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Abstract

This paper is primarily concerned with proving th€ boundedness of Marcinkiewicz integral op-
erators with kernels belonging to certain block spaces. We also show the optimality of our condition
on the kernel for thé.2 boundedness of the Marcinkiewicz integral.
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1. Introduction and results

LetR", n > 2, be ther-dimensional Euclidean space a8t be the unit sphere iR"
equipped with the normalized Lebesgue measisre= do (-). Let 2 be a homogeneous
function of degree 0 satisfying € L1(S'1) and

/ xNdo(x') =0, 1.1)

g1

wherex’ = x/|x| € S*~1 for anyx 0.
The Marcinkiewicz integral operator of higher dimension corresponding to the Little-
wood—Paley function is defined by

v dt vz
Mo f(x) = (fIKz*f(x)IZT) ,
0
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where
K@) =x""Q2Wxey(x). K@) =t"K(@ 'x)

and x4 denotes the characteristic function of a det

E.M. Stein introduced the operatdrl, and showed that if2 € Lip,(S*™%) (0 <«
< 1), thenMy; is of type(p, p) for p € (1, 2] and of weak typ&1l, 1) (see [10]). Subse-
quently, A. Benedek, A. Calderdn, and R. Panzone provedMtatis of type(p, p) for
p e, 00)if 2eCcl(S 1) (see [BCP)).

On the other hand, the related Calder6n—Zygmund singular integral op&gatahich
is given by

T:zf(x)=|0~V-/!2(y')|y|_"f(x—y)dy, (1.2)
R}’l

wherey’ = y/|y| for y # 0, is known to be bounded oh” under much weaker condi-
tions ong2. For example, if2 € L log* L(S'~1), Calderén—Zygmund showed thE is
bounded orL.? for all p € (1, oo) and the condition2 € L log™ L(S*~1) is essentially the
weakest possible size condition énhfor the L” boundedness dfy,; to hold [4]. Another
condition on$2 was given by Jiang and Lu who introduced a special class of block spaces
B;’(’”)(Snfl) and proved the followind.2 boundedness result.

Theorem 1.1[8]. Let$2 and Ty, be given as ir{1.1)—(1.2) Then if2 € B> (S'1) with
g > 1, To is a bounded operator oh?(R").

Some years later, the” boundedness of the operafas was proved for alp € (1, co)
under the condition2 B,go’o)(S”—l) (see, for example, [1,3]). Also, it was proved in [2]
that the conditiorn2 e B;O’O)(Snfl) is the best possible for the” boundedness df; to
hold. Namely, the.? boundedness df; may fail for anyp if it is replaced by a weaker
condition$2 e B;O’”)(Snfl) for any —1 < v < 0 andg > 1. The definition of the block

spaceBéK’“)(S”*l) will be recalled in Section 2.

The results cited above on singular integrals give rise to the problem whether similar
results hold for the Marcinkiewicz integral operat® . More precisely, we have the
following:

Problem. Determine whether thé.” boundedness of the operatdi; holds under a
condition in the form of2 € B;O’”(s"*l), —1 < v, and, if so, what is the best possible
value ofv.

The main focus of this paper is to obtain a complete solution to the above problem.
Moreover, we present a systematic treatment of Marcinkiewicz integrals with kernels be-
longing to certain block spaces. This method is presented mainly in Theorem 2.1 whose
proof is based in part on a combination of ideas from [3,5,6,9], among others. We remark
that this method has also found applications for other problems in this area that will appear
in forthcoming papers.

Our main result in this paper is the following:
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Theorem 1.2. (a)If 2 € BC(,O’_l/Z)(Snfl), g > 1, and satisfie$1.1), then
Melp < CpIIQIIB;0,71/2>(S,1_1)||f||p 1.3)

forall f e LP(R") andp € (1, 00).
(b) There exists a2 which lies inB;O’”)(S"*l) forall -1 < v < —1/2 and satisfies
(1.1)such thatM, is not bounded ol %(R").

We point out here that part (a) represents an improvement over the results of Stein, and
Benedek—Calder6n—Panzone while part (b) shows that the conmti@lBéo’_l/Z)(S"*l)
is nearly optimal.

Throughout the rest of the paper the lettewill stand for a positive constant not nec-
essarily the same one at each occurrence.

