
Applied Mathematics Letters18 (2005) 1019–1026

www.elsevier.com/locate/aml

On random fixed point theorems of random monotone operators

Guozhen Li∗, Huagui Duan

Department of Mathematics, Jiangxi Normal University, Jiangxi, Nanchang 330027, PR China

Received 20 June 2003; accepted 14 October 2004

Abstract

In this paper, we investigate the existence of random fixed point for random mixed monotone operators and
random increasing (decreasing) operators and obtain some new random fixed point theorems.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Some random fixed point theorems play a main role in the developing theory of random differential
and random integral equations [1]. The study of random fixed point theorems was initiated by
S̆pac̆cek [2] and Han̆s [3]. They proved the random contraction mapping theorem. Mukherjea [4] proved
the random Schauder fixed point theorem. Sehgaland and Waters [5] proved the random Rothe fixed
point theorem. The random fixed point theory and applications have been developed rapidly in recent
years (see, e.g. [7–10]).

In this paper, we investigate some new problems: the existence of a random fixed point for random
monotone operators.

Let E be a separable real Banach space,(Ω,Σ , µ) be a complete measure space,(E, β) a measurable
space, whereβ denotes theσ -algebra of all Borel subsets generated by all open subsets inE. D is a
nonempty subset ofE. Let P be a cone onE [6], and henceP defines a partial ordering “≤” as follows:
y − x ∈ P, for eachx, y ∈ E ⇐⇒ x ≤ y. A cone P in E is said to benormal if there exists a
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constantN > 0 such thatθ ≤ x ≤ y implies‖x‖ ≤ N‖y‖. If it contains interior points, i.e.,i (P) �= ∅,
then P is called a solid cone. Assume thatu0, v0 ∈ E, u0 < v0 (u0 ≤ v0 but u0 �= v0), thenthe set
[u0, v0] = {u ∈ E | u0 ≤ u ≤ v0} is said to a ordered interval inE.

Definition 1.1. A mappingT : Ω × D → E is called a random increasing (decreasing) operator if for
any fixedx ∈ D, T(·, x) : Ω → E is measurable, and for any fixedω ∈ Ω , T(ω, ·) : D → E is
increasing (decreasing) operator, i.e.,x, y ∈ D, x ≤ y ⇒ A(ω, x) ≤ A(ω, y)(or, A(ω, x) ≥ A(ω, y)).

Definition 1.2. A mappingT : Ω × D × D → E is called a random mixed monotone operator if for any
fixed (x, y) ∈ D, T(·, x, y) : Ω → E is measurable, and for any fixedω ∈ Ω , T(ω, ·, ·) : D × D → E
is mixed monotone operator, i.e.,x1 ≤ x2, y2 ≤ y1 ⇒ A(ω, x1, y1) ≤ A(ω, x2, y2).

Definition 1.3 ([1] ). A random operatorT : Ω × D → E is said to be continuous if for any fixed
ω ∈ Ω , T(ω, ·) : D → E is continuous.

Definition 1.4 ([1] ). A mapping A(ω) : Ω → L(E) is said to be a random endomorphism ofE if A(ω)

is anL(E)-valued random variable, whereL(E) denotes linear bounded operator space ofE.

Definition 1.5 ([1] ). AssumeA : Ω × D → E be a random operator. Ifξ(ω) : Ω → E is a E-valued
measurable vector function such thatA(ω, ξ(ω)) = ξ(ω)a.e., thenξ(ω) is called a random fixed point of
the random operatorA.

Let Zi be separable Banach spaces,(Zi , βi )(i = 1, 2) measurable spaces. SetZ = Z1 × Z2,
‖x‖ = Max{‖x1‖, ‖x2‖} for eachx = (x1, x2) in Z. Obviously, (Z, ‖ · ‖) is also a separable Banach
space and(Z, β1 × β2) is a measurable space. Moreover, we have the following lemma.

Lemma 1.6. Assume that di : Ω → Zi (i = 1, 2); let

d1 × d2 : ω → di (ω) × di (ω) = (di (ω), di (ω)) ∈ Z.

Then d1 × d2 is measurable ⇐⇒ di (i = 1, 2) are measurable, i.e., x(ω) = (x1(ω), x2(ω)) : Ω → Z
is measurable ⇐⇒ xi (ω) : Ω → Zi are measurable, i= 1, 2.

