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Abstract 

In this paper, we consider n identical tiles which are placed on the n + 1 vertices of a graph 
and which move along the edges of the graph. The tiles come with an "orientation", an element 
of an arbitrary finite group H. Moving a tile along a given edge into the empty vertex changes 
the orientation of the tile in a prescribed way. We study the group of oriented positions of the 
tiles achievable from an initial position which fix the empty vertex. It may be thought of as a 
subgroup of the semidireet product H n >~ Sn or the wreath product H wr Sn. 

In a certain type of sliding piece puzzle, tiles are located on n of the n + l vertices 

of a graph and are allowed to move along an edge into the empty vertex. The famous 

14/15 puzzle [10] is the best known representative of such a sliding piece puzzle. The 

most basic question is to classify the possible rearrangements. The question is often 

normalized by requiring that the original empty vertex is again empty at the end of all 

the moves. We may then consider the possible rearrangements as a subgroup of the 

symmetric group S~. This question has been completely answered by the following 

theorem. Before stating the theorem, we define 00 to be the special graph illustrated 

in Fig. 1. 

Theorem (Wilson [12, Theorem 2]). Let  W be the group o f  rearrangements o f  a 

sliding piece puzz le  on a finite,  simple, nonseparable graph ~ with n + 1 vertices. 

(1)  I f  ~ is a polygon, then W ~- Zn. 

(2) I f  ~ is neither a polygon nor bipartite, then W ~- An. 

(3) I f  ~ is" not a polygon and is not bipartite, then W ~- S, ,  except  when ~ ~ 0o, 

in which case the group is isomorphic to ( (1 ,2 ,3 ,4 ) , (1 ,4 ,5 ,6 ) ) ,  a group o f  order 120 

isomorphic to $5. 
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Fig. 1. 

A brief discussion of Wilson's theorem is included as part of a broader treatment of 
similar puzzles in [1, pp. 756-760]. For the graph theory needed in the above theorem 
and in what follows, see [11]. 

We generalize the problem by considering n identical tiles with orientations which 
may change as the tiles move along a graph ~. Throughout, we assume that ff is 
connected. Specifically, number the vertices of the graph from 0 to n, with 0 denoting 
the empty vertex, and let H be a finite group. When an edge exists between vertices 
i and j ,  let tli j and tlji be elements of  H such that tlji = tl~j l. To  each tile assign an 
element of H,  initially the identity. We call this the o r i e n t a t i o n  of the tile. As a tile 
moves from vertex i to vertex j ,  its orientation is multiplied on the fight by t//j. Thus, 
a rearrangement of  the tiles fixing the empty vertex may be specified by how the tile 
beginning in each position is reoriented, collectively an element of  H n, followed by 
how the tiles are permuted, an element of Sn. We see that the possible rearrangements 
form a group G under composition. Our main result, Theorem 3, is in the same spirit 
as the result of  Wilson stated above, namely that under a suitable normalization the set 
of  attainable states of  the puzzle on a nonseparable, nonpolygonal graph is nearly as 
large as the set of  all rearrangements of the tiles and their orientations. In particular, 
one can nearly always achieve either half or all of the possible permutations of  the 
tiles and half or all of the possible reorientations of  the set of  tiles. In fact, the 
group G of possible rearrangements may be viewed as a subgroup of the semidirect 

product H ~ >.~ S , .  Here we compose on the right, i.e. (hi, al)(h2, 0"2) = (hlh21 ', a l a 2 ) ,  

where 01a  2 denotes al followed by 0- 2 and the action of Sn on H n is defined by 

h ~- '  = ( h l o , h 2 ~ , . . . , h n ~ ) .  Alternately, one may view G as a subgroup of the wreath 
product H wr Sn. We note that G is independent of  the location of the empty vertex 
up to conjugacy in H ~+1 >~ Sn+l, here viewing Sn+l as the group of permutations of  
{0 ,1 ,  . . . ,  n) .  