The authors wish to thank the referee for his helpful comments.

2. Main theorem

For a given a family of measurgs;: t € R*}, we define the maximal operatei by
o*(f) =supegr+ llor| = f|. Also, we writer™® = inf{r*, t~*} and|o | for the total variation
of o, which is a positive measure. The proof of Theorem 1.2(a) will rely heavily on the
following theorem:

Theorem 2.1. Leta > 2, B > 1, C > 0, andg > 1. Suppose that the family of measures
{0;: t € RT} satisfies the following

O ol 5
(i) [os  16:&)[?dt/t < CB(a*Plg)**/5;
(i) llo*(Hllg <Cllflq for f e LR,

Then foranyp € (29/(q +1),2q/(q — 1)), there exists a positive constagi} such that

00 12
(/ |at*f|2?)

0

<C,BY?||f1l, (2.1)

p

forall f € LP(R"). The constan€), is independent oB.

Proof. The argument of the proof mainly follows the ideas givenin [6,9] and keeping track
of various constants at each step. Mdtf (x) = (fy* loy * £ (x)|2dt/H)Y? and{®;}>,, be

a smooth partition of unity if0, co) adapted to the intervals; = [2~U+DE 2-(-DB],
More precisely, we require the following:

d*d;(t)
drs

C
<
tS

®;eC™ 0<®;<1, Y &;(t)=1 suppd, CEj,
J
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whereC can be chosen to be independenBof_et @(é) = @i (|€]). Decompose
Fror) =D Wirj %01 % [ X g yrnn, = ) Fix, )
jeZkeZ JjeZ
and define

0 1/2
M fx)= <f|F,-(x,r>|2?) :
0
Then

M(f) <Y M)

jel
holds for f € S(R").
First, by Plancherel’'s theorem

20k+DB
dt
||M,-(f)||%=2f f W 500 f ()P dx
keZRn kB

2k+1)B

d ~
<3 f |&t(§)|27t)|f(s)|2ds

kezZ Ejpx \ 2kB

<CBY f min(|2*75(*/, 1285 |7/%)| f ) 2 d

kEZEj+k
<cszl Y [ 1f@as < ez
kezE,‘+k
Therefore,
IM;(f)ll2 < C(B)Y227il2) 5. (2.2)

On the other hand, we compute thé-norm of M ; (f). For 2< p < 2q/(¢ — 1), there
exists a functiorg in (/2" with ||g||(,/2y < 1 such that

2(k+1)B
dt
||M,-(f)||f,=2f f W 5015 ()P (0)] dx
k€Zpn kB

2(k+1)B

d
<[swtoa] S [ [ ol 5 s lgolan
! keZgn i
<CB [ Yoy F @ (00 with 30 = g(-),
Rn ke€Z
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D Wk f1P

keZ

By using (iii), the Littlewood—Paley theory and Theorem 3 along with the remark that
follows its statementin [11, p. 96], we have

1Ml <CBY2 N, for2< p <oo,
To handle the caseg2(¢q + 1) < p < 2, we need to prove the following lemma.

<CB

o™ (@)l (p/2y-
p/2

Lemma 2.2. Let gx (x, t) be arbitrary functions ofR” x RT. If p > 2, then

2(k+DB 1/2 2B 1/2

dt dt

’=¢(Z f |gk(-,r>*m|27) <C (Z f |gk(-,t)|27>
keZ oip p keZ oip p

Proof. As above, ifp > 2, there exists a functiole L(?/2’(R") such that
2(k+1)8

1/2
’:<Z/ / |gk(wt)*cfr|2$h(x)dx) .

keZ RN kB
By the same argument as above, we have

2(k+1)B

1/2
d
I'< <Z / oz | * |8k(',t)|27th(x)dx)

keZ RM kB
g (
r/2

which ends the proof of the lemmar

2(k+1)B

d
3 f gk .02

1/2
||a*(fz)||(,,/zy>
keZ kB

Now we are ready to prove (2.1) for the case/& + 1) < p < 2. Let I} =
[2kB 2(k+DBy By a duality argument, there exist functiogigx, ) defined orR” x R
with 11l gk llL2(;, ar/nlli2ll L < 1 Such that

2(k+1)B
M= [ 3 [ @psors fenatn® dx

R keZ kB

2(k+1)B

1/2
d
<(8)1/2/2(|wk+,-*f(x)|2)1/2</ |ot*gk(x,r>|27t> dx

R" keZ kB

1/2
(Z W j fI2>

keZ
<CBY?| 11,

<c(B)Y?

