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Heat Kernel Bounds on Manifolds with Cusps 
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We describe a method of obtaining pointwise upper bounds for the heat kernel of 
a Riemannian manifold with cusps. We apply our results to a class of 
approximately hyperbolic manifolds, by which we mean manifolds which have 
bounded geometry with respect to a hyperbolic structure with cusps (these 
manifolds include all asymptotically hyperbolic manifolds). For such manifolds we 
obtain upper bounds on the heat kernels which we believe to be nearly optimal. 
0 1987 Academic Press, Inc. 

1. INTRODUCTION 

Although there is by now a substantial literature on heat kernel bounds 
for Riemannian manifolds (see [l] and references therein), many of the 
results obtained for non-compact manifolds apply only to manifolds with 
bounded geometry, by which one usually means that the Ricci curvature 
and injectivity radius are bounded below. For the type of bounds usually 
obtained, both conditions are necessary, but the rather different behaviour 
occurring when the injectivity radius goes to zero at infinity is of great 
importance in hyperbolic geometry. One particular case of this type was 
analyzed in detail by Miiller [lo], and our purpose in this article is to 
obtain similar results in more general situations where the method of 
separation of variables is not available. 

Our method will be to derive all the required bounds from suitable 
Sobolev inequalities and logarithmic Sobolev inequalities as pioneered by 
Gross [9]. The fact that Gross’ method can be sharpened to obtain 
pointwise upper bounds was first shown by Davies and Simon [7], and the 
further device needed to obtain sharp Gaussian upper bounds was 
discovered in [4]. In this paper we do not discuss lower bounds but refer 
the reader to [2, 5, 83. 

For simplicity of presentation we assume that the manifold M has 
dimension at least three. The case where M has dimension one or two can 
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be dealt with in several ways. Davies and Simon [7] use modified Sobolev 
inequalities, while Fabes and Stroock [8] use Nash inequalities; yet 
another procedure is to pass from M-to Mx Iw2 and to return to A4 at the 
very end of the calculation, using the fact that the heat kernel of MX 1w2 
splits as a direct product. 

In Section 2 we show how to pass from a diagonal upper bound on the 
heat kernel to a Gaussian upper bound. We subsequently show how to 
prove the diagonal upper bound for a manifold which is topologically of 
the form M= Xx (0, co), with a “cuspidal” metric generalizing that studied 
by Miiller [lo]. We have reversed the logical order of presentation because 
the material in Section 2 is of a more general character and will be used in 
a later paper [6 J for hyperbolic manifolds of the form M= r\W”‘+ I, 
where r is a Kleinian group acting on the (N + 1 )-dimensional hyperbolic 
space I-UN+ i. 

2. GAUSSIAN UPPER BOIJNDS 

We suppose that M is a non-compact and possibly incomplete Rieman- 
nian manifold of dimension (N+ 1) where N> 2, with volume element dm. 
The Laplace-Beltrami operator H on A4 is defined initially on C;(M) and 
is made self-adjoint by taking its quadratic form closure [3]. We suppose 
that E is the bottom of the spectrum of H, so that E 20, but particularly 
wish to allow the case E > 0. We let K(t, m, n) denote the heat kernel of 
e-“’ for 0 < t < co. It is known that K is a strictly positive C” function on 
(0, 00 ) x A4 x M and we make the fundamental assumption that 

O<K(t,m,n)<ct-(Nf’)/20(m)2 (2.1) 

for all 0 < I < 1 and all m E M, where cr is a positive C” function on ii4 
satisfying the following condition: there exists a constant F such that the 
potential V= -a-i do satisfies 

V>F. (2.2) 

In manifolds with bounded geometry these conditions are satisfied with 
0 - 1, but we shall give a non-trivial example in Section 3. We refer to [6] 
for an application to the study of Kleinian groups, and to [7] for an 
analysis of the case where CJ is a L2 eigenfunction of H. 

