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SIRT6, a member of the sirtuin family, has been identified as a candidate tumor suppressor. To pur-
sue the role of SIRT6 in endometrial cancer, we investigated the anti-tumorigenic function of SIRT6.
The expression of SIRT6 negatively affected the proliferation of AN3CA and KLE endometrial cancer
cells. Increased expression of SIRT6 resulted in the induction of apoptosis by repressing the expres-
sion of the anti-apoptotic protein survivin. Consistent with this result, a survivin inhibitor YM155
efficiently inhibited cellular proliferation and induced apoptosis. These results revealed that SIRT6
might function as a tumor suppressor of endometrial cancer cells.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

SIRT6 is a member of the sirtuin family, which is a family of
mammalian homologs of yeast silent information regulator 2
(Sir2) that encode a class III histone deacetylase [1]. SIRT6 localizes
in the nucleus and interacts with many tumor-promoting genes,
including c-MYC, HIF1a, NF-jB and TNFa [2–5]. It is considered
to work as a tumor suppressor by reversing the Warburg effect,
which is synonymous with aerobic glycolysis [2]. Knockout of
SIRT6 induced intestinal tumors and significantly shortened the
lifespan in mice [6], whereas SIRT6 transgenic male mice had a
longer lifespan, partially due to the inhibition of tumorigenesis
[7]. SIRT6 also participates in telomere maintenance [8,9], double
strand break repair [10–12] and suppression of L1 retrotrans-
posons [13]. These findings suggest that SIRT6 is an attractive ther-
apeutic target of cancer.

Endometrial cancer is the most common gynecologic malig-
nancy, the incidence of which is increasing worldwide [14]. A
strong relationship exists between endometrial cancer and meta-
bolism. Diabetes mellitus (DM) and obesity have a 1.8- and
1.5-fold relative risk of endometrial cancer, respectively [15,16].
These factors trigger insulin resistance, which contributes to the
development of endometrial cancer [17]. In this regard, metformin,
a synthetically derived biguanide that is widely employed in the
treatment of type 2 DM, is a promising anti-cancer agent for
endometrial cancer [18]. Metformin inhibits the PI3K
(phosphatidylinositol-3 kinase)–mTOR (mammalian target of
rapamycin) pathway through AMP-activated protein kinase
(AMPK) activation. Endometrial cancer has frequent mutations at
PI3K or PTEN, and the PI3K–mTOR pathway is thus often activated
[19,20]. Therefore, the direct inhibition of this pathway by an
mTOR inhibitor might be a rationale treatment option. Among
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many clinical trials of endometrial cancer that employed
molecular-targeted agents, mTOR inhibitors such as temsirolimus
and ridaforolimus are the most promising [21,22]. However, the
response rates were no more than 30%. Some reports indicated
the feedback activation of insulin-like growth factor 1 receptor
(IGF1R) and/or Akt by mTOR inhibition [23,24]; hence, the modu-
lation of upstream factors might be effective for the treatment of
endometrial cancer.

To date, no obvious correlation between SIRT6 and endometrial
cancer has been demonstrated. According to the microarray analy-
sis of the Cancer Genome Atlas of endometrial cancer specimens,
the decreased expression of SIRT1 mRNA was observed in one case
(0.4%), whereas the decreased expression of SIRT6 mRNA without
PTEN mRNA attenuation was observed in five cases (2.1%) [25].
SIRT6 had a protective role against heart failure through inhibition
of the IGF1R–AKT–mTOR pathway [26]. Considering the frequent
activation of the PI3K–mTOR pathway in endometrial cancer,
SIRT6 has the potential to inhibit endometrial cancer progression.

SIRT6 has been shown to induce apoptosis in several types of
human cancer. However, the precise mechanism of how SIRT6
induces apoptosis remains unclear. SIRT6 overexpression induced
apoptosis through p53 and p73 activation in some cancer cells
[27], whereas it did so via extracellular signal-regulated kinase
(ERK) inhibition in hepatocellular carcinoma cells [28].