2. Main results

Theorem 2.1. Let A, B : Ω × [u0, v0] × [u0, v0] → E be two random continuous mixed monotone
operators satisfying the following conditions:

(a) there exists a random endomorphismβ(ω) : Ω → L(E), ‖β(ω)‖ < 1 such that

A(ω, v, u) − B(ω, u, v) ≤ β(ω)(v − u),∀ω ∈ Ω, u0 ≤ u ≤ v ≤ v0;
(b) B(ω, v, u) ≤ A(ω, u, v),∀ω ∈ Ω, u0 ≤ u ≤ v ≤ v0;
(c) there exist random endomorphisms a(ω) : Ω → L(E) and b(ω) : Ω → L(E) and

‖a(ω) + b(ω) + β(ω)‖ < 1 such that

u0 + a(ω)(v0 − u0) ≤ B(ω, u0, v0), A(ω, v0, u0) ≤ v0 − b(ω)(v0 − u0).

Then the system of random operator equations{
A(ω, u, u) = u,

B(ω, u, u) = u
(1)
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has a random common unique solution u∗(ω) in [u0, v0] and the iterative sequences{
un+1(ω) = B(ω, un(ω), vn(ω)) − a(ω)(vn(ω) − un(ω)),

vn+1(ω) = A(ω, vn(ω), un(ω)) + b(ω)(vn(ω) − un(ω)), n = 0, 1, . . .
(2)

both converge to u∗(ω) and have the convergence rate

‖u∗(ω) − un(ω)(or, vn(ω))‖ ≤ N‖a(ω) + b(ω) + β(ω)‖n‖v0 − u0‖, (3)

where N is the normal constant of P. Moreover, for any initial x0 ∈ [u0, v0], xn+1(ω) =
B(ω, xn(ω), xn(ω)), wehave u∗(ω) = limn→∞ xn(ω).

Proof. (i) First, by induction, we can prove that

un−1(ω) ≤ un(ω) ≤ vn(ω) ≤ vn−1(ω), ∀ω ∈ Ω, n = 1, 2, . . . . (4)

(ii) By (a), (2) and (4), we have

θ ≤ vn(ω) − un(ω) = A(ω, vn−1(ω), un−1(ω)) − B(ω, un−1(ω), vn−1(ω))

+ (a(ω) + b(ω))(vn−1(ω) − un−1(ω))

≤ β(ω)(vn−1(ω) − un−1(ω)) + (a(ω) + b(ω))(vn−1(ω) − un−1(ω))

= (a(ω) + b(ω) + β(ω))(vn−1(ω) − un−1(ω))

≤ · · · ≤ (a(ω) + b(ω) + β(ω))n(v0 − u0). (5)

From (4) and (5), weobtain, for any positive integerm,

θ ≤ un+m(ω) − un(ω) ≤ (a(ω) + b(ω) + β(ω))n(v0 − u0), (6)

θ ≤ vn(ω) − vn+m(ω) ≤ (a(ω) + b(ω) + β(ω))n(v0 − u0). (7)

It follows from (5), (6), (7) and thenormality of P that

‖vn(ω) − un(ω)‖ ≤ N‖a(ω) + b(ω) + β(ω)‖n‖v0 − u0‖, (8)

‖un+m(ω) − un(ω)‖ ≤ N‖a(ω) + b(ω) + β(ω)‖n‖v0 − u0‖, (9)

‖vn(ω) − vn+m(ω)‖ ≤ N‖a(ω) + b(ω) + β(ω)‖n‖v0 − u0‖. (10)

(9) and (10) imply that{un(ω)} and{vn(ω)} are Cauchy sequences inE, hence there existsu′(ω), v′(ω) ∈
E such that limn→∞ un(ω) = u′(ω), limn→∞ vn(ω) = v′(ω) andun(ω) ≤ u′(ω) ≤ v′(ω) ≤ vn(ω). By

the normality ofP andfrom (8), we haveu∗(ω)
�= u′(ω) = v′(ω) ∈ [u0, v0], and so

un(ω) ≤ u∗(ω) ≤ vn(ω), n = 0, 1, . . . . (11)

(iii) Next we prove thatu∗(ω) : Ω → [u0, v0] is a random variable.
By (2), we haveu1(ω) = B(ω, u0, v0) − a(ω)(v0 − u0). Since B(ω, u0, v0) is measurable and

a(ω)x is a random linear continuous operator,u1(ω) : Ω → [u0, v0] is also measurable. By the
measurable theorem of complex operators andLemma 1.6, it is not difficult to prove thatun+1(ω) is
measurable. Similarly, we can obtain thatvn+1(ω) is also measurable. From [1, Theorem 1.6], we have
u∗(ω) = limn→∞ un(ω) is measurable.

