On random fixed point theorems of random monotone operators

Guozhen Li*, Huagui Duan
Department of Mathematics, Jiangxi Normal University, Jiangxi, Nanchang 330027, PR China

Received 20 June 2003; accepted 14 October 2004

Abstract

In this paper, we investigate the existence of random fixed point for random mixed monotone operators and random increasing (decreasing) operators and obtain some new random fixed point theorems.

© 2005 Elsevier Ltd. All rights reserved.
Keywords: Random mixed monotone operators; Random increasing (decreasing) operators; Random fixed point

1. Introduction

Some random fixed point theorems play a main role in the developing theory of random differential and random integral equations [1]. The study of random fixed point theorems was initiated by S̆pacček [2] and Hans̆ [3]. They proved the random contraction mapping theorem. Mukherjea [4] proved the random Schauder fixed point theorem. Sehgaland and Waters [5] proved the random Rothe fixed point theorem. The random fixed point theory and applications have been developed rapidly in recent years (see, e.g. [7-10]).

In this paper, we investigate some new problems: the existence of a random fixed point for random monotone operators.

Let E be a separable real Banach space, (Ω, Σ, μ) be a complete measure space, (E, β) a measurable space, where β denotes the σ-algebra of all Borel subsets generated by all open subsets in $E . D$ is a nonempty subset of E. Let P be a cone on E [6], and hence P defines a partial ordering " \leq " as follows: $y-x \in P$, for each $x, y \in E \Longleftrightarrow x \leq y$. A cone P in E is said to be normal if there exists a

[^0]constant $N>0$ such that $\theta \leq x \leq y$ implies $\|x\| \leq N\|y\|$. If it contains interior points, i.e., $i(P) \neq \emptyset$, then P is called a solid cone. Assume that $u_{0}, v_{0} \in E, u_{0}<v_{0}\left(u_{0} \leq v_{0}\right.$ but $\left.u_{0} \neq v_{0}\right)$, then the set [$\left.u_{0}, v_{0}\right]=\left\{u \in E \mid u_{0} \leq u \leq v_{0}\right\}$ is said to a ordered interval in E.

Definition 1.1. A mapping $T: \Omega \times D \rightarrow E$ is called a random increasing (decreasing) operator if for any fixed $x \in D, T(\cdot, x): \Omega \rightarrow E$ is measurable, and for any fixed $\omega \in \Omega, T(\omega, \cdot): D \rightarrow E$ is increasing (decreasing) operator, i.e., $x, y \in D, x \leq y \Rightarrow A(\omega, x) \leq A(\omega, y)(o r, A(\omega, x) \geq A(\omega, y))$.

Definition 1.2. A mapping $T: \Omega \times D \times D \rightarrow E$ is called a random mixed monotone operator if for any fixed $(x, y) \in D, T(\cdot, x, y): \Omega \rightarrow E$ is measurable, and for any fixed $\omega \in \Omega, T(\omega, \cdot, \cdot): D \times D \rightarrow E$ is mixed monotone operator, i.e., $x_{1} \leq x_{2}, y_{2} \leq y_{1} \Rightarrow A\left(\omega, x_{1}, y_{1}\right) \leq A\left(\omega, x_{2}, y_{2}\right)$.

Definition 1.3 ([1]). A random operator $T: \Omega \times D \rightarrow E$ is said to be continuous if for any fixed $\omega \in \Omega, T(\omega, \cdot): D \rightarrow E$ is continuous.

Definition 1.4 ([1]). A mapping $A(\omega): \Omega \rightarrow \mathcal{L}(E)$ is said to be a random endomorphism of E if $A(\omega)$ is an $\mathcal{L}(E)$-valued random variable, where $\mathcal{L}(E)$ denotes linear bounded operator space of E.

Definition 1.5 ([1]). Assume $A: \Omega \times D \rightarrow E$ be a random operator. If $\xi(\omega): \Omega \rightarrow E$ is a E-valued measurable vector function such that $A(\omega, \xi(\omega))=\xi(\omega)_{\text {a.e. }}$, then $\xi(\omega)$ is called a random fixed point of the random operator A.