The purpose of this study was to determine the roles of SIRT6 in
endometrial cancer cells, including the relationship between SIRT6
and survivin. Such knowledge might prove useful as a new treat-
ment strategy for endometrial cancer.
2. Materials and methods

2.1. Chemicals and antibodies

YM155 was purchased from Cayman Chemical (Ann Arbor, MI,
USA). Mouse monoclonal antibodies were anti-p53 (DO-1, Santa
Cruz Biotechnology, Dallas, TX, USA), anti-Bcl-2 (100, Santa Cruz
Biotechnology) and anti-b-actin (Sigma–Aldrich, St. Louis, MO,
USA). Rabbit monoclonal antibodies were anti-SIRT1 (ab32441,
Abcam, Cambridge, UK), anti-SIRT6 (2590), anti-cleaved PARP
(9544), anti-phospho-Akt (p-Akt, Ser473) (9271), anti-phospho-
p44/42 MAPK (Erk1/2) (pERK) (9101, Cell Signalling technology,
Danvers, MA, USA) and anti-Survivin (NB500-201, Novus
Biologicals, Littleton, CO, USA). A rabbit polyclonal antibody was
anti-Bax (P-19, Novus Biologicals).
2.2. Cell culture

We utilized 16 endometrial cancer cell lines as previously
described [29]. Ishikawa cells were generous gifts from Dr.
Masato Nishida (National Hospital Organization Kasumigaura
Medical Center, Ibaraki, Japan). The other 10 cell lines were
established by Hiroyuki Kuramoto [30]. Endometrial epithelial
immortalized cells (EIC) were also gifts from Satoshi Kyo
(Kanazawa University, Ishikawa, Japan) [31]. AN3CA, KLE cells
and EIC were maintained in DMEM with 10% FBS at 37 �C in a
humidified 5% CO2 incubator.
2.3. Western blot analysis

Cells were harvested, and soluble protein was extracted as pre-
viously described [32], followed by immunoblotting utilizing the
indicated antibodies. Signals were detected using BioRad western
blotting systems (BioRad, Hercules, CA, USA) with the ECL select
detection regent (GE Healthcare, Wauwatosa, WI, USA).
2.4. Gene silencing and transient transfection

Cells were incubated for 24 h before gene silencing with Stealth
RNAi small interfering RNA (siRNA) for SIRT6 and BIRC5 (survivin)
(Invitrogen, Carlsbad, CA, USA), using Lipofectamine RNAiMAX
(Invitrogen). A negative control kit was employed as a control
(Invitrogen). Flag-tagged wild-type SIRT6 expression plasmid was
purchased from Addgene (Cambridge, MA, UK) and transfected
into AN3CA and KLE cells using Effectene transfection reagent
(Qiagen, Valencia, CA, USA). pcDNA 3.0 (Invitrogen) was employed
as a control.

2.5. Trypan blue dye exclusion test with reverse transfection

Utilizing 6-well plates, AN3CA and KLE cells were plated at
3 � 105 cells per well with the indicated plasmids and siRNAs
using the Lipofectamine2000 (Invitrogen) reverse transfection pro-
tocol. Cells were treated for 24 and 48 h after plating. Then, cells
were harvested and counted under microscopy after trypan blue
staining. These experiments were repeated three times.

2.6. Cell cycle analysis

Cells were seeded in 60-mm dishes and incubated for 48 h after
plasmid transfection. Both floating and adherent cells were har-
vested using trypsin and washed twice with phosphate buffer sal-
ine (PBS). After resuspension and incubation in ice-cold 70%
ethanol, cells were washed twice with PBS again and incubated
in RNaseA (0.25 mg/ml) for 1 h at 37 �C, followed by staining with
propidium iodide (PI) (50 lg/ml) (Sigma–Aldrich) for 30 min at
4 �C in the dark. Thereafter, cells were analyzed by flow cytometry
(BD FACS Calibur HG, Franklin Lakes, NJ, USA). Utilizing the CELL
Quest pro software, ver.3.1. (Beckman Coulter, Epics XL, Brea, CA,
USA), cell cycle analysis was performed. These experiments were
repeated three times.

