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Abstract

This paper is primarily concerned with proving theLp boundedness of Marcinkiewicz integral o
erators with kernels belonging to certain block spaces. We also show the optimality of our con
on the kernel for theL2 boundedness of the Marcinkiewicz integral.
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1. Introduction and results

Let Rn, n� 2, be then-dimensional Euclidean space andSn−1 be the unit sphere inRn

equipped with the normalized Lebesgue measuredσ = dσ(·). LetΩ be a homogeneou
function of degree 0 satisfyingΩ ∈ L1(Sn−1) and∫

Sn−1

Ω(x ′) dσ(x ′)= 0, (1.1)

wherex ′ = x/|x| ∈ Sn−1 for anyx �= 0.
The Marcinkiewicz integral operator of higher dimension corresponding to the L

wood–Paleyg function is defined by

MΩf (x)=
( ∞∫

0

|Kt ∗ f (x)|2dt
t

)1/2

,
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where

K(x)= |x|1−nΩ(x)χ
(0,1](|x|), Kt (x)= t−nK(t−1x)

andχA denotes the characteristic function of a setA.
E.M. Stein introduced the operatorMΩ and showed that ifΩ ∈ Lipα(S

n−1) (0< α
� 1), thenMΩ is of type(p,p) for p ∈ (1,2] and of weak type(1,1) (see [10]). Subse
quently, A. Benedek, A. Calderón, and R. Panzone proved thatMΩ is of type(p,p) for
p ∈ (1,∞) if Ω ∈ C1(Sn−1) (see [BCP]).

On the other hand, the related Calderón–Zygmund singular integral operatorTΩ , which
is given by

TΩf (x)= p.v.
∫

Rn

Ω(y ′)|y|−nf (x − y) dy, (1.2)

wherey ′ = y/|y| for y �= 0, is known to be bounded onLp under much weaker cond
tions onΩ . For example, ifΩ ∈ L log+L(Sn−1), Calderón–Zygmund showed thatTΩ is
bounded onLp for all p ∈ (1,∞) and the conditionΩ ∈ L log+L(Sn−1) is essentially the
weakest possible size condition onΩ for theLp boundedness ofTΩ to hold [4]. Another
condition onΩ was given by Jiang and Lu who introduced a special class of block sp
B
(κ,υ)
q (Sn−1) and proved the followingL2 boundedness result.

Theorem 1.1 [8]. LetΩ andTΩ be given as in(1.1)–(1.2). Then ifΩ ∈B(0,0)q (Sn−1) with
q > 1, TΩ is a bounded operator onL2(Rn).

Some years later, theLp boundedness of the operatorTΩ was proved for allp ∈ (1,∞)
under the conditionΩ ∈ B(0,0)q (Sn−1) (see, for example, [1,3]). Also, it was proved in [

that the conditionΩ ∈ B(0,0)q (Sn−1) is the best possible for theLp boundedness ofTΩ to
hold. Namely, theLp boundedness ofTΩ may fail for anyp if it is replaced by a weake
conditionΩ ∈ B(0,υ)q (Sn−1) for any −1< υ < 0 andq > 1. The definition of the block

spaceB(κ,υ)q (Sn−1) will be recalled in Section 2.
The results cited above on singular integrals give rise to the problem whether s

results hold for the Marcinkiewicz integral operatorMΩ . More precisely, we have th
following:

Problem. Determine whether theLp boundedness of the operatorMΩ holds under a
condition in the form ofΩ ∈ B(0,υ)q (Sn−1), −1< υ, and, if so, what is the best possib
value ofυ.

The main focus of this paper is to obtain a complete solution to the above pro
Moreover, we present a systematic treatment of Marcinkiewicz integrals with kerne
longing to certain block spaces. This method is presented mainly in Theorem 2.1
proof is based in part on a combination of ideas from [3,5,6,9], among others. We r
that this method has also found applications for other problems in this area that will a
in forthcoming papers.

Our main result in this paper is the following:
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Theorem 1.2. (a) If Ω ∈ B(0,−1/2)
q (Sn−1), q > 1, and satisfies(1.1), then

‖MΩ‖p � Cp‖Ω‖
B
(0,−1/2)
q (Sn−1)

‖f ‖p (1.3)

for all f ∈Lp(Rn) andp ∈ (1,∞).
(b) There exists anΩ which lies inB(0,υ)q (Sn−1) for all −1< υ <−1/2 and satisfies

(1.1)such thatMΩ is not bounded onL2(Rn).