Let Z_{i} be separable Banach spaces, $\left(Z_{i}, \beta_{i}\right)(i=1,2)$ measurable spaces. Set $Z=Z_{1} \times Z_{2}$, $\|x\|=\operatorname{Max}\left\{\left\|x_{1}\right\|,\left\|x_{2}\right\|\right\}$ for each $x=\left(x_{1}, x_{2}\right)$ in Z. Obviously, $(Z,\|\cdot\|)$ is also a separable Banach space and $\left(Z, \beta_{1} \times \beta_{2}\right)$ is a measurable space. Moreover, we have the following lemma.

Lemma 1.6. Assume that $d_{i}: \Omega \rightarrow Z_{i}(i=1,2)$; let

$$
d_{1} \times d_{2}: \omega \rightarrow d_{i}(\omega) \times d_{i}(\omega)=\left(d_{i}(\omega), d_{i}(\omega)\right) \in Z
$$

Then $d_{1} \times d_{2}$ is measurable $\Longleftrightarrow d_{i}(i=1,2)$ are measurable, i.e., $x(\omega)=\left(x_{1}(\omega), x_{2}(\omega)\right): \Omega \rightarrow Z$ is measurable $\Longleftrightarrow x_{i}(\omega): \Omega \rightarrow Z_{i}$ are measurable, $i=1,2$.

2. Main results

Theorem 2.1. Let $A, B: \Omega \times\left[u_{0}, v_{0}\right] \times\left[u_{0}, v_{0}\right] \rightarrow E$ be two random continuous mixed monotone operators satisfying the following conditions:
(a) there exists a random endomorphism $\beta(\omega): \Omega \rightarrow \mathcal{L}(E),\|\beta(\omega)\|<1$ such that

$$
A(\omega, v, u)-B(\omega, u, v) \leq \beta(\omega)(v-u), \forall \omega \in \Omega, u_{0} \leq u \leq v \leq v_{0}
$$

(b) $B(\omega, v, u) \leq A(\omega, u, v), \forall \omega \in \Omega, u_{0} \leq u \leq v \leq v_{0}$;
(c) there exist random endomorphisms $a(\omega): \Omega \rightarrow \mathcal{L}(E)$ and $b(\omega): \Omega \rightarrow \mathcal{L}(E)$ and $\|a(\omega)+b(\omega)+\beta(\omega)\|<1$ such that

$$
u_{0}+a(\omega)\left(v_{0}-u_{0}\right) \leq B\left(\omega, u_{0}, v_{0}\right), A\left(\omega, v_{0}, u_{0}\right) \leq v_{0}-b(\omega)\left(v_{0}-u_{0}\right)
$$

Then the system of random operator equations

$$
\left\{\begin{array}{l}
A(\omega, u, u)=u \tag{1}\\
B(\omega, u, u)=u
\end{array}\right.
$$

has a random common unique solution $u^{*}(\omega)$ in $\left[u_{0}, v_{0}\right]$ and the iterative sequences

$$
\left\{\begin{array}{l}
u_{n+1}(\omega)=B\left(\omega, u_{n}(\omega), v_{n}(\omega)\right)-a(\omega)\left(v_{n}(\omega)-u_{n}(\omega)\right), \tag{2}\\
v_{n+1}(\omega)=A\left(\omega, v_{n}(\omega), u_{n}(\omega)\right)+b(\omega)\left(v_{n}(\omega)-u_{n}(\omega)\right), n=0,1, \ldots
\end{array}\right.
$$

both converge to $u^{*}(\omega)$ and have the convergence rate

$$
\begin{equation*}
\| u^{*}(\omega)-u_{n}(\omega)\left(\text { or, } v_{n}(\omega)\right)\|\leq N\| a(\omega)+b(\omega)+\beta(\omega)\left\|^{n}\right\| v_{0}-u_{0} \|, \tag{3}
\end{equation*}
$$

where N is the normal constant of P. Moreover, for any initial $x_{0} \in\left[u_{0}, v_{0}\right], x_{n+1}(\omega)=$ $B\left(\omega, x_{n}(\omega), x_{n}(\omega)\right)$, we have $u^{*}(\omega)=\lim _{n \rightarrow \infty} x_{n}(\omega)$.