I gklzzes, e izl o
p
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Here as above, the last inequality follows by the Littlewood—Paley theory and Theorem 3
along with the remark that follows its statement in [11, p. 96}

3. Somedefinitions and lemmas
We start by the following definition.

Definition 3.1. (1) Forx} € S'~! and 0< 6y < 2, the set
B(x4.60) = {x" € g1 |x/ — x6| < 6o}

is called a cap 0§ 1.

(2) For 1< ¢ < oo, a measurable functioh is called ag-block onS*~1 if b is a
function supported on some cdp= B(xg, 6o) With ||b|Ls < [1|~Y4" where|l| = o (I)
and Yg +1/¢' =1.

@) BV =( e LY(S Y 2= > nei1cuby where eachr, is a complex

number; eactb,, is ag-block supported on a cap, on S*~1; and Mé"’“)({ck}, {L) =
Zf:l |Cu|(1+ ¢K,U(|IM|)) < oo}, where

1
Beo(d) = 10 (1) / w5 log” (™ b) du. (3.1)
t

We remark that the definition oB(;’(’”)([a, b)), a,b € R will be the same as that of
Bé”’“)(S”—l) except for minor modifications. One observes that

b)) ~t“log'(t™Y) asr — Ofork >0, veR,
and
$o.,(t) ~log"t:7t) ast— Oforv> —1.

The following properties oB;’(’”) can be found in [7]:

(i) B2 cBEWif up>v1>—1andk > 0; (3.2)
(i) BY>v2 C BYf if vi,v2 > —1and 0< k1 < k2; (3.3)
(i) BEY cBEVif1<q1<q (3.4)
(v) LUS"™MHcBiv© ™ cLi(shforv>—1andc>0. (3.5)

The following result due to Keitoku and Sato which can be found in [7]:

Lemma3.2.(i) If 1 < p < ¢ < o0, then fork > 1/p’ we have

BV HcLr(sh foranyv > —1;
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(ii)

B h =LY ifandonly ifc > % andv > 0;
(i) foranyv > —1, we have

U he [ Jrish.

g>1 g>1

Let Néo’“)(g) = inf{M,go’“)({ck}, {It)): 2 =Y 724 ckbr and eactb; is ag-block func-
tion supported on a intervd} }.
To prove part (b) of Theorem 1.2 we shall rely heavily on the following lemma from [2].

Lemma3.3. Foranyv > —1,a,b e R,
() N,ﬁo’”) is a norm onB,ﬁO’”)([a, b)) and (B,go’”)([a, b)), Néo’”)) is a Banach spage
(i) If f e BV (la,b]) and g is a measurable ora, b] with |g| < |f|, then g €
B®Y([a, b)) with

N () S NG (f);

(i) Let I; andI> be two disjoint intervals ina, b] with |I1], |I2| < 1 anday, as € RT.
Then

NV axn +a2xn,) = NPV (@axn) + NV (@2xn):
(iv) LetI be aninterval infa, b] with |I| < 1. Then

NV () > 1A+ log” (11171,

4. Proof of Theorem 1.2(b)

Itis clear thatM g, is bounded or.2(R") if and only if the multiplier

00 o 2d 1/2
m(s>=< / f ity 20 t_3t>

yin=t
0
me = m_ [ ewao

gi-lygi-1

11, N J
e ) t
X //(/ez’ms '(”“y)7> drdsdo(x)do(y).
00

&

lyI<t

is anL®> function, wheret’ = £/||.
It is easy to see that
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Note that
N
/(e—ZnitE/'("x_Sy) — cos(Zn't))?
£

> loglg' (rx —sy)| 7 = i SQE - (rx = sy)
asN — oo ande — 0, and the integral is bounded, uniformlydrand N, by C(log|&¢’ -

(rx —sy)D.
Thus, using (1.1) and the Lebesgue dominated convergence theorem, we get

11
m(e) = / /fmx)STy)
g-1yg-1 0 0
X (Iog|f§' S(rx —sy)|_1—i%sgr(§’ (rx —sy))) drdsdo(x)do(y).