We point out here that part (a) represents an improvement over the results of Ste
Benedek–Calderón–Panzone while part (b) shows that the conditionΩ ∈ B(0,−1/2)

q (Sn−1)

is nearly optimal.
Throughout the rest of the paper the letterC will stand for a positive constant not ne

essarily the same one at each occurrence.
The authors wish to thank the referee for his helpful comments.

2. Main theorem

For a given a family of measures{σt : t ∈ R+}, we define the maximal operatorσ ∗ by
σ ∗(f )= supt∈R+ ||σt |∗f |. Also, we writet±α = inf{tα, t−α} and|σ | for the total variation
of σ , which is a positive measure. The proof of Theorem 1.2(a) will rely heavily on
following theorem:

Theorem 2.1. Let a � 2, B > 1, C > 0, andq > 1. Suppose that the family of measu
{σt : t ∈ R+} satisfies the following:

(i) ‖σt‖ � 1;

(ii)
∫ a(k+1)B

akB
|σ̂t (ξ)|2dt/t � CB(akB |ξ |)±α/B ;

(iii) ‖σ ∗(f )‖q �C‖f ‖q for f ∈ Lq(Rn).

Then for anyp ∈ (2q/(q + 1),2q/(q − 1)), there exists a positive constantCp such that∥∥∥∥∥
( ∞∫

0

|σt ∗ f |2dt
t

)1/2∥∥∥∥∥
p

�CpB1/2‖f ‖p (2.1)

for all f ∈Lp(Rn). The constantCp is independent ofB.

Proof. The argument of the proof mainly follows the ideas given in [6,9] and keeping
of various constants at each step. LetMf (x)= (∫∞

0 |σt ∗ f (x)|2dt/t)1/2 and{Φj }∞−∞ be
a smooth partition of unity in(0,∞) adapted to the intervalsEj = [2−(j+1)B,2−(j−1)B].
More precisely, we require the following:

Φj ∈ C∞, 0�Φj � 1,
∑

Φj(t)= 1, suppΦj ⊆Ej ,
∣∣∣∣dsΦj (t)dts

∣∣∣∣� C

ts
,

j
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whereC can be chosen to be independent ofB. Let Ψ̂k(ξ)=Φk(|ξ |). Decompose

f ∗ σt (x)=
∑
j∈Z

∑
k∈Z

(Ψk+j ∗ σt ∗ f )(x)χ[2kB,2(k+1)B )
(t) :=

∑
j∈Z

Fj (x, t)

and define

Mj f (x)=
( ∞∫

0

|Fj (x, t)|2dt
t

)1/2

.

Then

M(f )�
∑
j∈Z

Mj (f )

holds forf ∈ S(Rn).
First, by Plancherel’s theorem

‖Mj (f )‖2
2 =

∑
k∈Z

∫
Rn

2(k+1)B∫
2kB

|Ψk+j ∗ σt ∗ f (x)|2dt
t
dx

�
∑
k∈Z

∫
Ej+k

( 2(k+1)B∫
2kB

|σ̂t (ξ)|2dt
t

)
|f̂ (ξ)|2dξ

�CB
∑
k∈Z

∫
Ej+k

min(|2kBξ |α/B, |2kBξ |−α/B)|f̂ (ξ)|2dξ

�CB2−α|j |∑
k∈Z

∫
Ej+k

|f̂ (ξ)|2dξ � CB2−α|j |‖f ‖2
2.

Therefore,

‖Mj (f )‖2 � C(B)1/22−α|j |/2‖f ‖2. (2.2)

On the other hand, we compute theLp-norm ofMj (f ). For 2� p < 2q/(q− 1), there
exists a functiong in L(p/2)

′
with ‖g‖(p/2)′ � 1 such that

‖Mj (f )‖2
p =

∑
k∈Z

∫
Rn

2(k+1)B∫
2kB

|Ψk+j ∗ σt ∗ f (x)|2dt
t

|g(x)|dx

�
[
sup
t

‖σt‖
]∑
k∈Z

∫
Rn

2(k+1)B∫
2kB

|σt | ∗ |Ψk+j ∗ f (x)|2dt
t

|g(x)|dx

�CB
∫
n

∑
k∈Z

|Ψk+j ∗ f (x)|2σ ∗(g̃)(−x) dx (with g̃(x)= g(−x)),

R
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that
�CB
∥∥∥∥∑
k∈Z

|Ψk+j ∗ f |2
∥∥∥∥
p/2

‖σ ∗(g̃)‖(p/2)′.