Proof. (i) First, by induction, we can prove that

$$
\begin{equation*}
u_{n-1}(\omega) \leq u_{n}(\omega) \leq v_{n}(\omega) \leq v_{n-1}(\omega), \quad \forall \omega \in \Omega, n=1,2, \ldots \tag{4}
\end{equation*}
$$

(ii) By (a), (2) and (4), we have

$$
\begin{align*}
\theta \leq & v_{n}(\omega)-u_{n}(\omega)=A\left(\omega, v_{n-1}(\omega), u_{n-1}(\omega)\right)-B\left(\omega, u_{n-1}(\omega), v_{n-1}(\omega)\right) \\
& +(a(\omega)+b(\omega))\left(v_{n-1}(\omega)-u_{n-1}(\omega)\right) \\
\leq & \beta(\omega)\left(v_{n-1}(\omega)-u_{n-1}(\omega)\right)+(a(\omega)+b(\omega))\left(v_{n-1}(\omega)-u_{n-1}(\omega)\right) \\
= & (a(\omega)+b(\omega)+\beta(\omega))\left(v_{n-1}(\omega)-u_{n-1}(\omega)\right) \\
\leq & \cdots \leq(a(\omega)+b(\omega)+\beta(\omega))^{n}\left(v_{0}-u_{0}\right) . \tag{5}
\end{align*}
$$

From (4) and (5), we obtain, for any positive integer m,

$$
\begin{align*}
& \theta \leq u_{n+m}(\omega)-u_{n}(\omega) \leq(a(\omega)+b(\omega)+\beta(\omega))^{n}\left(v_{0}-u_{0}\right), \tag{6}\\
& \theta \leq v_{n}(\omega)-v_{n+m}(\omega) \leq(a(\omega)+b(\omega)+\beta(\omega))^{n}\left(v_{0}-u_{0}\right) . \tag{7}
\end{align*}
$$

It follows from (5), (6), (7) and the normality of P that

$$
\begin{align*}
& \left\|v_{n}(\omega)-u_{n}(\omega)\right\| \leq N\|a(\omega)+b(\omega)+\beta(\omega)\|^{n}\left\|v_{0}-u_{0}\right\|, \tag{8}\\
& \left\|u_{n+m}(\omega)-u_{n}(\omega)\right\| \leq N\|a(\omega)+b(\omega)+\beta(\omega)\|^{n}\left\|v_{0}-u_{0}\right\|, \tag{9}\\
& \left\|v_{n}(\omega)-v_{n+m}(\omega)\right\| \leq N\|a(\omega)+b(\omega)+\beta(\omega)\|^{n}\left\|v_{0}-u_{0}\right\| . \tag{10}
\end{align*}
$$

(9) and (10) imply that $\left\{u_{n}(\omega)\right\}$ and $\left\{v_{n}(\omega)\right\}$ are Cauchy sequences in E, hence there exists $u^{\prime}(\omega), v^{\prime}(\omega) \in$ E such that $\lim _{n \rightarrow \infty} u_{n}(\omega)=u^{\prime}(\omega), \lim _{n \rightarrow \infty} v_{n}(\omega)=v^{\prime}(\omega)$ and $u_{n}(\omega) \leq u^{\prime}(\omega) \leq v^{\prime}(\omega) \leq v_{n}(\omega)$. By the normality of P and from (8), we have $u^{*}(\omega) \triangleq u^{\prime}(\omega)=v^{\prime}(\omega) \in\left[u_{0}, v_{0}\right]$, and so

$$
\begin{equation*}
u_{n}(\omega) \leq u^{*}(\omega) \leq v_{n}(\omega), \quad n=0,1, \ldots \tag{11}
\end{equation*}
$$

(iii) Next we prove that $u^{*}(\omega): \Omega \rightarrow\left[u_{0}, v_{0}\right]$ is a random variable.

By (2), we have $u_{1}(\omega)=B\left(\omega, u_{0}, v_{0}\right)-a(\omega)\left(v_{0}-u_{0}\right)$. Since $B\left(\omega, u_{0}, v_{0}\right)$ is measurable and $a(\omega) x$ is a random linear continuous operator, $u_{1}(\omega): \Omega \rightarrow\left[u_{0}, v_{0}\right]$ is also measurable. By the measurable theorem of complex operators and Lemma 1.6, it is not difficult to prove that $u_{n+1}(\omega)$ is measurable. Similarly, we can obtain that $v_{n+1}(\omega)$ is also measurable. From [1, Theorem 1.6], we have $u^{*}(\omega)=\lim _{n \rightarrow \infty} u_{n}(\omega)$ is measurable.
(iv) Now we prove that $u^{*}(\omega)$ is the unique common solution of (1) in [$\left.u_{0}, v_{0}\right]$. By hypothesis, noticing (11), we have