We define the unitary operator U from L2(M, a2 dm) to L2(M, dm) by 
Uf = o& and define the operator ii on L2(M, g2 dm) by 

i7= U-‘(H- F) U. 
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The operator fi is associated in a standard way [3 3 with the closure of the 
quadratic form Q defined initially on C,“(M) by 

C!(f) = i, lV(~f)l* dm - /M flfl* a2 dm 

= JVfl s * a* dm + I (V- F)jfl* CT* dm. (2.3) 

A use of Beurling-Deny conditions and the Trotter product formula shows 
that eMR’ is a symmetric Markov semigroup, that is 

(2.4) 

for all I > 0, 1 bp < 03 and f~ Lp(M, IS* dm). Putting p = 2 we deduce that 
E>F. 

The heat kernel i? of e -‘* is given by 

R((t, m, n) = o(m)-’ K(t, m, n) o(n)-’ em, (2.5) 

where m, n E A4. Since K is a kernel of positive type, (2.1) implies that 

or equivalently 

WH’lI m,l<Cot-(N+‘)‘2 (2.6) 

for all O<tgl, where \I.l14,p denotes the norm of an operator from Lp 
to LY. 

It was shown in [7 3 that (2.6) follows from a logarithmic Sobolev 
inequafity of the form 

s f'logfa*dm~E&(f)+ 
( Cl -yw 

> 
lIftI;+ IlfII:wlfll* (2.7) 

for all 0 <E G I and all 0 <f E Quad(A) n L’ n L”. Indeed (2.6) and (2.7) 
are equivalent to each other and also to a Sobolev inequality of the form 

IIJ’II * *(Iv+ l)/(N- 1) G c*t&cn + llfll;) 

for all O<foQuad(@ by [II]. 

(2.8) 
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By interpolation and the fact that the spectrum of fi lies in [E - F, 00) 
one sees that c3 = Jle-A’21/2, 1 is finite and 

for all t 2 1. Therefore 

Ile-t7’ll co,l~c,t- (N+l)/2e(S+F~E)(t-l) (2.9) 

for all 0 < t < cc and 0 < 6 < 1. This bound is equivalent, apart from a 
change in the constant c6, to the validity of 

s f” log.fa’ dm <d!(f) + B(~)llfll~ + IlfllZ loWI (2.10) 

for all 0 < E < co and 0 <f E Quad(A) n L’ n L”, where 

log&+(6+F-E)e. (2.11) 

We now obtain Gaussian upper bounds for the kernels R by adapting 
the method of [4]. The extra difliculty of our present analysis arises from 
the possibility that F# E, which prevents us from simply putting ,U = f 
below as in [4]. We let 4 = eati, where QE R! and $ is a C” bounded 
function on A4 satisfying IV+1 < 1 everywhere. Our fundamental lemma is 
as follows. 

LEMMA 1. IfO~f~C,“(M),2~p<oo,undO<~<l then 

(1-~)~~5,f~-1~~(~--~~)f,f~-1~+~2~~+~P-~~~--I)llfll~. 

Proof: We have 

W'&!fP-') 

+a 
f 
M[~fVtj~V(~fP-l)-cifp-lV$*V(~f)] dm-Fllfll; 

> <~.fp-‘>-a211fll;-lalb--2)~MfP~LIVfl a*dm. 
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Also if 0 <s < 00 then 

.r MfP-‘lVfI 02dm 

SP =- 
5 4(P-1) M 

Vf.Vfp-'o'drn+; Ilfll; 

=& {exfp-l)- w-nLf”-‘>I +; Ilfll", 

Therefore 

w'&w-'>~ G&fP-l)-a*(lflJ; 

- bl(P-2) 
i 

& <fiLfp-1) +; Ilfll:{. 

If we put 

4(P- 1)p 

s= I4 P(P-2) 

then we obtain the stated bound easily. 

COROLLARY 2. If O<fe C,“(M), 0~6 < 1, 0-c~ < 1, O<E < 00, and 
2<p<oo then 

I f”logf 02dm<E(~-‘f;#~fP-1) 

where 

+ Y(G P)llf II:: + Ilf 11; logllf Ilp, 
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Proof: We replacef by fp’* in (2.10) as in [7, 91 to obtain 

s fplogfa2dm<E(1-p)(~~ fpp’) 

+$ PC41 -p))llf II:: + Ilf II:: hIIf lip 

and then apply Lemma 1. 

