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We describe a method of obtaining pointwise upper bounds for the heat kernel of
a Riemannian manifold with cusps. We apply our results to a class of
approximately hyperbolic manifolds, by which we mean manifolds which have
bounded geometry with respect to a hyperbolic structure with cusps (these
manifolds include all asymptotically hyperbolic manifolds). For such manifolds we
obtain upper bounds on the heat kernels which we believe to be nearly optimal.
© 1987 Academic Press, Inc.

1. INTRODUCTION

Although there is by now a substantial literature on heat kernel bounds
for Riemannian manifolds (see [1] and references therein), many of the
results obtained for non-compact manifolds apply only to manifolds with
bounded geometry, by which one usually means that the Ricci curvature
and injectivity radius are bounded below. For the type of bounds usually
obtained, both conditions are necessary, but the rather different behaviour
occurring when the injectivity radius goes to zero at infinity is of great
importance in hyperbolic geometry. One particular case of this type was
analyzed in detail by Miiller [10], and our purpose in this article is to
obtain similar results in more general situations where the method of
separation of variables is not available.

Our method will be to derive all the required bounds from suitable
Sobolev inequalities and logarithmic Sobolev inequalities as pioneered by
Gross [9]. The fact that Gross’ method can be sharpened to obtain
pointwise upper bounds was first shown by Davies and Simon [7], and the
further device needed to obtain sharp Gaussian upper bounds was
discovered in [4]. In this paper we do not discuss lower bounds but refer
the reader to [2, 5, 8].

For simplicity of presentation we assume that the manifold M has
dimension at least three. The case where M has dimension one or two can
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be dealt with in several ways. Davies and Simon [ 7] use modified Sobolev
inequalities, while Fabes and Stroock [8] use Nash inequalities; yet
another procedure is to pass from M-to M x R* and to return to M at the
very end of the calculation, using the fact that the heat kernel of M x R?
splits as a direct product.

In Section 2 we show how to pass from a diagonal upper bound on the
heat kernel to a Gaussian upper bound. We subsequently show how to
prove the diagonal upper bound for a manifold which is topologically of
the form M = X x (0, o0), with a “cuspidal” metric generalizing that studied
by Miiller [10]. We have reversed the logical order of presentation because
the material in Section 2 is of a more general character and will be used in
a later paper [6] for hyperbolic manifolds of the form M=I\H"*1,
where I" is a Kleinian group acting on the (N + 1)-dimensional hyperbolic
space HY* !,

2. GaussiaN UrPER BounDs

We suppose that M is a non-compact and possibly incomplete Rieman-
nian manifold of dimension (N + 1) where N = 2, with volume element dm.
The Laplace-Beltrami operator H on M is defined initially on C*(M) and
is made self-adjoint by taking its quadratic form closure [3]. We suppose
that F is the bottom of the spectrum of H, so that E >0, but particularly
wish to allow the case E>0. We let K(t, m, n) denote the heat kernel of
e " for 0 <t < oo. It is known that K is a strictly positive C* function on
(0, 0)x M x M and we make the fundamental assumption that

0<K(t,m,n) < ct™ N+ D 26(m)? (2.1)

for all 0<r<1 and all me M, where ¢ is a positive C* function on M
satisfying the following condition: there exists a constant F such that the
potential V= —o~! 4o satisfies

V2F (22)

In manifolds with bounded geometry these conditions are satisfied with
& =1, but we shall give a non-trivial example in Section 3. We refer to [6]
for an application to the study of Kleinian groups, and to [7] for an
analysis of the case where o is a L? eigenfunction of H.

We define the unitary operator U from L3(M, ¢ dm) to L*(M, dm) by
Uf = af, and define the operator & on L*(M, a* dm) by

A=U'H-F)U.
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The operator H is associated in a standard way [3] with the closure of the
quadratic form { defined initially on C*(M) by

0N=[ VNP dn=] Ffio dm
=f |Vf|202dm+j(V—F)]flzazdm. (2.3)
M

A use of Beurling-Deny conditions and the Trotter product formula shows
that e~ # is a symmetric Markov semigroup, that is

le=#f), < IF1, (24)

for all >0, 1 <p< oo and fe L?(M, 6% dm). Putting p =2 we deduce that
E2F _ )
The heat kernel K of e~ is given by