$$
u_{n}(\omega) \leq u_{n+1}(\omega) \leq u_{n+1}(\omega)+a(\omega)\left(v_{n}(\omega)-u_{n}(\omega)\right)=B\left(\omega, u_{n}(\omega), v_{n}(\omega)\right)
$$

$$
\begin{aligned}
& \leq B\left(\omega, u^{*}(\omega), u^{*}(\omega)\right) \leq A\left(\omega, u^{*}(\omega), u^{*}(\omega)\right) \leq A\left(\omega, v_{n}(\omega), u_{n}(\omega)\right) \\
& \leq A\left(\omega, v_{n}(\omega), u_{n}(\omega)\right)+b(\omega)\left(v_{n}(\omega)-u_{n}(\omega)\right)=v_{n+1}(\omega) \leq v_{n}(\omega)
\end{aligned}
$$

That is

$$
\begin{equation*}
u_{n}(\omega) \leq B\left(\omega, u^{*}(\omega), u^{*}(\omega)\right) \leq A\left(\omega, u^{*}(\omega), u^{*}(\omega)\right) \leq v_{n}(\omega) \tag{12}
\end{equation*}
$$

Since $u_{n}(\omega) \rightarrow u^{*}(\omega), v_{n}(\omega) \rightarrow u^{*}(\omega)(n \rightarrow \infty)$, we obtain

$$
A\left(\omega, u^{*}(\omega), u^{*}(\omega)\right)=B\left(\omega, u^{*}(\omega), u^{*}(\omega)\right) .
$$

And hence $u^{*}(\omega)$ is the random common solution of (1) in [u_{0}, v_{0}]. Now suppose $v^{*}(\omega) \in\left[u_{0}, v_{0}\right]$ is another solution of (1). By induction, it is easy to prove that

$$
\begin{equation*}
u_{n}(\omega) \leq v^{*}(\omega) \leq v_{n}(\omega), \quad n=0,1, \ldots \tag{13}
\end{equation*}
$$

Since $u_{n}(\omega) \rightarrow u^{*}(\omega), v_{n}(\omega) \rightarrow u^{*}(\omega)(n \rightarrow \infty)$, so we obtain $u^{*}(\omega)=v^{*}(\omega)$.
(v) In (9) and (10), taking $m \rightarrow \infty$, we get convergence rate (3).
(vi) For any initial $x_{0} \in\left[u_{0}, v_{0}\right]$, by hypothesis and induction, it is easy to prove that

$$
\begin{equation*}
u_{n}(\omega) \leq x_{n}(\omega) \leq v_{n}(\omega), \quad n=0,1, \ldots \tag{14}
\end{equation*}
$$

Similarly, since $u_{n}(\omega) \rightarrow u^{*}(\omega), v_{n}(\omega) \rightarrow u^{*}(\omega)$ we have $\lim _{n \rightarrow \infty} x_{n}(\omega)=u^{*}(\omega)$. This completes the proof of Theorem 2.1.

Theorem 2.2. Let $A: \Omega \times\left[u_{0}, v_{0}\right] \times\left[u_{0}, v_{0}\right] \rightarrow E$ be a random continuous mixed monotone operator satisfying the following conditions:
(a) there exists a random endomorphism $\beta(\omega): \Omega \rightarrow \mathcal{L}(E),\|\beta(\omega)\|<1$ such that

$$
A(\omega, v, u)-A(\omega, u, v) \leq \beta(\omega)(v-u), \forall \omega \in \Omega, u_{0} \leq u \leq v \leq v_{0} ;
$$

(b) there exist random endomorphisms $a(\omega): \Omega \rightarrow \mathcal{L}(E)$ and $b(\omega): \Omega \rightarrow \mathcal{L}(E)$ and $\|a(\omega)+b(\omega)+\beta(\omega)\|<1$ such that

$$
u_{0}+a(\omega)\left(v_{0}-u_{0}\right) \leq A\left(\omega, u_{0}, v_{0}\right), A\left(\omega, v_{0}, u_{0}\right) \leq v_{0}-b(\omega)\left(v_{0}-u_{0}\right)
$$