2.7. Detection of apoptosis by annexin-V and PI double staining

Cells were seeded in 60-mm dishes for 24 h before treatment
with the indicated plasmids, siRNAs and YM155, for an additional
48 h. After trypsinization, cells were harvested, washed twice with
PBS, and counted. These cells were stained with annexin-V fluores-
cein isothiocyanate (FITC) and PI, as recommended by the manu-
facturers (FITC AnnexinV Apoptosis Detection Kit I, BD), and the
apoptotic cell population was determined by the percentage of a
double positive fraction utilizing the previously described flow
cytometer. These experiments were performed three times.

2.8. Luciferase reporter assay

Survivin promoter activity was analyzed using a luciferase
reporter assay. The luciferase expression plasmid under the control
of the survivin promoter (pSRVN-Luc) was the kind gift of Chu-Xia
Deng (National Institutes of Health, Bethesda, MD, USA) [33,34].
Transfection was performed with Effectene reagent (Qiagen)
according to the manufacturer’s recommendation. As an internal
control to equalize transfection efficiency, phRL CMV-Luc vector
(Promega Co., Fitchburg, WI, USA) was also transfected in all of
the experiments. Individual transfections, each consisting of dupli-
cate wells, were repeated at least three times.

2.9. RNA extraction and real-time PCR

Total RNAs were extracted using the RNeasy Mini Kit (Qiagen)
according to the manufacturer’s instruction. cDNAs were synthe-
sized from total RNAs by using the ReverTra Ace a (TOYOBO,



Fig. 1. SIRT6 protein expression is more attenuated in endometrial cancer cells than in endometrial epithelial immortalized cells. Immunoblot analysis of SIRT1 and SIRT6 (A)
in EIC (endometrial epithelial immortalized cells) and 16 endometrial cancer cell lines. Relative protein expression of SIRT1 and SIRT6 compared with EIC was quantified in 16
endometrial cancer cells by Image J software (B). b Actin was used as an internal control. The results are shown as the mean ± SE of three independent experiments.

Fig. 2. SIRT6 suppresses endometrial cancer cell proliferation by apoptosis induction. (A) Cell number count with SIRT6 expression plasmid transfection in AN3CA (left panel)
and KLE (right panel) endometrial cancer cells. Empty pcDNA vector (pcDNA) was utilized as a control. The results are shown as the mean ± SE of three independent
experiments. *P < 0.05 vs. pcDNA. (B) Cell number count with SIRT6 knockdown in AN3CA (left panel) and KLE (right panel) cells. Two siRNAs (siSIRT6-1, siSIRT6-2) and a
negative control (siNC) were employed for this assay. The results are shown as the mean ± SE of three independent experiments. *P < 0.05 vs. siNC. (C) Cell cycle analysis with
SIRT6 overexpression in EIC (upper left), AN3CA (upper middle) and KLE (upper right) cells. pcDNA was utilized as a control. Lower panels show the percentage of subG1
population in EIC (left), AN3CA (middle) and KLE (right), respectively. These results are shown as the mean (±SE) of three independent experiments. *P < 0.05 vs. pcDNA. (D)
AnnexinV-PI double staining with SIRT6 overexpression. Three independent experiments were performed, employing pcDNA as a control. The left panel represents one of the
three experiments of EIC (upper), AN3CA (middle) and KLE (lower) cells. The right panel presents the percentage of the double positive population in the EIC (upper), AN3CA
(middle) and KLE (lower) cells. The results are shown as the mean ± SE of three independent experiments. *P < 0.05 vs. pcDNA.
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Osaka, Japan). Employing the ABI7300 (Applied Biosystems, San
Mateo, CA, USA), real-time RT-PCR fluorescence detection was per-
formed in 96-well plates with the SYBR Green PCR Master Mix
(Applied Biosystems). Primers for BIRC5 (survivin) were TGCTT
CAAGGAGCTGGAAGG (forward) and AGAAGCACCTCTGGTGCCAC
(reverse). Primers for GAPDH were previously described [35]. The
threshold cycle number (Ct) for each sample was determined in
triplicate. The Ct values for BIRC5 were normalized against GAPDH.

