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Abstract

The traditional Differential Calculus often shows its limits when describing living systems. These in fact present
such a richness of characteristics that are, in the majority of cases, much wider than the description capabilities of the
usual differential equations. Such an aspect became particularly evident during the research (completed in 2001) for
an appropriate formulation of Odum’s Maximum Em-Power Principle (proposed by the Author as a possible Fourth
Thermodynamic Principle). In fact, in such a context, the particular non-conservative Algebra, adopted to account
for both Quality and quantity of generative processes, suggested we introduce a faithfully corresponding concept
of “derivative” (of both integer and fractional order) to describe dynamic conditions however variable. The new
concept not only succeeded in pointing out the corresponding differential bases of all the rules of Emergy Algebra,
but also represented the preferential guide in order to recognize the most profound physical nature of the basic
processes which mostly characterize self-organizing Systems (co-production, co-injection, inter-action, feed-back,
splits, etc.).

From a mathematical point of view, the most important novelties introduced by such a new approach are: (i) the
derivative of any integer or fractional order can be obtained independently from the evaluation of its lower order
derivatives; (ii) the exponential function plays an extremely hinge role, much more marked than in the case of
traditional differential equations; (iii) wide classes of differential equations, traditionally considered as being non-
linear, become “intrinsically” linear when reconsidered in terms of “incipient” derivatives; (iv) their corresponding
explicit solutions can be given in terms of new classes of functions (such as “binary” and “duet” functions); (v)
every solution shows a sort of “persistence of form” when representing the product generated with respect to the
agents of the generating process; (iv) and, at the same time, an intrinsic “genetic” ordinality which reflects the fact
that any product “generated” is something more than the sum of the generating elements. Consequently all these
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properties enable us to follow the evolution of the “product” of any generative process from the very beginning, in
its “rising”, in its “incipient” act of being born. This is why the new “operator” introduced, specifically apt when
describing the above-mentioned aspects, was termed as “incipient” (or “spring”) derivative.

In addition, even if the considered approach was suggested by the analysis of self-organizing living Systems, some
specific examples of non-living Systems will also be mentioned. In fact, what is much more surprising is that such
an approach is even more valid (than the traditional one) to describe non-living Systems too. In fact the resulting
“drift” between traditional solutions and “incipient” solutions led us to reconsider the phenomenon of Mercury’s
precessions. The satisfactory agreement with the astronomical data suggested, as a consequential hypothesis, a
different interpretation of its physical origin, substantially based on the Maximum Em-Power Principle.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Self-organizing systems; Linear and non-linear differential equations; Integer and fractional “incipient” derivatives;
Explicit solutions

1. Introduction—Thermodynamic context of the new linguistic-mathematical approach

From a conceptual point of view the paper can substantially be articulated in the following four aspects:
(i) thermodynamic context of the linguistic-mathematical approach here proposed; (ii) introduction of
the new concept of “incipient” derivative; (iii) its basic properties and related consequences in the field
of linear and non-linear differential equations; (iv) applications to living and non-living processes.

As far as the first aspect is concerned, Fig. 1 schematically shows the well-known Thermodynamic Prin-
ciples progressively discovered over the last two centuries, with some authors and dates of reference. As is

1st PRINCIPLE: dU =  �Q �L  Conservation of ENERGY (En)
  Joule & Mayer 
   (1841 -1848)

2nd PRINCIPLE: d S
Q

T
to t= δ  Increasing of ENTROPY (S)

 Carnot (1824) 

3rd PRINCIPLE: l im
T

S
→

=
0

0∆     (Validity at low absolute Temperatures) 

  Nernst (1906) 
            Onsager’s Reciprocal Relations (1931) 
            Prigogine’s Excess Entropy Production (1971) 
            Georgescou-Roegen’s Matter Entropy (1972) 

4th PRINCIPLE :      several proposals     Odum’s Maximum Em-Power Principle  
Boltzmann - Lotka 

     (1886 -1922)            Ulanowicz’s Maximum Ascendency (1986, 1997) 
             Jorgensen’s Ecological Law of Thermodynamics (1992, 2000)
             …………………………………………… 

EMERGY  (Em) 
H. Odum (1984) 

 EXERGY (Ex)
Z. Rant (1955) 

Fig. 1. Principles of thermodynamics with some authors and dates of reference.1

1 The formulation of the Maximum Em-Power Principle to which we are referring to, as far as the mathematical aspects we
are concerned with, is given in [7,8].
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well-known, the First Principle leads to the Conservation of Energy, whereas the Second Principle asserts
the continuous increasing in Entropy. This latter quantity can more usefully be replaced, especially in
practical applications, by the physical quantity named Exergy, whose definition can be obtained through a
linear combination of the first two Principles. The Third Principle (1906), which has a great relevance only
at very low absolute temperatures, completes Classical Thermodynamics which, however, had already
reached its almost definitive and systematic theoretical structure 30 years before (in the 1870s).