Then random operator A has a unique random fixed point $u^{*}(\omega)$ in $\left[u_{0}, v_{0}\right]$ and the iterative sequences

$$
\left\{\begin{array}{l}
u_{n+1}(\omega)=A\left(\omega, u_{n}(\omega), v_{n}(\omega)\right)-a(\omega)\left(v_{n}(\omega)-u_{n}(\omega)\right), \\
v_{n+1}(\omega)=A\left(\omega, v_{n}(\omega), u_{n}(\omega)\right)+b(\omega)\left(v_{n}(\omega)-u_{n}(\omega)\right), n=0,1, \ldots
\end{array}\right.
$$

both converge to $u^{*}(\omega)$ and have the convergence rate

$$
\left\|u^{*}(\omega)-u_{n}(\omega)\left(o r, v_{n}(\omega)\right)\right\| \leq N\|a(\omega)+b(\omega)+\beta(\omega)\|^{n}\left\|v_{0}-u_{0}\right\|
$$

where N is the normal constant of P. Moreover, for any initial $x_{0} \in\left[u_{0}, v_{0}\right], x_{n+1}(\omega)=$ $A\left(\omega, x_{n}(\omega), x_{n}(\omega)\right)$, we have $u^{*}(\omega)=\lim _{n \rightarrow \infty} x_{n}(\omega)$.

Proof. We only need to set $A=B$ in Theorem 2.1.
Theorem 2.3. Let $A: \Omega \times\left[u_{0}, v_{0}\right] \rightarrow E$ be a random continuous increasing operator satisfying the following conditions:
(a) there exists a random endomorphism $\beta(\omega): \Omega \rightarrow \mathcal{L}(E),\|\beta(\omega)\|<1$ such that

$$
A(\omega, v)-A(\omega, u) \leq \beta(\omega)(v-u), \forall \omega \in \Omega, u_{0} \leq u \leq v \leq v_{0}
$$

(b) there exist random endomorphisms $a(\omega): \Omega \rightarrow \mathcal{L}(E)$ and $b(\omega): \Omega \rightarrow \mathcal{L}(E)$ and $\|a(\omega)+b(\omega)+\beta(\omega)\|<1$ such that

$$
u_{0}+a(\omega)\left(v_{0}-u_{0}\right) \leq A\left(\omega, u_{0}\right), A\left(\omega, v_{0}\right) \leq v_{0}-b(\omega)\left(v_{0}-u_{0}\right)
$$

Then $A(\omega, x)$ has a unique random fixed point $x^{*}(\omega)$ in $\left[u_{0}, v_{0}\right]$ and the iterative sequences

$$
\left\{\begin{array}{l}
u_{n+1}(\omega)=A\left(\omega, u_{n}(\omega)\right)-a(\omega)\left(v_{n}(\omega)-u_{n}(\omega)\right), \\
v_{n+1}(\omega)=A\left(\omega, v_{n}(\omega)\right)+b(\omega)\left(v_{n}(\omega)-u_{n}(\omega)\right), n=0,1, \ldots
\end{array}\right.
$$

both converge to $x^{*}(\omega)$ and have the convergence rate

$$
\| x^{*}(\omega)-u_{n}(\omega)\left(\text { or }, v_{n}(\omega)\right)\|\leq N\| a(\omega)+b(\omega)+\beta(\omega)\left\|^{n}\right\| v_{0}-u_{0} \|
$$

where N is the normal constant of P. Moreover, for any initial $x_{0} \in\left[u_{0}, v_{0}\right], x_{n+1}(\omega)=A\left(\omega, x_{n}(\omega)\right)$, we have $x^{*}(\omega)=\lim _{n \rightarrow \infty} x_{n}(\omega)$.

Proof. We only need to set $A(\omega, u, v)=A(\omega, u)$ in Theorem 2.2.
Theorem 2.4. Let $A: \Omega \times\left[u_{0}, v_{0}\right] \rightarrow E$ be a random continuous decreasing operator satisfying the following conditions:
(a) there exists a random endomorphism $\beta(\omega): \Omega \rightarrow \mathcal{L}(E),\|\beta(\omega)\|<1$ such that

$$
A(\omega, u)-A(\omega, v) \leq \beta(\omega)(v-u), \forall \omega \in \Omega, u_{0} \leq u \leq v \leq v_{0}
$$