Before proceeding, we look at the particular sliding piece puzzle which 
led to this paper. The puzzle, which we nicknamed HEX, was created by us 
and, to the best of  our knowledge, has never been physically realized. One of the 
referees of  our original manuscript brought to our attention the similar "rolling 
cubes" puzzle [6], [4] or [5, p. 118], and [3, pp. 58-59]. HEX is illustrated in Fig. 2 
below. 
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Fig. 2. 
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The six pieces are moved by flipping the hexagonal tiles over an edge into the 

empty space. The natural group of orientations H is D6, the group of symmetries of 
a hexagon. Letting r denote a clockwise rotation of a tile by 60 ° and f denote a 

flip in the "horizontal" axis of the hexagon, we see that each qij is either f ,  r2 f ,  or 
r4 f .  Thus, the group H may actually be taken to be a subgroup of D6 isomorphic 

to D3 ~ $3. The graph of the HEX game, with edges labeled with r/ij, is given in 
Fig. 3 above. In general, we would need to represent a puzzle as a directed graph 

since r/ji = q~l, but here each t/ij is of order 2. 
Returning to the general situation, define W to be the image of the canonical homo- 

morphism from G to Sn, i.e. the permutation group associated to the puzzle without 

considering orientation. To the path in the graph through vertices ix,..., it, we associate 

the element ?~i,i2~i2i3 ...t]it_lir of H. Let Hi be the subgroup of H consisting of those 
elements associated to the closed paths beginning and ending at vertex i. 

Consider a spanning tree of the original graph (see [l 1, p. 20]). If the graph is not 
a polygon, we further assume one or more vertices of the spanning tree has valence 

at least 3. For each vertex i of the graph, we define ri to be the element of t t  
associated to the unique path from vertex 0 to vertex i in the tree. Observe that the set 

{zi~lijzf 1 }, where the pair (i , j)  runs over the edges of the graph N which are not in the 
spanning tree, form a set of generators for H0, called Schreier generators of H0 in H 
[8, pp. 164-165]. 

We have the following result. 
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Theorem 1. The map (9: G ~ H~ >~ W defined by 

q~((h,  0"))  = ( ( 'C lh l 'C~  1 . . . . .  "cnhn'cn 1 ), ~ )  

is an injective homomorphism. 

Proof .  Given the connection with Schreier generators, it is not surprising that the 

theorem is a purely group theoretic result. When W is transitive, H0 is replaced by the 
stabilizer of  some i0, and zi is an arbitrary element such that there exists an element 

in G of  the form ((hi . . . . .  h i - l , Z i ,  hi+l . . . . .  h n ) , 6 i )  , where i~ i = i. 
Because hi is an element of  H associated to a path from vertex i to vertex i °, it 

follows t h a t  "cihfc~ 1 c n  O. Let e denote the identity of  H and id denote the identity in 
Sn+l. I f  we view G and H~ >~ W as subgroups of  H n+l >~ S n + l ,  then the map ~b is 
simply conjugation by ((e, vT1 . . . . .  z~- ] ), id), completing the proof. [] 

The image of  ~b is the group for the relabeled graph where an edge from vertex i 
to vertex j is assigned the element z iq i j z f  1. In particular, edges on the relabeled tree 
are the identity e. We illustrate this in Fig. 4 above for HEX. The darker edges form 
the spanning tree. We compute the new q34 = ( r 4 f  • f ) "  r 4 f  • f - ~  = r 2, and so forth. 
Rather than referring to ~b(G) in what follows, we shall refer to the group G of  this 
relabeled graph and consider Ho to be its group of  orientations. This normalization 
of  the puzzle also provides us with a canonical set o f  generators, corresponding to 
the Schreier generators of  Ho, for its group G. Namely, for each edge of  the graph 
which is not in the spanning tree, say that between vertices i and j ,  consider the ele- 
ment of  the puzzle group obtained by sliding all tiles along the path of  the spanning 
tree from j to 0 one position, then sliding the tile at vertex i to vertex j ,  and finally 
sliding tiles along the path of  the spanning tree along the path from 0 to i one po- 
sition. For convenience, we order i and j to avoid i = 0. This element has the form 
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gij = ((e . . . . .  e, rlij, e . . . . .  e),aij) ,  where the t/ij is in the ith position and at/ is a cycle 
in S~. We shall return to these generators below, in Theorem 2, in Lemma 3, and when 