By using (iii), the Littlewood–Paley theory and Theorem 3 along with the remark
follows its statement in [11, p. 96], we have

‖Mj (f )‖p �C(B)1/2‖f ‖p for 2� p <∞.
To handle the case 2q/(q + 1) < p < 2, we need to prove the following lemma.

Lemma 2.2. Letgk(x, t) be arbitrary functions onRn × R+. If p > 2, then∥∥∥∥∥I =:
(∑
k∈Z

2(k+1)B∫
2kB

|gk(· , t) ∗ σt |2dt
t

)1/2∥∥∥∥∥
p

� C
∥∥∥∥∥
(∑
k∈Z

2(k+1)B∫
2kB

|gk(· , t)|2dt
t

)1/2∥∥∥∥∥
p

.

Proof. As above, ifp > 2, there exists a functionh ∈L(p/2)′(Rn) such that

I =
(∑
k∈Z

∫
Rn

2(k+1)B∫
2kB

|gk(· , t) ∗ σt |2dt
t
h(x) dx

)1/2

.

By the same argument as above, we have

I �
(∑
k∈Z

∫
Rn

2(k+1)B∫
2kB

|σt | ∗ |gk(· , t)|2dt
t
h(x) dx

)1/2

�
(∥∥∥∥∥∑

k∈Z

2(k+1)B∫
2kB

|gk(· , t)|2dt
t

∥∥∥∥∥
p/2

‖σ ∗(h̃)‖(p/2)′
)1/2

which ends the proof of the lemma.✷
Now we are ready to prove (2.1) for the case 2q/(q + 1) < p < 2. Let Ik =

[2kB,2(k+1)B). By a duality argument, there exist functionsgk(x, t) defined onRn × R+
with ‖‖‖gk‖L2(χIk ,dt/t)

‖l2‖Lp′ � 1 such that

‖Mj (f )‖p =
∫

Rn

∑
k∈Z

2(k+1)B∫
2kB

(Ψk+j ∗ σt ∗ f (x))gk(x, t)dt
t
dx

� (B)1/2
∫

Rn

∑
k∈Z

(|Ψk+j ∗ f (x)|2)1/2
( 2(k+1)B∫

2kB

|σt ∗ gk(x, t)|2dt
t

)1/2

dx

�C(B)1/2
∥∥∥∥(∑

k∈Z

|Ψk+j ∗ f |2
)1/2∥∥∥∥

p

∥∥∥∥‖gk‖L2(χIk ,dt/t)

∥∥
l2

∥∥
Lp

′

�C(B)1/2‖f ‖p.
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rem 3

f

Here as above, the last inequality follows by the Littlewood–Paley theory and Theo
along with the remark that follows its statement in [11, p. 96].✷

3. Some definitions and lemmas

We start by the following definition.

Definition 3.1. (1) Forx ′
0 ∈ Sn−1 and 0< θ0 � 2, the set

B(x ′
0, θ0)=

{
x ′ ∈ Sn−1:

∣∣x ′ − x ′
0

∣∣< θ0}
is called a cap onSn−1.

(2) For 1< q � ∞, a measurable functionb is called aq-block on Sn−1 if b is a
function supported on some capI = B(x ′

0, θ0) with ‖b‖Lq � |I |−1/q ′
where|I | = σ(I)

and 1/q + 1/q ′ = 1.
(3) B(κ,υ)q (Sn−1) = {Ω ∈ L1(Sn−1): Ω = ∑∞

µ=1 cµbµ where eachcµ is a complex

number; eachbµ is a q-block supported on a capIµ on Sn−1; andM(κ,υ)
q ({c

k
}, {I

k
}) =∑∞

µ=1 |cµ|(1+ φκ,υ(|Iµ|)) <∞}, where

φκ,υ(t)= χ(0,1)(t)
1∫
t

u−1−κ logυ(u−1) du. (3.1)

We remark that the definition ofB(κ,υ)q ([a, b]), a, b ∈ R will be the same as that o

B
(κ,υ)
q (Sn−1) except for minor modifications. One observes that

φκ,υ(t)∼ t−κ logυ(t−1) ast → 0 for κ > 0, υ ∈ R,

and

φ0,υ(t)∼ logυ+1(t−1) ast → 0 for υ >−1.