(iv) Now we prove thatu∗(ω) is theunique common solution of (1) in [u0, v0]. By hypothesis, noticing
(11), we have

un(ω) ≤ un+1(ω) ≤ un+1(ω) + a(ω)(vn(ω) − un(ω)) = B(ω, un(ω), vn(ω))
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≤ B(ω, u∗(ω), u∗(ω)) ≤ A(ω, u∗(ω), u∗(ω)) ≤ A(ω, vn(ω), un(ω))

≤ A(ω, vn(ω), un(ω)) + b(ω)(vn(ω) − un(ω)) = vn+1(ω) ≤ vn(ω).

That is

un(ω) ≤ B(ω, u∗(ω), u∗(ω)) ≤ A(ω, u∗(ω), u∗(ω)) ≤ vn(ω). (12)

Sinceun(ω) → u∗(ω), vn(ω) → u∗(ω)(n → ∞), weobtain

A(ω, u∗(ω), u∗(ω)) = B(ω, u∗(ω), u∗(ω)).

And henceu∗(ω) is the random common solution of (1) in [u0, v0]. Now supposev∗(ω) ∈ [u0, v0] is
another solution of (1). By induction, it is easy to prove that

un(ω) ≤ v∗(ω) ≤ vn(ω), n = 0, 1, . . . . (13)

Sinceun(ω) → u∗(ω), vn(ω) → u∗(ω)(n → ∞), so weobtainu∗(ω) = v∗(ω).
(v) In (9) and (10), taking m → ∞, we getconvergence rate (3).
(vi) For any initialx0 ∈ [u0, v0], by hypothesis and induction, it is easy to prove that

un(ω) ≤ xn(ω) ≤ vn(ω), n = 0, 1, . . . . (14)

Similarly, sinceun(ω) → u∗(ω), vn(ω) → u∗(ω) we have limn→∞ xn(ω) = u∗(ω). This completes the
proof ofTheorem 2.1. �
Theorem 2.2. Let A : Ω × [u0, v0] × [u0, v0] → E be arandom continuous mixed monotone operator
satisfying the following conditions:

(a) there exists a random endomorphismβ(ω) : Ω → L(E), ‖β(ω)‖ < 1 such that

A(ω, v, u) − A(ω, u, v) ≤ β(ω)(v − u),∀ω ∈ Ω, u0 ≤ u ≤ v ≤ v0;
(b) there exist random endomorphisms a(ω) : Ω → L(E) and b(ω) : Ω → L(E) and

‖a(ω) + b(ω) + β(ω)‖ < 1 such that

u0 + a(ω)(v0 − u0) ≤ A(ω, u0, v0), A(ω, v0, u0) ≤ v0 − b(ω)(v0 − u0).

Then random operator A has a unique random fixed point u∗(ω) in [u0, v0] and the iterative
sequences{

un+1(ω) = A(ω, un(ω), vn(ω)) − a(ω)(vn(ω) − un(ω)),

vn+1(ω) = A(ω, vn(ω), un(ω)) + b(ω)(vn(ω) − un(ω)), n = 0, 1, . . .

both converge to u∗(ω) and have the convergence rate

‖u∗(ω) − un(ω)(or, vn(ω))‖ ≤ N‖a(ω) + b(ω) + β(ω)‖n‖v0 − u0‖,
where N is the normal constant of P. Moreover, for any initial x0 ∈ [u0, v0], xn+1(ω) =
A(ω, xn(ω), xn(ω)), wehave u∗(ω) = limn→∞ xn(ω).

Proof. Weonly need to setA = B in Theorem 2.1. �
Theorem 2.3. Let A : Ω × [u0, v0] → E be a random continuous increasing operator satisfying the
following conditions:

(a) there exists a random endomorphismβ(ω) : Ω → L(E), ‖β(ω)‖ < 1 such that

A(ω, v) − A(ω, u) ≤ β(ω)(v − u),∀ω ∈ Ω, u0 ≤ u ≤ v ≤ v0;
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(b) there exist random endomorphisms a(ω) : Ω → L(E) and b(ω) : Ω → L(E) and
‖a(ω) + b(ω) + β(ω)‖ < 1 such that

u0 + a(ω)(v0 − u0) ≤ A(ω, u0), A(ω, v0) ≤ v0 − b(ω)(v0 − u0).