we describe how one may compute the group G in practice, following Theorem 3. 

Our main result for nonseparable, nonpolygonal graphs, Theorem 3, is that G is 

usually o f  index 1 or 2, and always of  index dividing 12, in H~ >~ S,,. We begin 

toward our goal with the following lemma. 

Lemma 1. For k, m, and n positive integers with k < n, 

({ }) (zl . . . . .  e . )E Z ~ :  e i = O  or 1 and ~ e i  = k  
i=1 

= zl . . . . .  z~)E2~:  ~ z i - O m o d ( k , m )  . 
i=1 

Proof.  Let M = ({(el . . . . .  en) E 2 ~ :  

M C  zl . . . . .  z~)EZ~:  ~zi=--  
i=1 

ei = 0 or 1 and ~in=l E i ~ -k}) .  The inclusion 

0 m o d  (k,m) / 

is clear. By subtracting two elements of  M that differ only in positions i and j ,  it 

follows that (0 . . . . .  0 ,1 ,0  . . . . .  0 , - 1 , 0  . . . . .  0) E M ,  where 1 and - 1  are in positions 
n and j .  Thus, whether (zl . . . . .  zn) C 2~ is in M depends only on ~i=1 zi. Because the 

multiples of  k in 7/m are also generated by (k,m),  the reverse inclusion holds, proving 
the lemma. [] 

The critical step in our development is to show that one may choose the orientation 
(in H0) for n - 1  of  the n tiles arbitrarily in the puzzle for a nonseparable, nonpolygonal 

graph. Letting id denote the identity in Sn, define K = {kEH~:  (k, id)E G}. 

Theorem 2. Let  f# be a nonseparable, nonpolygonal graph. For cr E W and h i . . . . .  hi t. 

hi+l . . . . .  hnCHo, there exists h i E H  0 such that ((hi . . . . .  hi- l ,hi ,  hi+l . . . . .  hn),~r)EG. 

Proof.  Since we may multiply on the left by elements of  the subgroup K >~ {id}, it 
suffices to prove the theorem for a = id. 

We write laijl for the order of  a U, which appears as the permutation component of  

the generator gij = ((e . . . . .  e, qij, e , . . . , e ) , a i j )  of  the group G. Because aij is actually a 

cycle, we observe that I~ijl is also the number o f  tiles moved under gij. The construction 

of  our spanning tree ensures laij[ < n. Furthermore, 9!~ ~'1 = (h, id) E K >~ {id}, with 
IJ 

hk = rlij when k is moved by aij and hk = e otherwise. Thus, it suffices to show 
that there exists an element g of  G which moves any I crijl designated tiles into the 
positions permuted by aij while changing their orientations by at most a power of  qij; 

for then the set o f  ggl~,vLg-1 for such g enables us to apply Lemma 1 to conclude that ij 
we can multiply the orientation of  n - 1 o f  the tiles by arbitrary powers of  r/j i, with 
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the orientation of the final tile multiplied by a suitable power of tlij, while fixing the 
position of all tiles. Since {rlij} generates H0, the theorem will follow. 