The following properties ofB(κ,υ)q can be found in [7]:

(i) B(κ,υ2)
q ⊂ B(κ,υ1)

q if υ2> υ1>−1 andκ � 0; (3.2)

(ii) B(κ2,υ2)
q ⊂ B(κ1,υ1)

q if υ1, υ2>−1 and 0� κ1< κ2; (3.3)

(iii ) B(κ,υ)q2
⊂ B(κ,υ)q1

if 1 < q1< q2; (3.4)

(iv) Lq(Sn−1)⊂ B(κ,υ)q (Sn−1)⊂ L1(Sn−1) for υ >−1 andκ � 0. (3.5)

The following result due to Keitoku and Sato which can be found in [7]:

Lemma 3.2. (i) If 1<p � q � ∞, then forκ > 1/p′ we have

B(κ,υ)q (Sn−1)⊆ Lp(Sn−1) for anyυ >−1;
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[2].
(ii)

B(κ,υ)q (Sn−1)= Lq(Sn−1) if and only ifκ � 1

q ′ andυ � 0;
(iii) for anyυ >−1, we have⋃

q>1

B(0,υ)q (Sn−1)�
⋃
q>1

Lq(Sn−1).

LetN(0,υ)q (Ω)= inf{M(0,υ)
q ({ck}, {Ik}): Ω =∑∞

k=1 ckbk and eachbk is aq-block func-
tion supported on a intervalIk}.

To prove part (b) of Theorem 1.2 we shall rely heavily on the following lemma from

Lemma 3.3. For anyυ >−1, a, b ∈ R,

(i) N(0,υ)q is a norm onB(0,υ)q ([a, b]) and(B(0,υ)q ([a, b]),N(0,υ)q ) is a Banach space;

(ii) If f ∈ B(0,υ)q ([a, b]) and g is a measurable on[a, b] with |g| � |f |, then g ∈
B
(0,υ)
q ([a, b]) with

N(0,υ)q (g)�N(0,υ)q (f );
(iii) Let I1 and I2 be two disjoint intervals in[a, b] with |I1|, |I2| < 1 andα1, α2 ∈ R+.

Then

N(0,υ)q (α1χI1 + α2χI2)�N(0,υ)q (α1χI1)+N(0,υ)q (α2χI2);
(iv) Let I be an interval in[a, b] with |I |< 1. Then

N(0,υ)q (χI )� |I |(1+ logυ+1(|I |−1)).

4. Proof of Theorem 1.2(b)

It is clear thatMΩ is bounded onL2(Rn) if and only if the multiplier

m(ξ)=
( ∞∫

0

∣∣∣∣∣
∫

|y|�t
e−2πiξ ′·y Ω(y)

|y|n−1
dy

∣∣∣∣∣
2
dt

t3

)1/2

is anL∞ function, whereξ ′ = ξ/|ξ |.
It is easy to see that

m(ξ)= lim
N→∞, ε→0

∫
Sn−1×Sn−1

Ω(x)Ω(y)

×
1∫ 1∫ ( N∫

e−2πitξ ′·(rx−sy) dt
t

)
dr ds dσ(x) dσ(y).
0 0 ε
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e get

y we
Note that

N∫
ε

(e−2πitξ ′·(rx−sy)− cos(2πt))
dt

t

→ log|ξ ′ · (rx − sy)|−1 − i π
2

sgn(ξ ′ · (rx − sy))
asN → ∞ andε→ 0, and the integral is bounded, uniformly inε andN , by C(log|ξ ′ ·
(rx − sy)|).

Thus, using (1.1) and the Lebesgue dominated convergence theorem, we get

m(ξ)=
∫

Sn−1×Sn−1

1∫
0

1∫
0

Ω(x)Ω(y)

×
(

log|ξ ′ · (rx − sy)|−1 − i π
2

sgn(ξ ′ · (rx − sy))
)
dr ds dσ(x) dσ(y).