K(t,m,n)=0o(m)" ' K(t,m,n) o(n)~" ", (2.5)
where m, ne M. Since K is a kernel of positive type, (2.1) implies that

0<K(t,m,n)<cot " W+H2

or equivalently

lle = w1 <ot VD2 (2.6)

for all 0<¢<1, where |-||, , denotes the norm of an operator from L”
to LA

It was shown in [7] that (2.6) follows from a logarithmic Sobolev
inequality of the form

N+1
[ 708 o dms @)+ (e~ "~ oge ) U1 + A1 B, (27)

for all 0<e<1 and all 0 e Quad(A)n L' n L. Indeed (2.6) and (2.7)
are equivalent to each other and also to a Sobolev inequality of the form

LA+ 1y — 1 S €A G + 11 £13) (2.8)

for all 0< fe Quad(f) by [11].
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By interpolation and the fact that the spectrum of A lies in [E—F, )
one sees that c; = |le~#?|, | is finite and

le= 7,1 < ZeF =B
for all > 1. Therefore
e~y st 20+ £ B0 29)

for all 0<r< o and 0<d< 1. This bound is equivalent, apart from a
change in the constant c¢;, to the validity of

ffz log f o® dm <eQ(f)+ Be)lf13+ 11113 logll /1l (2.10)

for all 0 <& < oo and 0<feQuad(H)n L' A L®, where

N+1
4

Ble)=cs— loge+(6+F—FE)e. (2.11)

We now obtain Gaussian upper bounds for the kernels K by adapting
the method of [4]. The extra difficulty of our present analysis arises from
the possibility that F# E, which prevents us from simply putting pu=3
below as in [4]. We let ¢ =e*¥, where aeR and ¥ is a C* bounded
function on M satisfying |Viy| <1 everywhere. Our fundamental lemma is
as follows.

LEMMA 1. If0<fe C®(M), 2<p< 0, and 0<pu<1 then

(1= p)Af, 77> <K@ B f77 1) + (L + (p=2) = DAL
Proof. We have

Cp'Hef f7 ")
=] Vie#f) Viop™ 7~y dm~F<4f, 47177

= j V(af)+ V(af?~ ') dm—a? f VY| 637 dm
+a| [of Vi Viof*™)—of*=* Vir-V(af) ] dm—FISI

> CBf 27 @Al 1al(p—2) [ f77'(V/1a% dm.
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Also if 0 < s < oo then
[ 191102 dm
M
2
P /2 /2 2
_Pjpr IVf?2| 6% dm
fj (pr/2|2024m+if 762 dm
M SpJm

5ol | Vi dn e 1

_ 4 I fp—1v _ p—1 i P
—4(p_1){<Hf,f D= V=R LD I

<4( )<Hff" >+ Hfll”

Therefore

oA [P 2 (B 77 = IS

~ (o =2 {3y <L+ o
If we put

_4p-Du
jal P(p—2)

then we obtain the stated bound easily.

COROLLARY 2. If 0<feC®(M), 0<d<1, O<pu<l, O<e< oo, and
2<p< o then

[ 17108 f 6% dm <o Byt 71>
+9( PISIZ+11z 10811,

where

y(s,p>=1—2,{c(6,u>—N lloga+(5+F‘E)(1—u)s}

+ea’(1+(p—2)u 1Y)
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Proof. We replace f by /7% in (2.10) as in [7, 9] to obtain
[ 17108 fo* dm<a(1 — )AL, 71

2
*3 Ble(1 — wi)IAL+ 1115 logllf1l,

and then apply Lemma 1.

THEOREM 3. For all 0 < <1, there exists a constant cs such that

I~ e Tfll o <cst™ N+ exp{(26+ F— E) t+2’(1+ )} £,

for all fe L* and 0 <t < o0.

Proof. We proceed exactly as in Theorem 3 of [4]. If 1 <A< o0, we
obtain

l¢~"e="gf 1l <e™ @I fll2,

where

M(1)= [ y(2"p~, p) p~ " dp

2
=2 N+1 L,
_L ?{c— 7 log(i2’p™)

+(6+F—E)1—p) lZ‘tp“‘} dp
+ [ a2 i+ (p -2 n ) dp
2

N+1 At

=c(8, pu, 1) — log 1+ (6+F—E)N1-4) 7

2
+(12t(1 +m)

By making p small and then A large we obtain

N+1
4

+(28+ F—E)t+a’t(1+9).