Then A(ω, x) has a unique random fixed point x∗(ω) in [u0, v0] and the iterative sequences{
un+1(ω) = A(ω, un(ω)) − a(ω)(vn(ω) − un(ω)),

vn+1(ω) = A(ω, vn(ω)) + b(ω)(vn(ω) − un(ω)), n = 0, 1, . . .

both converge to x∗(ω) and have the convergence rate

‖x∗(ω) − un(ω)(or, vn(ω))‖ ≤ N‖a(ω) + b(ω) + β(ω)‖n‖v0 − u0‖,
where N is the normal constant of P. Moreover, for any initial x0 ∈ [u0, v0], xn+1(ω) = A(ω, xn(ω)),
we have x∗(ω) = limn→∞ xn(ω).

Proof. We only need to setA(ω, u, v) = A(ω, u) in Theorem 2.2. �
Theorem 2.4. Let A : Ω × [u0, v0] → E be arandom continuous decreasing operator satisfying the
following conditions:

(a) there exists a random endomorphismβ(ω) : Ω → L(E), ‖β(ω)‖ < 1 such that

A(ω, u) − A(ω, v) ≤ β(ω)(v − u),∀ω ∈ Ω, u0 ≤ u ≤ v ≤ v0;
(b) there exist random endomorphisms a(ω) : Ω → L(E) and b(ω) : Ω → L(E) and

‖a(ω) + b(ω) + β(ω)‖ < 1 such that

u0 + a(ω)(v0 − u0) ≤ A(ω, v0), A(ω, u0) ≤ v0 − b(ω)(v0 − u0).

Then A(ω, x) has a unique random fixed point x∗(ω) in [u0, v0] and the iterative sequences{
un+1(ω) = A(ω, vn(ω)) − a(ω)(vn(ω) − un(ω)),

vn+1(ω) = A(ω, un(ω)) + b(ω)(vn(ω) − un(ω)), n = 0, 1, . . .

both converge to x∗(ω) and have the convergence rate

‖x∗(ω) − un(ω)(or, vn(ω))‖ ≤ N‖a(ω) + b(ω) + β(ω)‖n‖v0 − u0‖,
where N is the normal constant of P. Moreover, for any initial x0 ∈ [u0, v0], xn+1(ω) = A(ω, xn(ω)),
we have x∗(ω) = limn→∞ xn(ω).

Proof. We only need to setA(ω, u, v) = A(ω, v) in Theorem 2.2. �
Remark 1. In particular, if β(ω), a(ω), b(ω) in Theorems 2.1–2.4are measurable functions mappingΩ
to [0, 1], our conclusions also hold. Indeed, we only need to letβ(ω)I , a(ω)I , b(ω)I be corresponding
random endomorphisms inTheorems 2.1–2.4, whereI is the identityoperator inE.

Theorem 2.5. Let P be a normal and solid cone of E, and let A: Ω × i (P)× i (P) → i (P) be a random
continuous mixed monotone operator; suppose that

(a) for fixed(ω, y), A(ω, ·, y) : i (P) → i (P) satisfies:

A(ω, tx, y) ≥ tα A(ω, x, y), 0 < t < 1,∀x ∈ i (P),

and for fixed(ω, x), A(ω, x, ·) : i (P) → i (P) satisfies:

A(ω, x, sy) ≥ s−α A(ω, x, y), s > 1,∀y ∈ i (P),
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where0 < α < 1
2.

(b) there exist u0, v0 ∈ i (P) andε > 0 such that, for everyω ∈ Ω

θ � u0 ≤ v0, u0 ≤ A(ω, u0, v0), A(ω, v0, u0) ≤ v0 (15)

A(ω, θ, v0) ≥ ε A(ω, v0, u0). (16)

Then A has exactly one random fixed point x∗(ω) in [u0, v0], and for any initial x0, y0 ∈ [u0, v0],
constructing successively the sequences

xn(ω) = A(ω, xn−1(ω), yn−1(ω)), yn(ω) = A(ω, yn−1(ω), xn−1(ω)) (17)

both converge to x∗(ω).

Proof. Let

un(ω) = A(ω, un−1(ω), vn−1(ω)), vn(ω) = A(ω, vn−1(ω), un−1(ω))(n = 1, 2, . . .).