THEOREM 3. For all 0 < 6 < 1, there exists a constant cg such that 

lb?- ‘eC”Qlf II o. <c6t-W+1V4 exp{(26+F-E) t+a2t(l+~)}llfl12 

for allfczL2 andO-ct<m. 

Proof: We proceed exactly as in Theorem 3 of [4]. If 1 < 1~ co, we 
obtain 

where 

II6 re-R’4if II m G eTlf 112, 

M(t) =fl y(A2$+, p) p-’ dp 
2 

N+l = c-7log(l2”tp-‘) 

+(6+F-E)(l-p)1/2”tp-’ dp 
I 

+ s m12itpP’P1~2(1+(p-2)pP)dp 
2 

N+l 
= 46, I4 A) -4 logt+(G+F-@(l-p)& 

+Lx2t ( 2 
l+(n-l)p . > 

By making p small and then 1 large we obtain 

M(t)@+Flog t 

+(2S+F-E)t+a2t(l+8). 
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THEOREM 4. Ifo<6<1 andO<t<or, then 

0 < zqt, x, y) <c,o(x) a(y) t-CN+ l)‘* 

xexp{(26-E) t-d(x, y)2/4(1 +6) t} 

where E is the bottom of the spectrum of H and d(x, y) is the Riemannian 
distance between x and y. 

Proof. We prove that 

exactly as in Corollary 6 of [4] and then apply (2.5). 

3. MANIFOLDS WITH CUSP-LIKE SINGULARITIES 

We show that the results of Section 2 are applicable to a class of 
approximately hyperbolic manifolds (defined below). For simplicity we 
treat only the case where M is topologically of the form Xx (0, co), where 
the manifold X need not be compact, but comment that the extension to 
several cusps is straightforward. Our bounds improve and extend those 
obtained by Mtiller [lo] using an entirely different method; in our 
notation Miiller assumes that X is compact and that y below equals ye2, 
and proceeds by using the method of separation of variables. 

We assume that X has dimension N> 2 and is provided with the metric 
ds, and volume element dx. We give A4 the metric 

dsL = y(x, y)(ds:, + dy2) 

with corresponding volume element dm = ycN+ lu2 dx dy. We assume that 
A4 is approximately hyperbolic in the sense that y is a positive C” function 
which satsifies 

(3.2) 

on A4 for some c >O. The Laplace-Beltrami operator H on 
L2(M Y (N + r)” dx dy) is associated with the closure of the quadratic form 

Q(f) = j ycN- 1)12 (IVxf12+l$~2)dxdy 
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with initial domain C:(M). In operator terms we have 

Hf = -y- (N+ I)/2 v, . (y- 1)/2 V,f) 

-Y 
-(N+ 1)/2 -?&N-53 

We next define the unitary operator U from L2(M, o2 dm) to L2(M, dm) 
by Uf = of, where 

0(x, y)= (1 +y)N’2. (3.3) 

LEMMA 5. There exists a constant F such that IJ satisfies the bound (2.2). 

Proof We have 

V= -0-l Aa 

= -(I +),)-Vl2-lN+W$ Y’N-l)i2;(j +y)N/2p’ , 

so V is bounded by the hypotheses (3.1) and (3.2) on y. 
If we define p as in Section 2 we now obtain all of the results there 

provided we have the fundamental inequality (2.6). We choose to verify the 
equivalent bound (2.8). 

LEMMA 6. Let p=2(N+ l)/(N- 1) and suppose that the following 
conditions are satisfied for some cl > 0: 

VP 

lglpy-‘dx4 

for all O<gEC,“(Xx [l, co)). 

2/P 

Oil (Lx (0, 1] 
lhlP y-N-’ dx dy 

> 

for all 0 <h E CF(X x (0, 11). Then there exists a constant c2 > 0 for 
which (2.8) holds. 
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Proof If 0 <f~ CT(M) then we let g denote the restriction of f to 
Xx [ 1, co) and h its restriction to Xx (0, 11. Since y > 1 implies 

and 
a2Y(N- 1)/2 -y 

we see that (i) implies 

G c3 jxxllai[(i27(N-q ,v,f,‘+~~12)+o’y’*““‘f,2]dxdY. 