2.10. MTT assay

Employing 96-well plates, 3000 cells were seeded per well on
DMEM and treated with increasing doses (6.25–10,000 nM) of
YM155 for 72 h, beginning 24 h after seeding. After applying
10 ll of the Cell Counting Kit-8 using the tetrazolium salt WST-8
(Dojindo, Kumamoto, Japan), the absorbance at 450 nm was mon-
itored by a microplate reader (BioTek, Winooski, VT, USA).
Proliferation was normalized relative to the absorbance of cell cul-
tures treated with dimethyl sulfoxide (DMSO) alone.

2.11. Statistical analysis

Data represent the mean ± SE from at least three independent
determinations. The significance of differences between more than
three samples was analyzed by one-way ANOVA and post hoc test,
whereas the significance between two samples was analyzed by
the Mann–Whitney U test using the GraphPad Prism software
Fig. 3. SIRT6 induces apoptosis to endometrial cancer cells by repressing survivin. (A
compared with empty vector (pcDNA) in the AN3CA (left panel) and KLE (right panel) cel
survivin with SIRT6 knockdown in the AN3CA (upper panel) and KLE (lower panel) cells.
Fig. 2B. b Actin was utilized as a loading control. (C) Luciferase reporter assay of survi
luciferase activities were assessed by pSRVN-Luc/phRL CMV-Luc activity. The results are
Real-time PCR analysis of BIRC5 (survivin) mRNA levels after SIRT6 overexpression in the
by GAPDH mRNA levels. These results are shown as the mean ± SE of triplicate samples
ver. 6.0 (GraphPad Software, San Diego, CA, USA), and a P value less
than 0.05 was considered statistically significant.

3. Results

3.1. SIRT6 protein expression is lower in endometrial cancer cells than
in EIC

To assess the expression level of SIRT6 protein, we conducted
immunoblotting with EIC and 16 endometrial cancer cell lines.
There was an absence of a pattern in SIRT1 protein expression,
whereas SIRT6 protein expression was uniformly lower in endome-
trial cancer cells than in EIC (Fig. 1). In addition, we performed an
immunohistochemistry analysis of tissue microarrays from 104
endometrial endometrioid adenocarcinoma patients. The immuno-
histochemical findings revealed that low SIRT6 nuclear staining
had relevance with worse overall survival (Fig. S1). However, no
statistical significance was found. These data suggest that SIRT6
attenuation is relevant to endometrial carcinogenesis.

3.2. SIRT6 inhibits endometrial cancer cell growth by apoptosis
induction

To investigate the function of SIRT6 in endometrial cancer cells,
we selected AN3CA and KLE cells, which had lower levels of SIRT6
protein expression (Fig. 1). First, we performed a cell number count
with both SIRT6 overexpression and SIRT6 knockdown. Exogenous
) Immunoblot analysis of apoptosis-related proteins with SIRT6 overexpression
ls. b Actin was employed as a loading control. (B) Immunoblot analysis of SIRT6 and
Two siRNAs (siSIRT6-1, siSIRT6-2) and a negative control (siNC) were identical with
vin promoter with pcDNA and SIRT6 expression plasmid in AN3CA cells. Relative
shown as the mean ± SE of three independent experiments. *P < 0.05 vs. pcDNA. (D)
AN3CA (left panel) and KLE (right panel) cells. BIRC5 mRNA levels were normalized