Now, if £2 is a real-valued function, by (1.1) and a straightforward computations we get

§-x /
m(§) = / (Q(X)Q(y)(é, y —1)|09|§ S(x =)l

gi-lygi-1

"x
- <§,.y)|09I$’-(x—y)l>d6(x)dcr(y)- (4.1)

Now, we are ready to prove part (b) of Theorem 1.2. For the sake of simplicity we
shall present the construction of o only in the case: = 2 andg = co. Other cases
can be obtained by minor modifications. Also, we shall work-ef, 1] instead ofSt. For
ue[-1,1],let

o0
Q)= Cibi(u) (4.2)
k=1
where
ad 1
C1=y ————————  bi(u)=—x_ ,
1 k;(k YOTAEE 1) = = x(-1.0/(®)
Ch — 1
“7 (k+ D(logk)372’
1 1
= -1 = —\ — > 2.
bi(u) = |Dx| " xp(w) and Dy [k+1,k>fork/2

Thens2 has the desired properties. More precis&hysatisfies the following:

1
/.Q(u)du:O; (4.3)
-1
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1
2 eBOY(-1,1]) foreachv, —-1<v < -5 (4.4)

2 ¢ B Y2 (-1, 1)); (4.5)

J1= / (Q(u)mv)(l—%)loglu—vl1+(%>Iog|ull>dudv

[0,2]2

Jo= / ‘Q(u)!?(v)(l—%)|09|M—U|_1+<%>|09|”|_1

[—1,1]2\[0,1]
< 0. 4.7)

dudv

The proof of (4.3)—(4.4) is straightforward. Now we turn to the proof of (4.5). We first
notice that eachy is anoco-block supported on the interval,. So to prove (4.5), we only
need to show thazvég”l/z) (£2) = 00. To this end, by Lemma 3.3 we have for edch

1
0,-1/2 — 0,-1/2
NSO ™22 + Coxierop = Y ICkI DK TN Y2 ()

k=2
l

> > ICkl(L+log"2( Dk |™H)).
k=2

Letting! — oo, we getNég’_l/z)(Q + C1x[-1,0) = ©0. Since,Nég’_l/z)(Clx[,l,o]) < 00
we getN 2 Y2 (2) = co.
Now, we verify (4.6). Let

Kk
~ (logk)3/?’

I(u,v) = (1— E) logu — v| "% + (E) log|u|~;
v v

I (u, v) = <%)(Iog|u|l —loglu —v|7Y).

= &y

Ak

Itis clear that
J12=2 81+ 824+ S3+4+ S4+ S5+ S+ S7,
where
o0 o0
51=Zaj Z ai I(u,v)dudv;
j=2  k220+D)  pip,

00 2j-1

SZ=Zaj Z ay / I(u,v)dudv;

j=2  k=itl pexp;
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o0
S3=Zaja2j+1 / I*(u,v)dudv;

Jj=2

D2j1xD;j

o

S4=Zaja2j / I*(u, v) du dv;
j=2 DazjxD;
o

Ss= (a;)° / I, v)du dv;
=2 p;xp,
o

S6=Zajaj,1 / I(u,v)dudv;
j=2 Dj_1xD,;

00 j—2
S7=Zaj Zak / I*(u,v)dudv.

J=2 k=2 p,p;
Itis clear that to prove (4.6), it suffices to prove the following:
(i) S1=o00;

(i) S2>0;and
(i) |Si| <oofori=3,...,7.

To prove (i), we notice that, fofu, v) € Dy x D; with k > 2(j + 1), we havev > 2u and
hence logl — v/u| > 0 which in turn leads td (u, v) > log|u — v| 1. Also, ju — v| < 1/j
and hencd (u, v) > log j. Therefore,

00 o0 1 1
512(72( Z <k(|ogk)3/2>j(logj)l/2)=oo.