Since 0 < y < 1 implies 
02y(N+1)/2Ny-N--l 

and 

we see that (ii) implies 

(h(P 02ycN+ ‘v2 dx dy 

G c3 jr~io,~~[~2~iN-1)~2(,“.n+~~~2)+~2,(~+1)~2,,,2]dxdy. 

Therefore 

Ml; 6 211 gll 2 + w4l 2 P P 

G 242(f) + Ml 3 
by (2.3). 

LEMMA 7. Condition (i) of Lemma 6 is true provided the heat kernel KX 
of X satisfies 

O<K,(t,xl,x2)<ct-N’2 

for all 0 < t d 1 and X,E X. 

(3.4) 
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ProoJ: By (3.4) the heat kernel of Xx [O, co) with the product metric 
and Neumann boundary conditions on s=O satisfies 

OGfLX[O,cO) (t; x1, s,; x2, s*) d c-1 t-(N+‘)‘2 

and this is equivalent to the bound 

for all 0 < g E Cp(Xx [0, co )). This obviously implies 

which is equivalent to (i) if we put y = es. 

LEMMA 8. The condition (ii) of Lemma 6 is true under the con- 
dition (3.4). 

Proof: If we make the change of variables ,V~ = s then (ii) becomes 

(1 

VP 

IhIP dx ds 
xx Cl, a) 

s-2’NIV,hJ2 +s2 i;l’+,h,‘)dxds 

forallO~h~C~(Xx[1,~)).Ifweputa(s)=2~2”Nfor2r~1~~<2rand 
b(s) = 22’ for 2’- ’ <s < 2’, then we shall actually prove the stronger fact 
that 

VP 

lhlP dx ds 

4s)lVxh12 + b(s) l;i’+ Ihl’) dxds 

whenever h = Cf=, h, and 0 <h, E Cp(Xx [2’-‘, 2’1) and h, need not 
satisfy any boundary conditions where s = 2’- i or s = 2’. This new con- 
dition is equivalent by the arguments of Section 2 to 

for all 0 < t < 1 where k is the heat kernel for the operator fi given when 
2’-‘<s<2’by 
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with Neumann boundary conditions on the boundary of each strip. But J? 
vanishes unless m, and m, lie in the same strip Xx [2’-‘, 2’1, in which 
case we have 

&t, m,, m2)= Kx(2-*‘lNt, x1, x2) K,(22rt, s,, sZ), 

where K, is the heat kernel for - (d*/ds*) on [2’- ‘, 2’1 with Neumann 
boundary conditions at s = 2’- ’ and s = 2’. But 

O<K,(t,~,,s~)=$cst-“* (3.5) 

whenever 0 < t < 2*’ by a direct computation. Combining (3.4) and (3.5) we 
obtain 

for all 0 < t < 1, as required to complete the proof. 

THEOREM 9. Zf the heat kernel of X satisfies the bound (3.4) for all 
O<t<l,andzf0<6<1 andO<t<co, thentheheatkerneIofMsatisfies 
the bound 

O~K(t,m,,m2)~c,(l+y,)N’2(1+y2)N’2tt(NC”’2 

xexp{(26-E) t-d(m,,m,)*/4(1 +6) t}, (3.6) 

where E is the bottom of the spectrum of H and d(m, , m2) is the Riemannian 
distance between m, and m,. 

Proof By Lemma 6 the basic condition (2.8) is satisfied for the 
manifold A4 of this section, so we may apply Theorem 4. 

Note 10. The above bound can be compared with the estimate [lo, 
P. 2261, 

xexp(ct-d(m,,m,)2/8t). (3.7) 

It is easy to see that (3.6) implies (3.7) for a specific constant c. Moreover 
we do not require that X is compact but only that (3.4) holds, and we treat 
a more general metric than [lo]. On the other hand we have not 
attempted to control the derivatives of the kernel K as in Proposition 2.49 
of [lo]. 
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Note 11. Since the kernel G(A, n, m,, m2) of (Hf A)-fl is given by 

we can obtain bounds on G from (3.6). In particular the bound 

O~G(~,n,m,,m,)~c(~,n)(l+y,)N~2(1+y~)N~2 

holds if A + E > 0 and n > (N+ 1)/2. We conjecture that this result is 
optimal of its type. 
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