset, \(\partial y\mathcal{G}_{A}\) is weak*-separable. Since \(\mathcal{G}_{A}\) is the weak*-closed convex hull of \(\partial y\mathcal{G}_{A}\), \(\mathcal{G}_{A}\) itself is weak*-separable. Note that \(A\) has no type II1-direct summand, by Lemma 9, \(A\) is small. So is \(A\). \(\Box\)

Corollary 14. Let \(A\) be any prime \(C^*\)-algebra. Suppose that the closed unit ball of the dual is weak*-separable. Then \(A\) is small. In particular, every simple \(C^*\)-algebra with the weak*-separable dual unit ball is small.

Proof. Let \(\hat{A}\) be the regular \(\sigma\)-completion of \(A\). Since \(\mathcal{G}_{\hat{A}}\) is weak*-separable by Proposition 5, \(\hat{A}\) has a faithful state and hence it is monotone complete. So it is the regular completion of \(A\). Since \(A\) is prime, \(\hat{A}\) is an \(AW^*\)-factor with a faithful state and hence it is either finite or else infinite. By Wright’s theorem [12], if \(\hat{A}\) is a finite factor with a faithful state, then it is a von Neumann factor. Since \(\mathcal{G}_{\hat{A}}\) is weak*-separable, by [1] \(\hat{A}\) acts on a separable Hilbert space. Since any \(\ast\)-isomorphism is completely isometric, \(\hat{A}\) is small. So is \(A\).

On the other hand if \(\hat{A}\) is infinite, then by Lemma 9, \(\hat{A}\) is small. So is \(A\). \(\Box\)

4. Open question

The following question remains open. Let \(A\) be a unital \(C^*\)-algebra and let \(M_2(A)\) be the \(2 \times 2\) matrix algebra over \(A\).

If the closed unit ball of the dual \(A^*\) is weak*-separable, is the closed unit ball of the dual \(M_2(A)^*\) weak*-separable?

Acknowledgment

It is a great pleasure to thank Professor Masamichi Takesaki for his useful suggestion and advice.

References