. *P < 0.05 vs. pcDNA.
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SIRT6 expression inhibited cell growth in both cell lines (Fig. 2A). In
contrast, SIRT6 knockdown accelerated cell growth in both cells
(Fig. 2B). We also performed cell cycle analysis to elucidate whether
growth inhibition by SIRT6 was attributed to cell cycle arrest or cell
death. Cell cycle analysis demonstrated that SIRT6 caused a signif-
icant and slight increase in the sub-G1 population in the AN3CA and
KLE cells, respectively (Fig. 2C). In addition, AnnexinV-PI double
staining demonstrated a significant accumulation of double posi-
tive populations in both cells (Fig. 2D). In contrast, SIRT6 induced
neither the sub-G1 increase nor the accumulation of AnnexinV-PI
double positive populations in EIC (Fig. 2C and D). These results
indicate that SIRT6 specifically inhibits the growth of endometrial
cancer cells with apoptosis induction.

3.3. SIRT6 induces apoptosis to endometrial cancer cells by repressing
survivin

To examine the detailed mechanism of apoptosis induced by
SIRT6, we performed immunoblotting of apoptosis-related pro-
teins in the AN3CA and KLE cells (Fig. 3A). PARP cleavage, which
is another marker for apoptosis, was confirmed in both cells based
on SIRT6 overexpression. Although there existed no constant alter-
ation of pAkt, pERK, p53, Bax and Bcl-2 in these cells, SIRT6 clearly
inhibited survivin protein expression in both cells. Inversely, SIRT6
knockdown clearly enhanced the survivin protein expression in
Fig. 4. Survivin knockdown selectively induces apoptosis only in endometrial cancer cells
AN3CA (left) and KLE cells (middle) and EIC (right). Two siRNAs for survivin (siBIRC5-1,
loaded as a internal control. (B) AnnexinV-PI double staining with BIRC5 (survivin) kno
negative control (siNC) were the same as in Fig. 4A. Three independent experiments wer
AN3CA (middle) and KLE (lower) cells. The right panel shows the percentage of the dou
results are shown as the mean ± SE of three independent experiments. *P < 0.05 vs. siNC
both cells (Fig. 3B). We also conducted luciferase reporter assay
to confirm whether survivin inhibition by SIRT6 was attributed
to transcriptional suppression or post-transcriptional modification.
SIRT6 significantly inhibited the pSRVN luciferase activity in the
AN3CA cells (Fig. 3C), which meant that SIRT6 repressed the tran-
scription of survivin. As expected, SIRT6 also inhibited BIRC5 (sur-
vivin) mRNA expression in both cells (Fig. 3D). These results
suggest that SIRT6 induced apoptosis to endometrial cancer cells
through survivin repression.

3.4. Survivin knockdown selectively induces apoptosis only in
endometrial cancer cells

Firstly we assessed the expression level of survivin protein.
Immunoblotting revealed uniformly higher SIRT6 protein expres-
sion in most of 16 endometrial cancer cells than in EIC (Fig. S2).
To confirm the involvement of survivin inhibition in apoptosis
induced by SIRT6, we conducted a genetic inhibition of BIRC5 (sur-
vivin) using two siRNAs in AN3CA and KLE cells and EIC. Survivin
knockdown was confirmed by immunoblotting. Two siRNAs signif-
icantly inhibited the survivin protein expression in all three cell
types (Fig. 4A). Survivin knockdown induced an accumulation of
cleaved PARP in the AN3CA and KLE cells, whereas cleaved PARP
was not detected in EIC (Fig. 4A). Additionally, AnnexinV-PI double
staining presented a significant accumulation of double positive
. (A) Immunoblot analysis of survivin and cleaved PARP with survivin knockdown in
siBIRC5-2) and a negative control (siNC) were employed for this assay. b Actin was
ckdown in AN3CA and KLE cells and EIC. Two siRNAs (siBIRC5-1, siBIRC5-2) and a
e performed. The left panel represents one of the three experiments of EIC (upper),
ble positive population in EIC (upper), AN3CA (middle) and KLE (lower) cells. The
.
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populations only in endometrial cancer cells (Fig. 4B). These data
demonstrate that survivin inhibition selectively induces apoptosis
only in endometrial cancer cells.