The possibility of an ulterior Fourth Thermodynamic Principle emerged soon after this period, espe-
cially as a consequence of the first problematic aspects which appeared in the application of the first two
Principles to the analysis of Biological Systems.

Hence it was immediately clear that those Principles (although globally valid even in the case of
living systems) could not be considered as being Laws sufficient to explain, by themselves, how and why
organisms develop through self-organization processes, during which they lose Entropy (by increasing
their own order), in open contrast with the surrounding universe. Those Principles in actual fact are only
able to “tell us that certain things cannot happen, but they do not tell us what does happen” (Lotka) [13].

Boltzmann (1886) first had the original idea of looking for a direct relationship between Classical
Thermodynamics and the Evolutionary Theory of the organic world [1]. Lotka in 1922 reconsidered
Boltzmann’s initial ideas and, on the basis of a thorough analysis of wide classes of living systems,
formulated the Maximum Power Principle and contemporaneously proposed that it was the Fourth Ther-
modynamic Principle [13]. Subsequently Odum, in the early 1990s, after having introduced the new
physical quantity termed Emergy [14], gave a more general formulation of Lotka’s Principle in the form
of the “Maximum Em-Power Principle” [15,16].2 This Principle asserts that “Every System tends to
maximize the Flow of Processed Emergy”, where Emergy (contraction of the words Embodied Energy)
is defined as the product of Energy Quality (expressed by Transformity) by Energy Quantity (expressed
by Exergy).

In order to account for Energy Quality or, better, for the Transformity associated to any form of Exergy,
some special algebraic rules have to be taken into account. Such rules, illustrated in detail in [2], refer to the
basic processes (co-production, co-injection, inter-action, feed-back, splits, etc.) which characterize living
systems and, in so doing, give rise to a non-conservative Algebra. This particular aspect is the one that
stimulated a new mathematical approach to the Differential Calculus (both of integer and fractional order).
In fact, the research for a Mathematical Formulation of the Maximum Em-Power Principle (faithfully
respectful of the verbal enunciation mentioned above) required, as a preliminary step, the statement of
an Emergy Balance Equation, under dynamic conditions, in perfect adherence to the rules of Emergy
Algebra (valid in steady state or stationary conditions).

The first approach to the problem was based on the traditional Fractional Calculus [17]. This, in turn,
led to the introduction of a new concept of Intensive Fractional Derivative [6]. Finally, the Mathematical

2 Parallel to this line of thought (see Fig. 1), some other scientists discovered new Thermodynamic aspects and systematically
proposed them as an expression of a “Fourth” Thermodynamic Principle. In fact “Reciprocal Relations”, discovered by Onsager
in 1931 [18], represented a substantial novelty with respect to Classical Thermodynamics. The same can be said with reference
to “Excess Entropy Production Principle” discovered by Prigogine in 1971 [19]. Even from Economics a new Fourth Principle
was suggested: the “Matter Entropy Principle”, proposed by Georgescou–Roegen in 1972 [20]. More recently another “tentative
Fourth Thermodynamic Principle” was proposed by Jorgensen in 1992, termed as “the Ecological Law of Thermodynamics”
[9]. A wide analysis of these and other proposals (such as, for instance, Ulanowicz’s Maximum Ascendency [21,22]) is given by
Jorgensen et al. [10]. See also Ulgiati et al. [23].
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Formulation of the Maximum Em-Power Principle [4,7] was achieved on the basis of a generalized
version of the previous concept, now renamed as “Incipient Derivative” and illustrated here below.

2. Definition of “incipient” derivative

The definition of the “incipient” derivative is based on the direct priority of the sequence of the three
operators which appear in the traditional definition of the derivative.

Such a different perspective starts from the consideration of the fact that the traditional definition of
the derivative of a function f (t) given in Mathematical Analysis

lim
�t→0

�

�t
f (t) (2.1)

may be considered as being an “a posteriori” definition (e.g., let us think of the definition of velocity). In
fact, although it is usually read from left to right, it is vice versa interpreted from right to left. In other
words its meaning is based on a reverse priority of the order of the three elements that constitute its
definition: (i) the concept of function (which is assumed to be a primary concept); (ii) the incremental
ratio (of the supposedly known function); (iii) the operation of limit (referred to the result of the previous
two steps).