Now, if Ω is a real-valued function, by (1.1) and a straightforward computations w

m(ξ)=
∫

Sn−1×Sn−1

(
Ω(x)Ω(y)

(
ξ ′ · x
ξ ′ · y − 1

)
log|ξ ′ · (x − y)|

−
(
ξ ′ · x
ξ ′ · y

)
log|ξ ′ · (x − y)|

)
dσ(x) dσ(y). (4.1)

Now, we are ready to prove part (b) of Theorem 1.2. For the sake of simplicit
shall present the construction of ourΩ only in the casen = 2 andq = ∞. Other cases
can be obtained by minor modifications. Also, we shall work on[−1,1] instead ofS1. For
u ∈ [−1,1], let

Ω(u)=
∞∑
k=1

Ckbk(u) (4.2)

where

C1 =
∞∑
k=2

1

(k + 1)(logk)3/2
, b1(u)= −χ[−1,0](u),

Ck = 1

(k + 1)(logk)3/2
,

bk(u)= |Dk|−1χDk(u) and Dk =
[

1

k + 1
,

1

k

)
for k � 2.

ThenΩ has the desired properties. More precisely,Ω satisfies the following:

1∫
Ω(u)du= 0; (4.3)
−1
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first
y

Ω ∈B(0,υ)∞ ([−1,1]) for eachυ,−1< υ <−1

2
; (4.4)

Ω /∈B(0,−1/2)∞ ([−1,1]); (4.5)

J1 =
∫

[0,1]2

(
Ω(u)Ω(v)

(
1− u

v

)
log|u− v|−1 +

(
u

v

)
log|u|−1

)
dudv

= ∞; (4.6)

J2 =
∫

[−1,1]2\[0,1]2

∣∣∣∣Ω(u)Ω(v)(1− u

v

)
log|u− v|−1 +

(
u

v

)
log|u|−1

∣∣∣∣dudv
<∞. (4.7)

The proof of (4.3)–(4.4) is straightforward. Now we turn to the proof of (4.5). We
notice that eachbk is an∞-block supported on the intervalDk . So to prove (4.5), we onl
need to show thatN(0,−1/2)∞ (Ω)= ∞. To this end, by Lemma 3.3 we have for eachl,

N
(0,−1/2)∞ (Ω +C1χ[−1,0])�

l∑
k=2

|Ck||Dk|−1N
(0,−1/2)∞ (χDk )

�
l∑
k=2

|Ck|(1+ log1/2(|Dk|−1)).

Letting l→ ∞, we getN(0,−1/2)∞ (Ω +C1χ[−1,0])= ∞. Since,N(0,−1/2)∞ (C1χ[−1,0]) <∞
we getN(0,−1/2)∞ (Ω)= ∞.

Now, we verify (4.6). Let

ak = k

(logk)3/2
, k � 2;

I (u, v)=
(

1− u

v

)
log|u− v|−1 +

(
u

v

)
log|u|−1;

I∗(u, v)=
(
u

v

)
(log|u|−1 − log|u− v|−1).

It is clear that

J1 � S1 + S2 + S3 + S4 + S5 + S6 + S7,

where

S1 =
∞∑
j=2

aj

∞∑
k�2(j+1)

ak

∫
Dk×Dj

I (u, v) dudv;

S2 =
∞∑
j=2

aj

2j−1∑
k=j+1

ak

∫
D ×D

I (u, v) dudv;

k j



H.M. Al-Qassem, A.J. Al-Salman / J. Math. Anal. Appl. 282 (2003) 698–710 707
S3 =
∞∑
j=2

aja2j+1

∫
D2j+1×Dj

I∗(u, v) dudv;

S4 =
∞∑
j=2

aja2j

∫
Da2j×Dj

I∗(u, v) dudv;

S5 =
∞∑
j=2

(aj )
2
∫

Dj×Dj
I (u, v) dudv;

S6 =
∞∑
j=2

ajaj−1

∫
Dj−1×Dj

I (u, v) dudv;

S7 =
∞∑
j=2

aj

j−2∑
k=2

ak

∫
Dk×Dj

I∗(u, v) dudv.

It is clear that to prove (4.6), it suffices to prove the following:

(i) S1 = ∞;
(ii) S2 � 0; and
(iii) |Si |<∞ for i = 3, . . . ,7.

To prove (i), we notice that, for(u, v) ∈Dk ×Dj with k � 2(j + 1), we havev � 2u and
hence log|1− v/u| � 0 which in turn leads toI (u, v)� log|u− v|−1. Also, |u− v| � 1/j
and henceI (u, v)� logj . Therefore,

S1 � C
∞∑
j=2

( ∞∑
k=2(j+1)

(
1

k(logk)3/2

)
1

j (logj)1/2

)
= ∞.