(b) there exist random endomorphisms $a(\omega): \Omega \rightarrow \mathcal{L}(E)$ and $b(\omega): \Omega \rightarrow \mathcal{L}(E)$ and $\|a(\omega)+b(\omega)+\beta(\omega)\|<1$ such that

$$
u_{0}+a(\omega)\left(v_{0}-u_{0}\right) \leq A\left(\omega, v_{0}\right), A\left(\omega, u_{0}\right) \leq v_{0}-b(\omega)\left(v_{0}-u_{0}\right)
$$

Then $A(\omega, x)$ has a unique random fixed point $x^{*}(\omega)$ in $\left[u_{0}, v_{0}\right]$ and the iterative sequences

$$
\left\{\begin{array}{l}
u_{n+1}(\omega)=A\left(\omega, v_{n}(\omega)\right)-a(\omega)\left(v_{n}(\omega)-u_{n}(\omega)\right), \\
v_{n+1}(\omega)=A\left(\omega, u_{n}(\omega)\right)+b(\omega)\left(v_{n}(\omega)-u_{n}(\omega)\right), n=0,1, \ldots
\end{array}\right.
$$

both converge to $x^{*}(\omega)$ and have the convergence rate

$$
\left\|x^{*}(\omega)-u_{n}(\omega)\left(o r, v_{n}(\omega)\right)\right\| \leq N\|a(\omega)+b(\omega)+\beta(\omega)\|^{n}\left\|v_{0}-u_{0}\right\|,
$$

where N is the normal constant of P. Moreover, for any initial $x_{0} \in\left[u_{0}, v_{0}\right], x_{n+1}(\omega)=A\left(\omega, x_{n}(\omega)\right)$, we have $x^{*}(\omega)=\lim _{n \rightarrow \infty} x_{n}(\omega)$.
Proof. We only need to set $A(\omega, u, v)=A(\omega, v)$ in Theorem 2.2.
Remark 1. In particular, if $\beta(\omega), a(\omega), b(\omega)$ in Theorems 2.1-2.4 are measurable functions mapping Ω to $[0,1]$, our conclusions also hold. Indeed, we only need to let $\beta(\omega) I, a(\omega) I, b(\omega) I$ be corresponding random endomorphisms in Theorems 2.1-2.4, where I is the identity operator in E.
Theorem 2.5. Let P be a normal and solid cone of E, and let $A: \Omega \times i(P) \times i(P) \rightarrow i(P)$ be a random continuous mixed monotone operator; suppose that
(a) for fixed $(\omega, y), A(\omega, \cdot, y): i(P) \rightarrow i(P)$ satisfies:

$$
A(\omega, t x, y) \geq t^{\alpha} A(\omega, x, y), \quad 0<t<1, \forall x \in i(P)
$$

and for fixed $(\omega, x), A(\omega, x, \cdot): i(P) \rightarrow i(P)$ satisfies:

$$
A(\omega, x, s y) \geq s^{-\alpha} A(\omega, x, y), \quad s>1, \forall y \in i(P),
$$

where $0<\alpha<\frac{1}{2}$.
(b) there exist $u_{0}, v_{0} \in i(P)$ and $\epsilon>0$ such that, for every $\omega \in \Omega$

$$
\begin{align*}
& \theta \ll u_{0} \leq v_{0}, u_{0} \leq A\left(\omega, u_{0}, v_{0}\right), A\left(\omega, v_{0}, u_{0}\right) \leq v_{0} \tag{15}\\
& A\left(\omega, \theta, v_{0}\right) \geq \epsilon A\left(\omega, v_{0}, u_{0}\right) \tag{16}
\end{align*}
$$

Then A has exactly one random fixed point $x^{*}(\omega)$ in $\left[u_{0}, v_{0}\right]$, and for any initial $x_{0}, y_{0} \in\left[u_{0}, v_{0}\right]$, constructing successively the sequences

$$
\begin{equation*}
x_{n}(\omega)=A\left(\omega, x_{n-1}(\omega), y_{n-1}(\omega)\right), \quad y_{n}(\omega)=A\left(\omega, y_{n-1}(\omega), x_{n-1}(\omega)\right) \tag{17}
\end{equation*}
$$

both converge to $x^{*}(\omega)$.