By induction, it is easy to show

θ � u0 ≤ u1(ω) ≤ · · · ≤ un(ω) ≤ · · · ≤ vn(ω) ≤ · · · ≤ v1(ω) ≤ v0. (18)

Hence by (16)

un(ω) ≥ u1(ω) ≥ εv1(ω) ≥ εvn(ω). (19)

Set

tn(ω) = sup{t (ω) > 0 | un(ω) ≥ t (ω)vn(ω)} (n = 1, 2, . . .), (20)

then

un(ω) ≥ tn(ω)vn(ω), (21)

and on account of the factun+1(ω) ≥ un(ω) ≥ tn(ω)vn(ω) ≥ tn(ω)vn+1(ω), we have

0 < ε ≤ t1(ω) ≤ t2(ω) ≤ · · · ≤ tn(ω) ≤ · · · ≤ 1, (22)

which implies that limn→∞ tn(ω) = t∗(ω) exists andε ≤ t∗(ω) ≤ 1. By condition (a), it is not difficult
to prove thatt∗(ω) = 1. From (18) and (21), we have

θ ≤ un+m(ω) − un(ω) ≤ vn(ω) − un(ω) ≤ (1 − tn(ω))vn(ω) ≤ (1 − tn(ω))v0,

θ ≤ vn(ω) − vn+m(ω) ≤ vn(ω) − un(ω) ≤ (1 − tn(ω))vn(ω) ≤ (1 − tn(ω))v0.

SinceP is normal andtn(ω) → 1, {un(ω)} and{vn(ω)} are Cauchy sequences inE, hence there exists
u∗(ω), v∗(ω) ∈ E such that limn→∞ un(ω) = u∗(ω), limn→∞ vn(ω) = v∗(ω) and

un(ω) ≤ u∗(ω) ≤ v∗(ω) ≤ vn(ω). (23)

By the normality ofP andvn(ω) − un(ω) ≤ 2(1 − tn(ω))v0, we getx∗(ω) = u∗(ω) = v∗(ω). Since
A(ω, x, y) is continuous in(x, y), we havex∗(ω) = A(ω, x∗(ω), x∗(ω)). Also sinceA(ω, x, y) is
a random continuous operator, it follows fromLemma 1.6and the measurable theorem of complex
operators thatun(ω), vn(ω)(n = 1, 2, . . .) are all measurable, and hencex∗(ω) is also measurable. The
fact thatu0 ≤ un(ω) ≤ x∗(ω) ≤ vn(ω) ≤ v0 shows thatx∗(ω) is a random fixed point ofA(ω, x, y) in
[u0, v0].
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Next we prove thatx∗(ω) is unique. Indeed, supposex′(ω) is another random fixed point in[u0, v0].
By induction, it is easy to prove that

un(ω) ≤ x′(ω) ≤ vn(ω), ∀ω ∈ Ω, n = 1, 2, . . . . (24)

Sinceun(ω) → x∗(ω), vn(ω) → x∗(ω) andP is normal, by (24) weobtainx′(ω) = x∗(ω).
Finally, similar to (25), for every(x0, y0) ∈ [u0, v0], ω ∈ Ω , we have

un(ω) ≤ xn(ω) ≤ vn(ω), un(ω) ≤ yn(ω) ≤ vn(ω), n = 1, 2, . . . .

Sinceun(ω) → x∗(ω), vn(ω) → x∗(ω) andP is normal,we have

‖xn(ω) − x∗(ω)‖ → 0, ‖yn(ω) − x∗(ω)‖ → 0, n ∈ ∞.

This completes the proof ofTheorem 2.5. �

3. Applications

Weconsider the following random Hammerstein integral equation(∗):

x(ω, t) = Ax(ω, t) =
∫ +∞

−∞
k(ω, t, s)(1 + √

x(ω, s))ds.

Suppose that

(i) the kernelk(ω, t, s) is non-negative, bounded and random continuous onΩ × R1 × R1.
(ii) for any bounded continuous functionsu(t), v(t) satisfying the following condition:

1

9
≤ u(t) ≤ v(t) ≤ 1,

there existsβ ∈ (0, 1) such that for anyω ∈ Ω ,∫ +∞

−∞
k(ω, t, s)[√v(s) − √

u(s)]ds ≤ β[v(t) − u(t)].
(iii) there existsa, b ∈ [0, 1] anda + b + β < 1, such that for anyω ∈ Ω ,

3

4

(
1

9
+ 8

9
a

)
≤=

∫ +∞

−∞
k(ω, t, s)

(
1 + √

x(ω, s)
)

ds ≤ 1

2

(
1 − 8

9
b

)
.

Then for equation(∗) there exists a unique random continuous solutionx∗(ω, t) and 1
9 ≤ x∗(ω, t)

≤ 1.

Proof. It is easy to prove the conclusion usingTheorem 2.3. �
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