3.5. Pharmacologic inhibition of survivin by YM155 also induces
apoptosis in endometrial cancer cells

Next, we conducted a pharmacologic inhibition of survivin by
YM155, which is a clinically used survivin inhibitor [36–38].
YM155 clearly induced cell shrinkage in AN3CA and KLE cells
(Fig. 3A). To assess the growth inhibitory effect of YM155, we per-
formed MTT assay using these two cells. YM155 attenuated the pro-
liferation of these cells in a dose-dependent manner, according to
the microscopic findings (Fig. 5B). The half-maximal inhibitory con-
centration (IC50) values of AN3CA and KLE cells were 25 and 250 nM,
respectively. The inhibition of survivin protein expression by YM155
was confirmed by immunoblotting (Fig. 5C). Finally, AnnexinV-PI
double staining showed an induction of apoptosis by YM155 in both
cells (Fig. 5D). These data demonstrate that YM155 suppresses
endometrial cancer cell growth through apoptosis induction.

4. Discussion

It has already been reported that SIRT6 induces apoptosis in
some cancer cells, such as brain, breast, uterine cervix and liver
[27,28]. However, to our knowledge, this is the first report to reveal
the tumor suppressive function of SIRT6 in endometrial cancer cells.

Unlike SIRT1, SIRT6 protein expression was uniformly attenu-
ated in endometrial cancer cells. SIRT1 primarily localizes in the
nucleus, similar to SIRT6 [1]. SIRT1 has bifurcated roles in tumor
Fig. 5. Pharmacologic inhibition of survivin by YM155 induces apoptosis in endometri
(upper) and KLE (lower) cells. The three different concentrations used were 0 (DMSO a
AN3CA and KLE cells. YM155 concentration ranged from 6.25 to 10,000 nM. The results ar
YM155 treatment for 72 h in the AN3CA (upper) and KLE (lower) cells. The concentrati
AnnexinV-PI double staining with YM155 treatment for 48 h in the AN3CA (left panel) an
present the percentage of the double positive cell population. The results are shown as
progression. It inhibits tumor formation by improving genomic sta-
bility [39], but it induces tumor progression by promoting genomic
instability, partially by inhibiting p53 through its deacetylation
[40]. SIRT6 has common interacting partners with SIRT1, such as
c-MYC, HIF1a, and NF-jB [2–4]. However, in contrast to SIRT1,
SIRT6 does not have the function of p53 deacetylation [1].
Considering its attenuation in endometrial cancer cells, SIRT6 is a
more appropriate therapeutic target than SIRT1.

In our study, SIRT6 suppressed the proliferation of endometrial
cancer cells by inducing apoptosis. AN3CA and KLE cells are p53
mutants [41]. Therefore, the apoptosis induced by SIRT6 was p53
independent. Unlike the case of cardiomyocytes [26], no significant
Akt inhibition was observed in these cells. Instead, survivin protein
expression was clearly inhibited in both cells. The SIRT6-dependent
inhibition of survivin was reported to markedly impair liver cancer
development, and immunohistochemistry demonstrated that
SIRT6 expression was significantly attenuated in hepatocellular
carcinoma patients [42]. Thus, there could be an overlap between
hepatic and endometrial carcinogenesis. For instance, current oral
contraceptive use has been associated with a modest increased risk
of liver cancer [43]. In AN3CA cells, survivin inhibition by SIRT6 was
more evident at the protein level than at the mRNA level, despite
the significant suppression of survivin promoter activity. This
result implies that SIRT6 might also inhibit survivin via
post-transcriptional modification.