Proof. Let

$$
u_{n}(\omega)=A\left(\omega, u_{n-1}(\omega), v_{n-1}(\omega)\right), \quad v_{n}(\omega)=A\left(\omega, v_{n-1}(\omega), u_{n-1}(\omega)\right)(n=1,2, \ldots)
$$

By induction, it is easy to show

$$
\begin{equation*}
\theta \ll u_{0} \leq u_{1}(\omega) \leq \cdots \leq u_{n}(\omega) \leq \cdots \leq v_{n}(\omega) \leq \cdots \leq v_{1}(\omega) \leq v_{0} \tag{18}
\end{equation*}
$$

Hence by (16)

$$
\begin{equation*}
u_{n}(\omega) \geq u_{1}(\omega) \geq \epsilon v_{1}(\omega) \geq \epsilon v_{n}(\omega) \tag{19}
\end{equation*}
$$

Set

$$
\begin{equation*}
t_{n}(\omega)=\sup \left\{t(\omega)>0 \mid u_{n}(\omega) \geq t(\omega) v_{n}(\omega)\right\} \quad(n=1,2, \ldots) \tag{20}
\end{equation*}
$$

then

$$
\begin{equation*}
u_{n}(\omega) \geq t_{n}(\omega) v_{n}(\omega) \tag{21}
\end{equation*}
$$

and on account of the fact $u_{n+1}(\omega) \geq u_{n}(\omega) \geq t_{n}(\omega) v_{n}(\omega) \geq t_{n}(\omega) v_{n+1}(\omega)$, we have

$$
\begin{equation*}
0<\epsilon \leq t_{1}(\omega) \leq t_{2}(\omega) \leq \cdots \leq t_{n}(\omega) \leq \cdots \leq 1 \tag{22}
\end{equation*}
$$

which implies that $\lim _{n \rightarrow \infty} t_{n}(\omega)=t^{*}(\omega)$ exists and $\epsilon \leq t^{*}(\omega) \leq 1$. By condition (a), it is not difficult to prove that $t^{*}(\omega)=1$. From (18) and (21), we have

$$
\begin{aligned}
& \theta \leq u_{n+m}(\omega)-u_{n}(\omega) \leq v_{n}(\omega)-u_{n}(\omega) \leq\left(1-t_{n}(\omega)\right) v_{n}(\omega) \leq\left(1-t_{n}(\omega)\right) v_{0} \\
& \theta \leq v_{n}(\omega)-v_{n+m}(\omega) \leq v_{n}(\omega)-u_{n}(\omega) \leq\left(1-t_{n}(\omega)\right) v_{n}(\omega) \leq\left(1-t_{n}(\omega)\right) v_{0}
\end{aligned}
$$

Since P is normal and $t_{n}(\omega) \rightarrow 1,\left\{u_{n}(\omega)\right\}$ and $\left\{v_{n}(\omega)\right\}$ are Cauchy sequences in E, hence there exists $u^{*}(\omega), v^{*}(\omega) \in E$ such that $\lim _{n \rightarrow \infty} u_{n}(\omega)=u^{*}(\omega), \lim _{n \rightarrow \infty} v_{n}(\omega)=v^{*}(\omega)$ and

$$
\begin{equation*}
u_{n}(\omega) \leq u^{*}(\omega) \leq v^{*}(\omega) \leq v_{n}(\omega) \tag{23}
\end{equation*}
$$

By the normality of P and $v_{n}(\omega)-u_{n}(\omega) \leq 2\left(1-t_{n}(\omega)\right) v_{0}$, we get $x^{*}(\omega)=u^{*}(\omega)=v^{*}(\omega)$. Since $A(\omega, x, y)$ is continuous in (x, y), we have $x^{*}(\omega)=A\left(\omega, x^{*}(\omega), x^{*}(\omega)\right)$. Also since $A(\omega, x, y)$ is a random continuous operator, it follows from Lemma 1.6 and the measurable theorem of complex operators that $u_{n}(\omega), v_{n}(\omega)(n=1,2, \ldots)$ are all measurable, and hence $x^{*}(\omega)$ is also measurable. The fact that $u_{0} \leq u_{n}(\omega) \leq x^{*}(\omega) \leq v_{n}(\omega) \leq v_{0}$ shows that $x^{*}(\omega)$ is a random fixed point of $A(\omega, x, y)$ in [u_{0}, v_{0}].