M(t)<c(6)— log ¢
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THEOREM 4. If0<d<1and O<t< o then

0<K(t, x, y)<csa(x)a(y) t~ N+

x exp{(20 — E) t — d(x, y)*/4(1+ 5) t}

where E is the bottom of the spectrum of H and d(x, y) is the Riemannian
distance between x and y.

Proof. We prove that
0<K(t, x, y)<cst™ N+ W2exp{(26 + F— E) t —d(x, y)*/4(1 +6) t}

exactly as in Corollary 6 of [4] and then apply (2.5).

3. MANIFOLDS WITH CUSP-LIKE SINGULARITIES

We show that the results of Section2 are applicable to a class of
approximately hyperbolic manifolds (defined below). For simplicity we
treat only the case where M is topologically of the form X x (0, o0), where
the manifold X need not be compact, but comment that the extension to
several cusps is straightforward. OQur bounds improve and extend those
obtained by Miiller [10] using an entirely different method; in our
notation Miiller assumes that X is compact and that y below equals y 2,
and proceeds by using the method of separation of variables.

We assume that X has dimension N> 2 and is provided with the metric
dsy and volume element dx. We give M the metric

dsi, =y(x, y)(dsy + dy?)

with corresponding volume element dm =y * 12 dx dy. We assume that
M is approximately hyperbolic in the sense that y is a positive C* function
which satsifies

clyTry(x, )<y ? (3.1)

ay s,
‘ay cy (3 2)

on M for some c¢>0. The Laplace-Beltrami operator H on
L*(M, y""*+ Y2 dx dy) is associated with the closure of the quadratic form

0un)=[ v (Wut+ 2] ) ax ey
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with initial domain C*(M). In operator terms we have
Hf=—y —(N+1)2 Vx . (V(N— N2y 1)

—(N+1)2 _6_ (,y(N~l)/2 5_/’)

-7 dy dy

We next define the unitary operator U from L*(M, ¢* dm) to L*(M, dm)
by Uf = af, where

a(x, y)=(1+y)"~ (3.3)

LEMMA 5. There exists a constant F such that ¢ satisfies the bound (2.2).
Proof. We have
V=—¢"'d0o

0

N
= —(1 +y)*N/2 y*(N+1)/25;<,y(N—l)/27(1 +)7)N/21),

so V is bounded by the hypotheses (3.1) and (3.2) on 7.

If we define / as in Section2 we now obtain all of the results there
provided we have the fundamental inequality (2.6). We choose to verify the
equivalent bound (2.8).

LEMMA 6. Let p=2(N+1)/(N—1) and suppose that the following
conditions are satisfied for some ¢, > 0:

2/p
M (] gy tavay
Xx[1, o)

0g
< V.gl’+|=
cljmtl,om[y(' & {ay

for all 0<ge C* (X x [1, 0)).

2
)+y~‘|g|2] dx dy

2/p
@ ([ ey v tdxdy
X x(0,1]

oh
< 1-N Vxhz i
CZL'x(o,lJ[y (l | +'6y

Jor all 0<heCP(Xx(0,1]). Then there exists a constant c,>0 for
which (2.8) holds.

2
>+ y"“”lhlz] dx dy
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Proof. If 0<fe C®(M) then we let g denote the restriction of f to
X x[1, o) and h its restriction to X x (0, 1]. Since y > 1 implies

PENCER IS

and

2., (N—1)2
Gy =12 Ly

we see that (i) implies

2/p
<j 1g|p (N+1)/2 dXdy>
Xx[1, o)

<o Jenem (1w
Xx[1, o)

Since 0 <y <1 implies

a 2

5 >+02,))(N+1)/2|f|2J dx dy
o.2))(N+1)/2Ny—N—l

and
O.Z,y(N——l)/ZNylvN

we see that (ii) implies

2/p
(j |h|? g2y ™ 12 dx dy)
Xx(0,1]

<cof [ (19
Xx(0,1]

Therefore
1122 gliZ+20Al2

<2, [ | (19.s174

=2c; [ a1/ dm+ 26,1113

2
_(%)_ >+0'2V(N+ 1)/2|f|2:| dx dy.

ay )+a y‘”"”/zlflz] dx dy

<2e,(0(N+ 1113
by (2.3).