Survivin is a member of the family of inhibitors of apoptosis
proteins [44]. It inhibits apoptosis through the direct inactivation
of caspase-9 and the stabilization of X-linked IAP [45,46].
Survivin inhibition by siRNA was already reported to induce apop-
tosis in Ishikawa endometrial cancer cells [47]. Our data support
al cancer cells. (A) Microscopic findings with YM155 treatment for 72 h in AN3CA
lone), 50 and 200 nM. Scale bar = 100 lM. (B) MTT assay of YM155 for 72 h in the
e shown as the mean ± SE of four samples. (C) Immunoblot analysis of survivin with
ons were the same as in Fig. 5A. b Actin was employed as an internal control. (D)
d KLE (right panel) cells. The concentrations were the same as in Fig. 5A. Both panels
the mean ± SE of three independent experiments. *P < 0.05 vs. 0 nM (DMSO alone).
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this report and demonstrate that survivin inhibition selectively
triggers apoptosis only in cancer cell lines, regardless of p53 status.
In addition, survivin protein expression was uniformly upregulated
in endometrial cancer cells. Although most chemotherapeutic
agents have adverse effects on normal cells and tissues, survivin
inhibitor could avoid these effects.

Among several survivin inhibitors, YM155 is a very successful
drug. It was selected via a high-throughput screening assay with
a survivin-promoter luciferase assay [48]. It inhibited the prolifer-
ation of various cancer cell lines [49]. In addition, phase II clinical
trials were performed in melanoma, prostate cancer and
non-Hodgkin’s lymphoma patients [36,37,50]. In our research,
YM155 also induced massive apoptosis in endometrial cancer cells
and subsequently suppressed cellular proliferation. Although the
suppression of survivin protein expression was in the same range
following treatment with both YM155 and siBIRC5, the apoptotic
cell population was significantly higher in YM155 than in
siBIRC5. Thus, YM155 might function as more than a survivin inhi-
bitor. Recent reports have demonstrated an upregulation of death
receptor 5 (DR5) and a downregulation of Mcl-1 by YM155
[51,52]. Therefore, further investigation will be needed to clarify
the mechanism of YM155-inducible apoptosis in endometrial can-
cer cells.

Our study has some limitations. First, SIRT6 attenuation was
confirmed in the cell lines. However, the immunohistochemical
findings did not show a significant difference in overall survival
according to nuclear SIRT6 expression. The prognosis of endome-
trial cancer patients is relatively good, and we therefore need to
assess more patients to determine statistical significance.
Survivin upregulation has been reported in endometrial cancer
specimens [53,54], whereas only one report has focused on SIRT6
expression in endometrial cancer patients [55]. The latter report
presented higher SIRT6 expression compared with the normal
endometrium levels based on real-time RT-PCR, in conflict with
our data. Our data demonstrated the attenuation of SIRT6 protein
expression. Therefore, this discrepancy might result from the
post-transcriptional modification of SIRT6. Second, we focused on
the SIRT6-dependent inhibition of survivin to explain the mecha-
nism of apoptosis induction. However, Bax activation and Bcl-2
inactivation coexisted in AN3CA cells, and these effects thus also
contribute to apoptosis induction by SIRT6. In contrast to the
AN3CA cells, these effects were not observed in KLE cells, and the
apoptosis induced by SIRT6 might thus be cell type dependent.
Finally, our data suggest that SIRT6 is a potent tumor suppressor
in endometrial cancer. However, there exist no specific SIRT6 acti-
vators that are available in the clinic. In addition, a detailed regu-
latory mechanism of SIRT6 has not shown more than
ubiquitination [56]. Therefore, unveiling the mechanism would
be helpful for identifying a specific SIRT6 activator.

In this study, we clarify the tumor suppressive role of SIRT6 and
the efficacy of YM155 in endometrial cancer cells. Our findings
may shed light on endometrial carcinogenesis. Given that YM155
is a clinically used drug, it could be a new therapeutic option for
endometrial cancer.
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