Now we may ask: what happens if we interpret the sequence of symbols in expression (2.1) according
to the same order as they are written (that is from left to right)?

Such a direct perspective gives rise to a new concept of derivative, indicated by d̃
d̃t

and defined as
follows (for further details see also Appendix A):

d̃q

d̃tq
f (t) = ˜lim

�̃t :0→0+

⎛
⎜⎝

∼
�̃ − 1

�̃t

⎞
⎟⎠

q

f (t) for any q ∈ Q, (2.2)

where the sequence of symbols is interpreted according to the same order as they are written (from left
to right). It can be named “incipient” because of some special characteristics that will be illustrated later
on (especially through the derivatives of the exponential function e�(t)).

3. Basic properties and main consequences of the previous concept

Let us now examine the basic properties of such a new concept of derivative and its related consequences
on linear and non-linear differential equations.

3.1. Incipient derivatives of integer order

(i) The integer-order incipient derivatives of the exponential function present a persistence of form:
Each derivative maintains the same exponential structure (apart from an amplification factor)

d̃n

d̃tn
e�(t) =

⎛
⎜⎝

∼
d̃

d̃t
�(t)

⎞
⎟⎠

n

e�(t) = (�̃′)ne�(t). (3.1)
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Such a property is particularly useful in modeling genetic processes. In fact living systems always show
a “generative” activity, in which the generated “product” presents a persistence of the form with respect
to its ancestors’ genetic characteristics (although the generated being contemporaneously constitutes
something new);

(ii) The same happens for any function f (t) when represented in the exponential form [8]

d̃n

d̃tn
f (t) = d̃n

d̃tn
eln f (t) =

⎛
⎜⎝

∼
f̃ ′(t)
f (t)

⎞
⎟⎠

n

eln f (t) =
⎛
⎜⎝

∼
f̃ ′(t)
f (t)

⎞
⎟⎠ f (t) = (�̃f (t))nf (t). (3.2)

3.2. Main consequences on LDEs of integer order

Linear Differential Equations of order n�4, even if with variable coefficients, always have explicit
solutions.3

As an example we can consider a second order LDE with variable coefficients

d̃2

d̃t2
f (t) + a1(t)

d̃

d̃t
f (t) + a0(t)f (t) = 0 (3.3)

with its well-posed initial conditions

f (k)(0) = fk0 for k = 0, 1, (3.4)

whose solution can be given in finite terms and quadratures. In fact, if we assume f (t) = e�(t), we get
an algebraic equation

(�̃′(t))2 + a1(t)(�̃
′(t)) + a0(t) = 0, (3.5)

whose solutions �̃i(t) (i = 1, 2) enable us to write the explicit solution to Eq. (3.3) in the form

f  ( t) =
~

2

i=1

ci e
 

0  � i (u)  du ,
t
1
~

~ ~

(3.6)

where the constant coefficients ci are defined by means of the initial conditions (3.4).
If the solution �̃1(t) has a multiplicity �1 = 2, an additional independent solution is given by

 y2 (t ) =
0

e
 

   � i (u)  du  d .~
1
t~

1

t~

� �
~ ~ ~

(3.7)

3 Such solutions can be easily obtained on the basis of the well-known algebraic methods. For n > 4 they can be researched
for by means of non-strictly algebraic methods.
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3.3. Basic properties of the incipient derivatives of fractional order

The fractional-order incipient derivative offers a multiplicity of results

d̃m/n

d̃tm/n
e�(t) = (�̃′)m/ne�(t) (3.8)

according to the multiplicity of the roots of a complex number. For example

d̃1/2

d̃t1/2
e�t = �1/2e�t = ±√

�e�t . (3.9)

Such a property is particularly useful to describe some living systems. For instance, the topological
distribution of the petals of a daisy (usually 12 in number) and the regular growth of their parts in
accordance with Fibonacci’s series (at discrete times) or better, at any time, according to a logarithmical
spiral.

3.4. Main consequences on fractional LDEs

When introduced into linear differential equations, fractional incipient derivatives give rise to a new
kind of functions: the “binary” functions equations [5,6,8].

Let us consider, for example, the following linear differential equation of the first order with constant
coefficients

d̃

d̃t
f (t) + A

d̃1/2

d̃t1/2
f (t) + Bf (t) = 0, (3.10)

which contains a derivative of order 1
2 in addition to the traditional derivative of order one.