While the physical realization of the element gij involves all of  the tiles in the 
paths of  the spanning tree from vertex j to vertex 0 and from vertex 0 to vertex i, no 
change results to the tiles in the intersection of both paths. For this reason, we find it 
convenient to superpose ellipses or similar curves on the graph of the puzzle and its 
spanning tree which represent the cycles aij, illustrated for the six generators of  our 
normalization of HEX back in Fig. 4, 

((e, r2 f ,  e ,e ,e ,e ) , (1 ,2) ) ,  ( ( e , e , f , e , e , e ) , ( 2 , 3 ) ) ,  ((e,e, r2 , e , e , e ) , (2 ,3 ,4 ) )  

( ( e , e , e , e , f , e ) , ( 5 , 6 ) ) ,  ((e,e,e,e,  r4 ,e ) , (4 ,6 ,5) ) ,  ( (e ,e ,e ,e ,e ,  r 4 f ) , ( 1 , 6 ) ) ,  

in Fig. 5 above. In a manner similar to that used in the spanning tree, we use thicker 
edges to represent paths which do not change orientation and dotted lines to represent 
the original graph. We find it helpful to imagine these "ellipses" of tiles as overlapping 
bicycle chains. 

Call the set of  positions permuted by aij the "target cycle". The proof of  our theorem 
may be further reduced to showing that, if  at least one of the designated ]aijt tiles is 
not in the target cycle, then there is an element of  the puzzle group that increases the 
number of designated tiles in the target cycle while changing the orientations of  the 
designated tiles by at most a power of  tlij. 

With this goal in mind, consider the least integer m such that 

gkl gk2. km z,j, ,ZJ2"''gimjm' kl'k2 . . . .  , kmEZ,  

moves one of the designated tiles from outside the target cycle into it. Furthermore, 
we assume that k~ . . . . .  km are chosen to minimize Ikl], then [k2] . . . . .  and finally ]kml 
under the condition that the tile moved into the target cycle undergoes no changes in 
orientation along the way. When m > 1, the minimality of m and kl implies that the 
only designated tiles moved by any of k2 ,km giej2'"" gimj,~ are those moved by both gimj,. 
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and gij. Observe that the minimality condition also guarantees that if the tiles permuted 

by gi, jr and gi, j~ intersect, then s = r 4- 1. In this case the intersection consists of  tiles 
contiguous in the spanning tree. 

This preliminary sequence of  moves may suffer two potential problems. Designated 

tiles already in the target cycle could be moved out, or other designated tiles lying in 
the initial cycle could be reoriented. To avoid the first problem, before multiplying by 

±1 any gimjm we multiply by a suitable power of  gij so that no designated tile already in the 

target cycle leaves it. Once this step is taken, the potential for reorienting designated 

tiles, other than by a power of  qij, exists only when two or more designated tiles are 

in the initial cycle. Suppose this is the case. By minimizing tkll, we have chosen a 

tile closest to the second cycle, or the target cycle if m = 1, along the spanning tree. 
g(:,. g(~2. . .  #("' and any To reverse any orientation due to g(q~,j~, after multiplying by , ~,.j, 12j2" ' lmlm 

--k, (again subject to the above procedure intermediate powers o f  gij, we multiply by g i g  ' 

of  multiplying by a suitable power of  gij before multiplying by g i l  if m = 1 ). This 
t i l l  

shows that if at least one of  the designated ]a~/] tiles is not in the target cycle, then 

there is an element of  the puzzle group that increases the number o f  designated tiles 
in the target cycle while changing the orientations of  the designated tiles by at most 

a power of  qij. Hence there exists an element g o f  G which moves any [o-01 tiles into 
the positions permuted by crij while changing their orientations by at most a power of' 
~lij, hence the theorem holds for a = id, hence in general• 

Let U = { a  E W: ( e , a ) E G } ,  where e = (e . . . . .  e). Letting W t denote the commu- 

tator subgroup of  W, we have the following. 

Lemma 2. I f  (¢ is a nonseparable  graph, then U ~ W'.  Consequent ly ,  U is normal  in 

W and, i f  (~ is nonpolygonal ,  U is transitive. 