Next we prove that $x^{*}(\omega)$ is unique. Indeed, suppose $x^{\prime}(\omega)$ is another random fixed point in $\left[u_{0}, v_{0}\right]$. By induction, it is easy to prove that

$$
\begin{equation*}
u_{n}(\omega) \leq x^{\prime}(\omega) \leq v_{n}(\omega), \quad \forall \omega \in \Omega, n=1,2, \ldots \tag{24}
\end{equation*}
$$

Since $u_{n}(\omega) \rightarrow x^{*}(\omega), v_{n}(\omega) \rightarrow x^{*}(\omega)$ and P is normal, by (24) we obtain $x^{\prime}(\omega)=x^{*}(\omega)$.
Finally, similar to (25), for every $\left(x_{0}, y_{0}\right) \in\left[u_{0}, v_{0}\right], \omega \in \Omega$, we have

$$
u_{n}(\omega) \leq x_{n}(\omega) \leq v_{n}(\omega), u_{n}(\omega) \leq y_{n}(\omega) \leq v_{n}(\omega), \quad n=1,2, \ldots
$$

Since $u_{n}(\omega) \rightarrow x^{*}(\omega), v_{n}(\omega) \rightarrow x^{*}(\omega)$ and P is normal, we have

$$
\left\|x_{n}(\omega)-x^{*}(\omega)\right\| \rightarrow 0,\left\|y_{n}(\omega)-x^{*}(\omega)\right\| \rightarrow 0, n \in \infty
$$

This completes the proof of Theorem 2.5.

3. Applications

We consider the following random Hammerstein integral equation $(*)$:

$$
x(\omega, t)=A x(\omega, t)=\int_{-\infty}^{+\infty} k(\omega, t, s)(1+\sqrt{x(\omega, s)}) \mathrm{d} s
$$

Suppose that
(i) the kernel $k(\omega, t, s)$ is non-negative, bounded and random continuous on $\Omega \times R^{1} \times R^{1}$.
(ii) for any bounded continuous functions $u(t), v(t)$ satisfying the following condition:

$$
\frac{1}{9} \leq u(t) \leq v(t) \leq 1
$$

there exists $\beta \in(0,1)$ such that for any $\omega \in \Omega$,

$$
\int_{-\infty}^{+\infty} k(\omega, t, s)[\sqrt{v(s)}-\sqrt{u(s)}] \mathrm{d} s \leq \beta[v(t)-u(t)] .
$$

(iii) there exists $a, b \in[0,1]$ and $a+b+\beta<1$, such that for any $\omega \in \Omega$,

$$
\frac{3}{4}\left(\frac{1}{9}+\frac{8}{9} a\right) \leq=\int_{-\infty}^{+\infty} k(\omega, t, s)(1+\sqrt{x(\omega, s)}) \mathrm{d} s \leq \frac{1}{2}\left(1-\frac{8}{9} b\right)
$$

Then for equation $(*)$ there exists a unique random continuous solution $x^{*}(\omega, t)$ and $\frac{1}{9} \leq x^{*}(\omega, t)$ ≤ 1.

Proof. It is easy to prove the conclusion using Theorem 2.3.

References

[1] A.T. Bharuch-Reid, Random Integral Equation, Academic Press, New York, 1972.
[2] A. S̆paček, Zufällige Gleichungen, Czechoslavak Math. J. 5 (1955) 462-466.
[3] O. Hans̆, Random fixed point theorem, in: Trans. 1st Prague Conf. Informatiom Statist, Decision Function and Random Processes, 1956, pp. 105-125.
[4] A. Mukherjea, Random transformations on Banach space, Ph.D. Dissertation, Wayne State Univ., Detroit, Michigen, 1996.
[5] V.M. Sehgal, C. Waters, Some random fixed point theorems for condensing operators, Proc. Amer. Math. Soc. 90 (3) (1984) 425-492.
[6] D.J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cone, Academic Press, New York, 1988.
[7] T.C. Lin, Random approximations and random fixed point theorems for non-self-maps, Proc. Amer. Math. Soc. 103 (4) (1988) 1129-1135.
[8] K.K. Tan, X.Z. Yuan, Random fixed point theorems and approximation in cones, J. Math. Anal. Appl. 185 (1994) 378-390.
[9] H.K. Xu, Some random fixed point theorems for condensing and nonexpansive operators, Proc. Amer. Math. Soc. 110 (1990) 395-400.
[10] G.Z. Li, L. Debnath, The existence theorems of the random solutions for random Hammerstein type nonlinear equation, Appl. Math. Lett. 13 (6) (2000) 111-115.

[^0]: * Corresponding author.

 E-mail address: lgnbox@nc.jx.xn (G. Li).