If we take into account that the fractional derivative of order 1
2 of the exponential function e�t has two

distinct values defined by Eq. (3.9), it is possible to express the general solution to Eq. (3.10) by means
of two distinct functions:

f1(t) = c11e�2
11t + c12e�2

12t , (3.11)

f2(t) = c21e�2
21t + c22e�2

22t , (3.12)

where the function f1(t) is carried out by assuming the structure +√
�e�t , whereas f2(t) corresponds to

the structure −√
�e�t , while the pertinent exponential coefficients are derived from the two associated

characteristic equations [5,6,8]. We may now observe that, although the derivative (d̃/d̃t)1/2f (t) presents
two distinct values, it conceptually constitutes one sole entity. Consequently the general solution f̃ (t)

may be written in a compact form as follows:

f̃ (t) =
(

f1(t)

f2(t)

)
=
(

c11
c22

)
e

(
�11
�22

)2
t +

(
c12
c21

)
e

(
�12
�21

)2
t
, (3.13)

where the upper and lower exponents �ij are the pertinent solutions to the two associated characteristic
equations respectively,y, while the coefficients cij depend on the initial conditions

f̃ (0) =
(

f10
f20

)
, (3.14)
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and

f̃ (1/2)(0) =
(

f
(1/2)
10

f
(1/2)
20

)
. (3.15)

The comprehensive solution f̃ (t) may be thus termed as a “binary” function, not only because it is made
up of two distinct functions, but also (and especially) because the two components are so strictly related
that they form one sole entity.

3.5. Main consequences on NLDEs of integer order

These equations are particularly frequent when modeling living Systems. Their analysis (in terms of
incipient derivatives) started from Riccati’s equation because this represents the most elementary nonlinear
equation in the field of self-organization processes (in fact it models an interaction with feedback):

df

dt
+ Q(t)f (t) + R(t)f 2(t) = P(t). (3.16)

In this respect, it is well-known that the substitution

y(t) = 1

f (t)R(t)

df

dt
(3.17)

transforms such a nonlinear equation into a second-order linear differential equation with variable coef-
ficients [3]:

R
d2

dt2 y(t) − (R′ − QR)y(t) − PR2y(t) = 0. (3.18)

Consequently, if the latter is interpreted in terms of incipient derivatives, it presents an explicit solution
in finite terms and quadratures (see par. 3.2).

However it is worth pointing out that, when Eq. (3.16) is immediately and directly interpreted in terms
of incipient derivatives

d̃f

d̃t
+ Q(t)f (t) + R(t)f 2(t) = P(t) (3.19)

it presents a solution in the form of a “duet” function [8]. This new type of function can be represented
as follows

f (t) = f0[�2/2
1 (t), �

2/2
2 (t)], (3.20)

(where f0 is the initial condition) to indicate that the two distinct solutions �
2/2
1 (t) and �

2/2
2 (t) are joined

together in such a way as to form a new sole entity of superior order (or superior hierarchical structure).
In fact the substitution

f =
(

d̃

d̃t

)2/2

F · 1

F
(3.21)
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transforms Eq. (3.19) into an algebraic equation
5 + Q(t)

4
[�2/2(t)]2 + P(t)[�2/2(t)] + R(t) = 0, (3.22)

where

� = 1

F

d̃F

d̃t
, (3.23)

and

�2/2 =
[(+√

�
−√

�

)
,

(+√
�

−√
�

)]
. (3.24)

Similar considerations can be extended to other non-linear differential equations generally adopted in
modeling self-organizing processes. For example, Abel’s equations of any order (which model multiple
interactions and feedbacks)

df

dt
+ Q(t)f (t) + R(t)f 2(t) + S(t)f 3(t) = P(t), (3.25)

df

dt
f (t) = Pn[t, f (t)] =

n∑
k=0

Ak(t)[f (t)]k . (3.26)

They can analogously be either preliminarily reduced to a linear form [3] (and then interpreted in terms
of incipient derivatives) or directly understood in terms of incipient derivatives. In the latter case they
present solutions in the form of “n-et” functions [8]:

f̃ (t) = f0[�n/n
1 (t), �

n/n
2 (t), . . . , �

n/n
n (t)]. (3.27)

Such results could also be progressively generalized to more complex non-linear differential equations.
However, at this stage, it is of fundamental importance to underline a particular phenomenon: the reciprocal
“drift” (between traditional and “incipient” solutions) which be analyzed in the next paragraph.