Proof.  If  ~ is polygonal, then W is cyclic and the lemma is trivial• Recall that the 
commutator subgroup of  Sn is An, and that o f  An is A,, for n/> 5 and the Klein 4-group, 

K4, for n = 4. 
For W ~ Sn, n>~3, Theorem 2 guarantees the existence of  elements of  the form 

( ( h , e , e  . . . . .  e) , (1 ,3) )  and ( (h~,e ,e  . . . . .  e) , (1 ,2) )  in G. The calculation 

( ( h , e , e , . . . ,  e), (1 ,3 ) ) .  ( (h~,e ,e  . . . . .  e), (1,2))  

• ( ( h , e , e  . . . . .  e) , (1 ,3) )  - l  • ( (h~,e ,e  . . . .  , e ) , (1 ,2 ) )  -1 

~- ( ( e , e , e , . . . , e ) , ( 1 , 2 , 3 ) )  

leads to U DA,, in this case, since the 3-cycles generate An. 
In the case W~-An ,  n>~4, we begin similarly with the calculation 

( ( e , h , e  . . . . .  e ) , (1 ,2 ,3 ) ) -  ( (e ,h~,e  . . . . .  e), (1 ,2 ,4) )  

• ( ( e , h , e  . . . . .  e ) , (1 ,2 ,3) )  - I  • ( ( e , h ' , e  . . . . .  e ) , (1 ,2 ,4) )  - I  

= ((e,e, e . . . . .  e), (1,2)(3,4)) .  
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I f  n = 4, this and similar expressions generate K4, hence U D K4. When n > 4, we see 
that (1,2)(3, 4) • ( 1,2)(3, 5) = (3, 4, 5) E U, and again go on to conclude U D An. 

The special case of  the 00 graph is in the same spirit. Use of GAP [7] makes this 
last computation less tedious. [] 

We analyze the structure of  the subgroup K >~ {id} C G in the next two lemmas. 
Recall that an action of Sn on H~ arises in the definition of the multiplication law for 

Hg >~Sn, given by h "-~ =(hl~,h2~, . . . .  hn~). 

Lemma 3. I f  (~ is a nonseparable 9raph, then K is &variant under the action of  
Sn on Hg. 

Proof. In the polygonal case, K = {(h . . . .  ,h): h e l l o } .  Otherwise, since Lemma 2 

implies U is doubly transitive except possibly when W-~S3 o r  W - ~ A 4 ,  the subset of  
K consisting of n-tuples with at most two components not equal to the identity of  H 
is invariant under the action of Sn. By Theorem 2 an arbitrary element of K may be 
broken down into such a product, and Lemma 3 follows up to the two exceptions. 

To treat the exceptions, we see that there are two nonseparable graphs on four 
vertices with W ~ $3 and one bipartite, nonseparable graph on five vertices with 
W ~ A4. Up to numbering of the vertices, there turns out to be a unique spanning 
tree with at least one vertex of valence 3 on each. We illustrate them in Fig. 6 above. 

Sliding tiles along the spanning tree to change the location of the empty vertex 
corresponds to conjugation of G in H~ +l >~ Sn+l by an element of the form (e,a). 
Therefore, we may assume the vertices labeled 0 are the empty vertices in the three 
graphs above. 

The group G for the first graph above is generated by 912 = ((rh2,e,e) , ( l ,2)) ,  
923 = ( ( e ,  q 2 3 , e ) , ( 2 , 3 ) ) ,  and 931 = ( ( e , e , ? / 3 1 ) , ( 1 , 3 ) ) .  From g22, g2 , and g2 , 23 31 w e  s e e  

that (q12,th2,e), (e , r /23 , r /23)  , and ( r l31 ,e , r /31)  a r e  in K, respectively. Computation of 
g23912 along with the result U D A3 from Lemma 2 let us conclude that (~/12, q23, e ) c  
K. Conjugating (Oh2, q23, e), id) by g31 yields (e, q23, q12) E K. Similarly, (e, q23, t/31 ), 
(t/e3,e,r/31), (r/12,e, q31), and (r/12,t/31,e) are all in K. Because U DA3, it follows that 
the images of  these elements under the action of $3 also lie in K. On the other hand, 
any element of K >~ {id} is the product of  an even number of the three generators. 
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Along with Lemma 1, this shows that K is generated by the elements produced above, 
proving that it is invariant under the action of $3. 