=2 \k=2(j+1)

The proof of (i) is easy. In fact, fofu, v) € Dy x D; with j + 1<k <2j —1, we get
0< v/u <2andhencév/u — 1| < 1 which when combined witku /v — 1) < 0 gives (ii).
Now, we turn to prove thdiSz| < oo. To this end, we notice that{#:, v) € D2j41 x Dj,
we have
| | > - = = and u> !
U—v=v—uz2———5—7> = uz—.
j+1 2j+1 6j 6
Also, by the mean-value theorem we have
: < ¥ <
min{lu — v, |u|}  2j+1

%Ilog|u—v|—log|u||< 3 (4.8)

Therefore,

~ 1
1S3l < C Zaja21+1<j—2> < o0.
j=2
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Similarly, |S4| < co. The proof of|S5| < co is an immediate consequence of the observa-
tion that

/ |1 (u,v)|dudv

DjXDj

(5

DjXD]'

.3‘

+ ‘(5> log ||~
v

Now, we want to verify| S7| < co. To this end, notice that sinde< j — 2, we getv > u
Thus, by (4.8) we have

o =2 k+1/ 1—kv
1< 2 2?/ o (arme))

- i’_": Z: ay Iog(2(k +1)/ b _

C
)dudvg—

~

Similarly, |Ss| < oco.

The proof of (4.6) is complete.

Finally, we verify (4.7). To this end, we divide the integral domfairi, 1]2\[0, 1]2 into
three partsf—1, 0] x [0, 1], [0, 1] x [—1, 0], and[—1, O] x [—1, O]. First, the integral over
[—1,0] x [0, 1] is dominated from above by

‘(Z) log Iulfl ) dudv
v

(ST

as a
CZ—’

=27

On the other hand, the integral o€ 1] x [—1, 0] is dominated from above by

0
00 . u
> a loglu —v|™*+|( = ) (log|u — v] — log|u])| ) du dv
k=2 Zqp, Y

gC(kZZZk—i-Zak//Ioglu—vl 1dudv><oo

k=2 1 p,

Finally, since(Cl)Zx[_l,o]X[_l,o] € L*>, the integral ovef—1, 0] x [—1, O] is finite
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5. Proof of Theorem 1.2(a)

By assumptiors2 can be written as2 = 3% ; ¢,.b, wherec,, € C, b, is ag-block
with support on a cag, onS*~! and

o0
M2 (e Al =D el @+ (log2 1,1 71) < oo (5.1)
n=1
To each block functiom,, (-), let IS,L(-) be a function defined by
by (x) =by(x) — / by (u)do (u). (5.2)
szfl

Then one can easily verify thé}; enjoys the following properties:

/ l;M(u)dcr(u)zo, (5.3)
-1
Ibylle < 202,17Y7, (5.4)
IBycllp2 < 2. (5.5)
LetA={neN: |I,|>el}andB={ueN: |I,| <e 1}. Foru e N, we set
1, ifueA,
B“:{Iog(|lﬂ|1), if e B.

Using the assumption tha? has the mean zero property (1.1), and the definition,gf
we deduce tha® can be written as

(e.¢]
2= Zcﬂl;ﬂ,
n=1
which in turn gives

Ma(f) <Y leulM;, () (5.6)

u=1

Define the family of measurds; ,: t € R™} and the corresponding maximal function
onR" by

|yt teR+

1 bu(y)

/fda,,uz? / i) f(dy and o;(f)= suplloy,.l* fl.
R" lyl<t

Then the following holds for e R*, £ e R* andp > 1:

®  orull <C;

. 2(k+1)BL "

(N kaBu l |0—t,u($)|2% < CBM|2kBﬂ§|0‘/Bu; -
2k+DBy B )
(i) [as,  161,)PL < CBy|2%Bug|~/Bu;

V) o (DIl <Cpllfllp forall feLl.
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First, the proof of (5.7)(i) is obvious, and (5.7)(ii) follows by (5.7)(i) and (1.1). Also,
(5.7)(iv) follows easily by Proposition 1 on p. 477 of [12].
On the other hand, by the proof of Corollary 4.1 on p. 551 of [6],

161, (E) < Cllbyllg 12817/,
which when combined with (5.7)(i) and (5.4) gives
161.,.(8)]? < Cleg| =Y/ GBw

and this leads easily to (5.7)(iii).
By (5.7) and Theorem 2.1 we get

1Mz, (Dllp < CpBY2I £l (5.8)

forall f € L? and 1< p < oc0. By (5.1), (5.6), and (5.7) we get (1.3). This completes the
proof of Theorem 1.2(a).
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