4. The “drift” phenomenon

For the sake of clarity such a fundamental aspect will be analyzed with reference to LDE of integer
order. In such a case the solutions obtained by means of the incipient differential approach coincide
exactly with the traditional solutions only when the latter are available in finite terms and quadratures,
that is: (i) in the case of linear differential equations (of any integer order) with constant coefficients;
(ii) first order linear differential equations with variable coefficients. In all the other cases the traditional
solutions which are obtained, for instance, through expansion series, gradually differ from the explicit
solutions obtained in terms of incipient derivatives (and vice versa). In other words traditional solutions
present a sort of a “drift” which is even more marked according to the increasing order of the involved
derivatives. This is evidently due to the differences in the derivatives of order n > 1, as schematically
shown in Table 1, where the traditional derivative of order n is represented by the well-known Faà di
Bruno formula [17].

Such a particular aspect led us to think about some unsolved problems in the past which could possibly
be interpreted on the basis of such a “drift” effect due to the different derivatives adopted in modeling
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Table 1
Comparison between traditional and incipient derivatives of the exponential function e�(t)

1st order
d

dt
e�(t) = �′e�(t) d̃

d̃t
e�(t) = �̃′e�(t)

2nd order
d2

dt2 e�(t) = (�′)2e�(t) + �′′e�(t) d̃2

d̃t2
e�(t) = (�̃′)2e�(t)

. . . . . .

nth order
dn

dtn
e�(t) = n!

n∑
m=1

(�′)me�(t)
∑ n∏

k=1

1

Pk !

[
�(k)

k!

]Pk
d̃n

d̃t
e�(t) = (�̃′)ne�(t)

the same physical system. One of those is the well-known problem of Celestial Mechanics represented
by the precession of the planets (especially Mercury), which, as we will see later on, could be of great
relevance for Classical Mechanics and its fundamental Laws.

5. Application of incipient derivatives to Classical Mechanics

The application of the incipient derivatives to the analysis of Mercury’s precessions was also stimulated
by the fact that the same Maximum Em-Power Principle suggests we reconsider the Fundamental Laws
of Classical Mechanics in terms of incipient derivatives [8]:

�F = d̃

d̃t
�p, (5.1)

�M = d̃

d̃t
�b. (5.2)

Such a reformulation allows much wider degrees of freedom in the motion of the mechanical system
analyzed because of the fact that the condition

d̃

d̃t
f (t) = 0 (5.3)

formulated in terms of incipient derivatives, is not, by itself, a sufficient condition for asserting that

f (t) = const (5.4)

(as in the case of traditional derivatives). This allows us to consider, in principle, two distinct cases when
analyzing the precessions of the planets.

5.1. First case: assumption of �b = const (planar orbits)

Under this hypothesis, the classical variation (��c) of the angular anomaly per each revolution is given,
according to Newton’s Laws, by the following expression [12]

��c = 2
∫ rmax

rmin

(b/r2) dr√
2m(E − U) − (b/r)2

, (5.5)
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which, however, gives rise to a global effect which vanishes after an integer number of revolutions because
��c is always a rational fraction of 2�. This is due to the fact that the central force field is characterized
by a potential energy which is proportional to 1/r(ib.).

If, vice versa, we start our analysis by taking the incipient derivative of the angular momentum

b = mr2 d�

dt
= const, (5.6)

we get the following differential equation in the unknown angular anomaly

d̃2�

d̃t2
+ 2

r

d̃r

d̃t

d̃�

d̃t
= 0, (5.7)

whose integration will give the incipient angular variation ��̃inc (per each revolution).
In order to facilitate the comparison between the latter and the classical variation ��c, Eq. (5.7) can

be very well approximated and usefully restructured in two “branches” as follows:

d̃2�

d̃t2
± 	

b

mr2

d̃�

d̃t
= 0, (5.8)

where:

(i) the signs ± account for the fact that (dr/dt)�0 when r(t) increases from rmin (perihelion) to rmax
(aphelion), whereas (d̃r/d̃t)�0 when r(t) decreases from rmax to rmin;

(ii) the term

2(d̃r/d̃t)/r (5.9)

is preliminarily expressed by means of the relationship r(t) = p/[1 + e cos �(t)], which is valid in
the case of an elliptic orbit;

(iii) the coefficient 	 is the mean value of term (5.9) in the range [rmin, rmax]:

	�
2

�

rmax − rmin

rmin
. (5.10)

The explicit solutions to Eqs. (5.8) (with their pertinent initial conditions) enable us to express the incipient
variations of the angular anomaly, in the two considered parts of the orbit, as follows

��̃1 = 1

	
[1 − e−	 ��c

2 ] for the branch from rmin to rmax (5.11)

and

��̃2(t) = 1

	
e	 ��c

2 [e	 ��c
2 − 1] for the branch from rmax to rmin. (5.12)
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Expressions (5.11) and (5.12) can be easily obtained by making use of the relationship

dt

dr
=
√

2

m
[E − U(r)] − b2

m2r2 , (5.13)

which is a direct consequence of the Energy Conservation Principle.4

The total incipient variation ��̃inc (per each revolution) can be then expressed as follows:

��̃inc = ��̃1 + ��̃2 = 1

	
[1 − e−	 ��c

2 ] + 1

	
e	 ��c

2 [e	 ��c
2 − 1] (5.14)

and, consequently, the contribution to the secular variation ��sec (per each revolution) is

��sec = �̃�̃inc − ��c = 


(
��c

2

)
+ 


	

2!
(

��c

2

)2

+ (2 + 
)
	2

3!
(

��c

2

)3

+ · · · , (5.15)

where


 = e	 ��c
2 − 1 = 	

(
��c

2

)
+ 	2

2!
(

��c

2

)2

+ · · · . (5.16)

In the case of Mercury, the pertinent value of 	�0.332 (see Eq. (5.10)) leads (through Eqs. (5.15) and
(5.16)) to a secular precession of 42.45′′ per century.

The result obtained is in almost perfect agreement with the most recent available data.5

This shows that Newton’s Laws, when reinterpreted in terms of incipient derivatives, can still be
considered as being substantially adequate to describe even such an effect, which has always remained
inexplicable in terms of Classical Mechanics (whose basic Laws were, and still are, formulated in terms
of traditional derivatives).

On the other hand, the explanation of the same effect given by General Relativity (which still makes use
of a posteriori derivatives as a basic language) was made possible only on the hypothesis of a completely
different physical model.

5.2. Second case: assumption of �b �= const

Such a hypothesis is perfectly compatible with the basic equations of “Incipient” Mechanics (5.1) and
(5.2), now rewritten in the form

d̃

d̃t
�p = −dU

dr

�r
r

, (5.17)

d̃

d̃t
�b = 0. (5.18)

4 In Eq. (5.13) (as well as in Eq. (3.9)) the “tilde” notation was omitted only for the sake of simplicity. On the other hand the
first order incipient derivatives, differentials and integrals (see also Eqs. (3.6) and (3.7)), which appear in the above-mentioned
equations, quantitatively coincide with the corresponding traditional concepts.

5 Astronomical measurements give 42.6′′ ± 0.9′′ per century [11]. The value predicted by Relativity Theory is 43.0′′ per
century [ib.].
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In particular it is compatible with Eq. (5.18), as a consequence of the considerations made at the end of
par. 5.

If we then integrate Eqs. (5.17) and (5.18), we obtain the following main results: (i) there exists a
multiplicity of motions able to satisfy both Eqs. (5.17) and (5.18); (ii) among the various possibilities, we
searched for a possibly stable gyroscopic motion of Mercury’s orbital plane; (iii) such a motion, under
particular hypotheses (specified immediately below), results as being perfectly compatible with the basic
equations adopted.

In fact, by expressing Eq. (5.18) in its three fundamental components in an xyz-space, we get the two
following equations:

∼
d2�x

d̃t2
+2

r

d̃r

d̃t

∼
d�x

d̃t
=0, (5.19)

∼
d2�y

d̃t2
+2

r

d̃r

d̃t

∼
d�y

d̃t
=0 (5.20)

in addition to the traditional Eq. (5.7) (now characterized by a specific pedix z)

∼
d2�z

d̃t2
+2

r

d̃r

d̃t

∼
d�z

d̃t
=0. (5.21)

If we now assume that

�x = bx

bz

>1, (5.22)

�x = bx

bz

>1 (5.23)

and integrate Eqs. (5.19) and (5.20) according to the same procedure adopted in the case of Eq. (5.7), we
find a gyroscopic motion in which the angle between the vector �b and the axis z is given by

�n+1��n(1 + �n), (5.24)

where

�n =
k	n

(
�c

2

)
n

[�2
x,n�2

x,nbx,n + �2
y,n�2

x,nby,n]
b2
z,n

, (5.25)

n is the number of centuries; k is a constant factor to convert the quantity (
�c

2 )n into the corresponding
angular momentum; while �x,n and �x,n, explicitly defined as

�x,n =
⎛
⎜⎝

−
r2
z,min

r2
x,min

⎞
⎟⎠

n

, (5.26)
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�y,n =
⎛
⎜⎝

−
r2
z,min

r2
y,min

⎞
⎟⎠

n

, (5.27)

represent two mean form factors which accounts for the non-perfect similarity between the elliptic orbits
orthogonal to the axes x and y with respect to that orthogonal to the axis z.