To prove the lemma for the second graph, note that (1,3) E W, hence there is 
an element of the form ( ( e , e , h ) , ( 1 ,3 ) )  in G by Theorem 2. Thus, adding the edge 
between vertices 1 and 3 to the graph with r/31 = h does not change the group G, and 

the first case applies. 
In the final case, the group G has generators gl3 = ((r/13,e,e,e),(1,3,4)) and 

923 = ((e, t/z3, e, e), (2, 3, 4)). Explicit calculations similar to the first case show that 

(r/13, r/13,ql3,e), (q23,q23,r/23,e), (q13,r/23,e,e), and (e,r/z3,e, q13 ) all lie in K. Because 
U ~ K4 by Lemma 2, the images of the above four elements under the action of $4 
also lie in K. Note that (1,3,4) and (2,3,4) represent the two nontrivial cosets of 

the Klein 4-group K4 in A4. I f  an element of  G is in K >~ {id}, it follows that the 
number of factors of  the two generators in a factorization of the element must differ 
by a multiple of 3. It is again a consequence of Lernma 1 that K is generated by the 
above four elements and their images under the action of $4. Hence K is invariant 
under the action of $4. [] 

Let Ko = {kEHo: (k,e . . . . .  e)EK}.  

Lemma 4. For ~ nonseparable and nonpolygonal, whether ((hi . . . . .  hn),cr) is in G de- 

pends only on the coset Ko(hl . . .  h,). Furthermore, Ko D H~ and [H~ : K] = [H0 : K0]. 

Proof. Given h E Ho, Theorem 2 guarantees the existence of an element of K of the 
form k = (h,e, h3 . . . . .  hn). From Lemma 3 we see that k (k -1 )  (1'2) = (h ,h -~ ,e  . . . . .  e)E 
K. A second application of Lemma 3 implies 

(e . . . . .  e ,h ,e  . . . . .  e , h - l , e  . . . .  e ) E K ,  

where h and h - l  are the ith and j th coordinates, respectively. Thus ((hi . . . . .  hn), or)E G 
if and only if 

((hi . . .  hn, e . . . . .  e ) , a )  = ((ha . . . . .  hn) ,a ) ( (h2 ,h~ l , e  . . . . .  e)~,id) 

• . . ( (h~,e  . . . . .  e , h~ l )~ , i d )EG,  

proving the first assertion. Moreover, essentially the same calculation shows that the 
product of the hi's may be taken in any order, hence K0 D H~. 

Finally, Theorem 2 implies that the projection from K to its last n - 1 coordinates 
is surjective onto H~ -1. This projection has the kernel K0 × {e} " - l ,  from which it 
follows that [H~ : K] = [H0 : K0], completing the proof of  the lemma. [] 

The next lemma puts things together. 

Lemma 5. For a nonseparable, nonpolygonal graph (#, the map qs : W/U --* Ho/Ko 

defined by ~ ( U a ) =  K o h l . . .  hn, where ((hi . . . . .  hn), a )E  G, is a group isomorphism. 
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Proof. Lemma 2 asserts that U is normal in W and Lemma 4 asserts that K0 is normal 

in H0. Lemma 4 also implies tr H Koh~ . . .  hn is well-defined, so the definition of U 
implies that ~ is well-defined. It is now immediate that ~ is injective. The map 
sends the canonical generators of  G to the canonical generators of  H0. Thus, ~ is 
surjective. Since IW/U[ = 1,2, or 3 and ~k(U) =K0,  it now follows that ~ is a group 
isomorphism. [] 

From our sequence of lemmas, combined with the knowledge of the commutator 
subgroups of the permutation groups that arise as W, we now immediately obtain 

Theorem 3. The group of  a sliding piece puzzle with oriented tiles on a nonseparable 
graph f# is isomorphic to one of the following. 