LeMMA 7. Condition (i) of Lemma 6 is true provided the heat kernel K
of X satisfies

0K Kyl(t, xy, x,)sct™ N2 (3.4)

forall 0<t<1 and x;€ X.
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Proof. By (3.4) the heat kernel of X x [0, cc) with the product metric
and Neumann boundary conditions on s =0 satisfies
0< Kyyro, ooyt X105 815 X2, 85) S eyt VHD2

and this is equivalent to the bound

2/p p)
([ erasa) <o | {w.gre|Z
X x [0, ) X x [0, ) ds

for all 0 < ge C*(X x [0, o0)). This obviously implies

2/p ag 2
(f Igl”dde> <c1f {ezs(lvxg|2+‘—’ )+Ig|2} dx ds
X % [0, ) X x [0, ) os

which is equivalent to (i) if we put y=e¢’.

2
+ Iglz} dx ds

LEMMA 8. The condition (ii) of Lemma6 is true under the con-
dition (3.4).

Proof. If we make the change of variables y ~" =s then (ii) becomes
2/p
(j \hI? dox ds>
Xx[1, 00)
2
<c2f (s"Z/NIV,Jz|2+s2 o +lh|2> dx ds
Xx[1, ) 0Os

for all 0<he C2(X x [1, 00)). If we put a(s)=2"*for 2 '<s<2" and
b(s)=2 for 2"~ '<s<?2", then we shall actually prove the stronger fact

that
2/p
(f \h|” dx ds>
Xx[1, 00)

<cif, (Vb0

Xx[1, )

/’l 2
(—3— + |h|2> dx ds
os

whenever h=Y%_ A, and 0<h,eC®(Xx[2"',27]) and h, need not
satisfy any boundary conditions where s=2"""! or s=2". This new con-
dition is equivalent by the arguments of Section 2 to

0<K(t,m,, m,))<cqt =N+

for all 0 <¢< 1 where K is the heat kernel for the operator H given when
27" l«s<2 by
0%

ﬁ =_2w2r/NA _22r
f xf as2
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with Neumann boundary conditions on the boundary of each strip. But K
vanishes unless m, and m, lic in the same strip X x [2"~',2"], in which
casc we have

K(t,m;, my)) =K (272, x,, x,) K,(2%1, 51, 53),

where K, is the heat kernel for — (d?/ds?) on [2"~%, 2"] with Neumann
boundary conditions at s=2"""! and s=2'. But

0< K, (t,5,,5,)<cst™? (3.5)

whenever 0 < t < 2% by a direct computation. Combining (3.4) and (3.5) we
obtain

0< K(t, my, my) < c(272Ne) = M2 ¢ y(2%1) =12

=ccgt~ N+2

for all 0 << 1, as required to complete the proof.

THEOREM 9. If the hear kernel of X satisfies the bound (3.4) for all
0<1<1,and if 0<d <1 and 0 <t < oo, then the heat kernel of M satisfies
the bound

O<K(t, my, my) <cs(1+y)¥2 (1 4+ )V -V +D2
xexp{(20 — E) t —d(m,, m,)*/4(1 + &) t}, (3.6)
where E is the bottom of the spectrum of H and d(m,, m,) is the Riemannian
distance between m, and m,.

Proof. By Lemma 6 the basic condition (2.8) is satisfied for the
manifold M of this section, so we may apply Theorem 4.

Note 10. The above bound can be compared with the estimate [10,
p. 2261,

0<K(t,m, my))<C(1 4y, y,)V? ¢~ W+1n2
x exp{ct —d(m,, m,)*/8t}. (3.7)

It is easy to see that (3.6) implies (3.7) for a specific constant ¢. Moreover
we do not require that X is compact but only that (3.4) holds, and we treat
a more general metric than [10]. On the other hand we have not
attempted to control the derivatives of the kernel K as in Proposition 2.49
of [10].

580/75/2-8
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Note 11.  Since the kernel G(4, n, m,, m,) of (H+ 4)~" is given by

G(A, n,m,, my)=rI(n)"" FO K(t,m,my)e *t"~'dt
0

we can obtain bounds on G from (3.6). In particular the bound

0<G(4, n,my, my) < c(d, n)(1+p )V (14 y,)V?

holds if A+ E>0 and n> (N +1)/2. We conjecture that this result is
optimal of its type.

oW

11.
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