The structure of Eq. (5.25) allows us to assume, as a first approximation,

�n��i��0 = const (5.28)

and, consequently, Eq. (5.24) can be rewritten as follows:

�n+1��0(1 + �0)
n. (5.29)

The estimated magnitude of �0 (�5×10−7) is so small that, over a period of 2 or 3 centuries (that is from
Newton’s time to nowadays), the width of the gyroscopic cone can be considered as having remained
practically constant. In this sense the gyroscopic motion can be considered as being not only stable, but
also stationary. Over a medium period (from 10 to 20 centuries) Eq. (5.29) can be approximated by a
linear trend

�n+1��0(1 + n�0). (5.30)

This means that the gyroscopic motion can still be considered as being substantially stable, but not strictly
stationary. Over hundreds of millennia Eq. (5.29), now rewritten as

�n+1��0(1 + �0)
n = �0 en ln(1+�0)��0en�0 (5.31)

can be restructured in such a way as to show that the vertex of the vector �b describes a spiraloid trajectory
whose projection on the xy-plane is very well approximated by a logarithmical spiral.

In reality the latter result shows its relevance much more in terms of a qualitative trend than as a
rigorously quantitative approximation. In fact Eq. (5.31) is only valid as a first order approximation and,
in addition, has been carried out by modeling the considered planet as a single “material point”, which
interacts with the Sun in terms of mere functional relationships. This suggests we look for a more adequate
model which could be even more valid over such long periods.

In this respect, a much more adherent solution to the indications of the Maximum Em-Power Principle
resides on the possibility of interpreting the system made up of the Sun and Mercury as a unique entity
(that is as a “binary system”). In such a case Eqs. (5.17) and (5.18) should be rewritten as follows:

(
d̃

d̃t

) 2
2

�p + F

⎡
⎣( d̃

d̃r

) 2
2 �

r

�r
r

⎤
⎦= 0, (5.32)

(
d̃

d̃t

) 2
2

�b = 0, (5.33)

where in Eq. (5.32) the potential energy U(r) is replaced by a reciprocity action expressed in binary
terms.
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In this paper we will not deal with the solution to Eqs. (5.32) and (5.33). These have only been mentioned
here to show the possible progressive development of even more adherent models, formulated in terms of
incipient derivatives, as a consequence of the increasingly wider potentialities of description offered by
the latter. However, we can anticipate that Eqs. (5.32) and (5.33) are also satisfied by a gyroscopic motion
but, in such a case, the “binary” initial conditions pertaining to the two bodies (the Sun and Mercury) show
that the latter are so strictly related to each other that they seem to form a real unique entity. Consequently,
even in this case, Mercury could possibly have a gyroscopic motion. This is especially due to the fact that
both planar orbits and gyroscopic orbits are always compatible (in principle) with Incipient Mechanics.

6. Conclusions

The introduction of the concept of incipient derivative was mainly finalized to transform the enunciation
of the Maximum Em-Power Principle into an adherent Mathematical Formulation. Subsequently, several
applications showed that such a new mathematical concept seemed to be particularly indicated to model
self-organizing (living) Systems. These results contemporaneously showed why the basic presuppositions
of the traditional mathematical approach to the analysis of the same systems are rather restrictive and
somewhat reductive.

In particular, the consideration of differential equations of only integer order (generally adopted to
describe such systems) is rather limiting with respect to the much wider variety of their biodiversity
characteristics. Vice versa, the introduction of the concept of incipient differential equations (of integer
and fractional order) could represent a valid approach to describe and analyze the spring-dynamism of
such systems. In fact, we have shown that: (i) the incipient derivative presents a persistence of form which
is particularly indicated to describe a dynamic evolution in which every “product” generated, besides
representing a substantial novelty, is always “faithful” to the presuppositions of its generation. That is,
it is always in consonance with its “ancestors’ genetic characteristics”; (ii) on the other hand, fractional
derivatives (and their associated differential equations) generate a new class of functions (“binary”,
“ternary” functions, and so on) that are able to describe the new reality generated by a given process
as being one sole entity; (iii) some non-linear differential equations (usually adopted to describe self-
organizing systems), such as Riccati’s and Abel’s equations, when re-interpreted in terms of incipient
derivatives, present explicit solutions in terms of “duet” functions, which are able to represent the “product”
generated as a unique entity of superior order (or superior hierarchical structure); (iv) above all, when
incipient differential equations have explicit solutions in finite terms and quadratures, these are not
affected by that “drift” phenomenon which characterizes the traditional a posteriori derivatives; (v) this
particular aspect allowed us to reconsider more clearly a well-known problem of Classical Mechanics
(Mercury’s precessions); (vi) and also led us to foresee its potential orbital gyroscopic effects (never
hypothesized before).