I f  ~ is a polygon, 
(1) the cyclic group of  order niH0]. 
I f  f# is bipartite, 
(2) H~ >~An, or 
(3) {((hi . . . . .  h4),ff) E H 4 >~ A4: hi " - h 4  E Koh~ and tr E K4(1,2,3) r, r = 0, 1, 

or 2}, for some normal subgroup Ko of  Ho of  index 3 and some ho EH0 - K 0 .  
I f  f# is isomorphic to 0o, 
(4) H 6 >~ ((1,2,3,4) ,(1,4,5,6)) ,  or 

(5) {((ht . . . . .  hn),tr)EH6>~((1,2,3,4),(1,4,5,6)): hi"" "hnEKo tff tr E ((1,2,3,4), 
(1,4, 5, 6)) n A 6 },  for some normal subgroup Ko of Ho of  index 2. 

I f  f# is not a polygon, bipartite, or isomorphic to 0o, 
(6) Hg >~S,, or 

(7) {((hi . . . . .  hn), a) EH~ >~ Sn: h~ ""  h, EK0/f f  aEAn}, for  some normal subgroup 
Xo of Ho of index 2. 

In particular, except for the cyclic case, the index of  G in H~ >~ S, is 1,2, 6, or 
12, with 6 possible only for the nonseparable, bipartite graph on 5 vertices and for 
0o, and 12 possible only for 0o. 

To summarize our results, we describe how to compute the group G of a puz- 
zle. Begin by constructing the graph f# of  the puzzle. The group for a separable 
graph may be broken down into the direct product of  the groups for its compo- 
nents, so we assume f¢ is nonseparable. Choose a spanning tree for f~, with at least 
one vertex of  valence 3 in the nonpolygonal case, and normalize the puzzle via 
Theorem 1 and its subsequent discussion. Consider the canonical generators of  the 
group G associated to this normalization. Temporarily ignoring orientation, compute 
the group W based on Wilson's theorem. Polygonal graphs and 0o are easily recog- 
nized. Usually one must determine whether the graph is bipartite or not, i.e. whether 

W ~ An or W ~ Sn. Compute the commutator subgroup H~ of H0 and use it to 
determine whether there exists a subgroup K0 D H~ such that all of the generators 
of  G are in the subgroups given in the relevant case of  (3), (5), 
or (7).  
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For example,  us ing  our normal iza t ion  of  HEX illustrated in Fig. 4, its puzzle group 

has the six generators 

((e, r2 f ,  e ,e ,e ,e) , (1 ,2)) ,  ( ( e , e , f , e , e , e ) , ( 2 ,3 ) ) ,  ((e,e, r2 ,e ,e ,e) , (2 ,3 ,4))  

( ( e , e , e , e , f , e ) , ( 5 ,6 ) ) ,  ( (e , e , e , e ,  r 4 , e ) , ( 4 , 6 , 5 ) ) ,  ((e,e,e,e,e,  r4 f ) , ( 1 , 6 ) ) .  

We see that W ~ - S  6 and H0 = ( f , r  2) is of  order 6, with commuta tor  subgroup (r2). 

Checking  each generator,  we see that we are in case (5), with K0 = (r2). Therefore, 

the puzzle group for HEX has order 66.  720/2 = 16,796, 160. 

Similar  results hold for different puzzles;  see [9] and [2]. 

We would  like to thank David  Addis  for instruct ion in GAP,  Craig Morgenstern  

for technical  assistance, and the referees of  our original  manuscr ip t  for extensive 

suggestions.  
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