Considering such results, what is much more surprising in such an approach is especially the fact that it
is not only more adequate to describe living systems, but even more valid to describe non-living systems
too.

In this respect it is worth pointing out that the previous results do not lead us to assert that Mercury
really has a gyroscopic motion. Such an assertion, in fact, requires some additional information which
is, at the moment, unknown. The results only allow us to assert that a gyroscopic motion of Mercury
is surely compatible with the basic equations of Incipient Mechanics and thus, in actual fact, it could
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even exist. In all cases, the effective ascertainment of such a possibility can be only made on the basis of
more accurate astronomical data which, however, should not necessarily be affected by the preliminary
assumption of planar revolution motions of the planets (as cogently established by Classical Mechanics
as well as by Relativistic Mechanics).

Appendix A. Incipient derivative of integer and fractional order

The definition of the incipient derivative, first referred to any integer n, is given by (see par. 2 and
also [8])

d̃n

d̃tn
f (t) = ˜lim

�̃t :0→0+

⎛
⎜⎝

∼
�̃ − 1

�̃t

⎞
⎟⎠

n

f (t), (A.1)

where the symbol �̃ represents an “operator” that generates a translation of a function, that is

�̃f (t) = f (t + �t), (A.2)

which has the following characteristics: (i) the time variation �̃t can also be real, but in general it is
understood as being virtual (and the associated symbol �̃ reminds us of such an assumption); (ii) the
symbol �̃f (t) is not only the representation of the second side of Eq. (A.2), because the “operator” �̃ is
prior with respect to f (t): it is the one that originates such a virtual translation; (iii) the “operator” �̃
may be thus better named as “generator” because, according to definition (A.2), it “acts” as generator of
a translation; (iv) the name “generator” also reminds us that it acts in combination with something else:
�̃ is in fact the prior “principle”, f (t) is the posterior “principle”, and f (t + �̃t) is what “rises” from the
combination of both. Such a result (or “product”) is something new, but at the same time it retains the
main genetic characteristics of its generating “principles”.

Analogous considerations can be made with respect to the “operator”

( ∼
�̃−1
�̃t

)n

.

Finally, the operation of limit ( ˜lim
�̃t :0→0+

) is here also considered as a prior operator with respect to those

that follow it in Eq. (A.1) but, at the same time, it is posterior to the very primary operation: the passage
from the time t , initially prefixed, to the virtual time

�̃t = t + �̃t (A.3)

as a consequence of a virtual translation generated by the “generator” �̃. Such an operation is represented
by the symbol �̃t : 0 → 0+ to remind us that our concept of “limit” is a “spring-concept”: it is the
“source” of what rises as a consequence of an infinitesimal virtual variation, immediately after a given
time t , which in turn activates the sequence of the successive “generators” in its “spring-perspective”. As
a basic example, the incipient derivative of order n of the exponential function e�(t) is

d̃n

d̃tn
e�(t) =

⎛
⎜⎝

∼
d̃

d̃t
�(t)

⎞
⎟⎠

n

e�(t) = (�̃′)ne�(t). (A.4)
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Such a result is always formally different from the one obtainable through traditional ordinary derivatives,
even when both results coincide quantitatively (that is, for any order derivative, if �(t)=�t +�; otherwise,
if �(t) is a non-linear function, only in the case of first-order derivative). Consequently the adopted
symbology reminds us of the main differences: (i) the resulting expression refers to a virtual evolution,
which may also become a real evolution, but only in dependence on particular boundary conditions; (ii) the
comprehensive structure of Eq. (A.4) reminds us that the obtained result is due to a “generating process”,
the virtual (evolutive) possibilities of which are delineated in terms of its intrinsic genetic characteristics

(�̃′)n, which are essentially due to both the generator d̃n

d̃tn
(understood as a prior “operator”) and the

“fertile” co-operation of the considered function e�(t); (iii) thus the final result represents an evolutive
modality which is completely new with respect to the original function: it is not seen now as a “necessary”
consequence (as in the case of operators interpreted a posteriori) but, because of the a priori interpretation
of operators, it is conceived as an “adherent” consequence of its “generation” modalities: all the various
functions resulting from the “generating process” represented by Eq. (A.4), for n ∈ N , are a similar to
harmonic evolutions which are in “resonance” (as in a “musical chord”) with the original function and at
the same time with each other.

Such considerations are also valid with reference to any functionf (t)once represented in its exponential
form (see Eq. (3.2)).

Eq. (A.4) and, consequently, Eq. (3.2), can be extended to any q ∈ Q and then applied to the most
common functions in Mathematical Analysis (such as, for instance, analytical functions).
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