The proof of (ii) is easy. In fact, for(u, v) ∈Dk ×Dj with j + 1 � k � 2j − 1, we get
0 � v/u� 2 and hence|v/u− 1| � 1 which when combined with(u/v− 1)� 0 gives (ii).

Now, we turn to prove that|S3|<∞. To this end, we notice that if(u, v) ∈D2j+1×Dj ,
we have

|u− v| = v − u� 1

j + 1
− 1

2j + 1
>

1

6j
and u� 1

6j
.

Also, by the mean-value theorem we have

u

v
| log|u− v| − log|u|| � u

min{|u− v|, |u|} � 6j

2j + 1
� 3. (4.8)

Therefore,

|S3| � C
∞∑
aja2j+1

(
1

j2

)
<∞.
j=2
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rva-

r

Similarly, |S4|<∞. The proof of|S5|<∞ is an immediate consequence of the obse
tion that∫

Dj×Dj
|I (u, v)|dudv

�
∫

Dj×Dj

(∣∣∣∣(u− v
v

)
log|u− v|−1

∣∣∣∣+ ∣∣∣∣(uv
)

log|u|−1
∣∣∣∣)dudv � C

j3
.

Similarly, |S6|<∞.
Now, we want to verify|S7|<∞. To this end, notice that sincek � j −2, we getv > u.

Thus, by (4.8) we have

|S7| �
∞∑
j=2

aj

j−2∑
k=2

ak

k

∫
Dj

log

(
k + 1

k

(
1− kv

1− (k + 1)v

))
dv

�
∞∑
j=2

aj

j−2∑
k=2

ak log(2(k+ 1)/k)

kj2
<∞.

The proof of (4.6) is complete.
Finally, we verify (4.7). To this end, we divide the integral domain[−1,1]2\[0,1]2 into

three parts:[−1,0]× [0,1], [0,1]× [−1,0], and[−1,0]× [−1,0]. First, the integral ove
[−1,0] × [0,1] is dominated from above by

∞∑
j=2

aj

∫
Dj

0∫
−1

(∣∣∣∣(u− v
v

)
log|u− v|−1

∣∣∣∣+ ∣∣∣∣(uv
)

log|u|−1
∣∣∣∣)dudv

� C
∞∑
j=2

aj

j3
<∞.

On the other hand, the integral over[0,1] × [−1,0] is dominated from above by

∞∑
k=2

ak

0∫
−1

∫
Dk

(
log|u− v|−1 +

∣∣∣∣(uv
)
(log|u− v| − log|u|)

∣∣∣∣)dudv

� C
( ∞∑
k=2

ak

k2 +
∞∑
k=2

ak

0∫
−1

∫
Dk

log|u− v|−1 dudv

)
<∞.

Finally, since(C1)
2χ[−1,0]×[−1,0] ∈ L∞, the integral over[−1,0] × [−1,0] is finite.
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on
5. Proof of Theorem 1.2(a)

By assumptionΩ can be written asΩ =∑∞
µ=1 cµbµ wherecµ ∈ C, bµ is a q-block

with support on a capIµ on Sn−1 and

M
(0,−1/2)
q ({ck}, {Ik})=

∞∑
µ=1

|cµ|(1+ (log1/2 |Iµ|−1)) <∞. (5.1)

To each block functionbµ(·), let b̃µ(·) be a function defined by

b̃µ(x)= bµ(x)−
∫

Sn−1

bµ(u) dσ(u). (5.2)

Then one can easily verify thatb̃µ enjoys the following properties:∫
Sn−1

b̃µ(u) dσ(u)= 0, (5.3)

‖b̃µ‖Lq � 2|Iµ|−1/q ′
, (5.4)

‖b̃µ‖L1 � 2. (5.5)

LetA= {µ ∈ N: |Iµ| � e−1} andB = {µ ∈ N: |Iµ|< e−1}. Forµ ∈ N, we set

Bµ =
{

1, if µ ∈A,
log(|Iµ|−1), if µ ∈B.

Using the assumption thatΩ has the mean zero property (1.1), and the definition ofb̃µ,
we deduce thatΩ can be written as

Ω =
∞∑
µ=1

cµb̃µ,

which in turn gives

MΩ(f )�
∞∑
µ=1

|cµ|Mb̃µ
(f ). (5.6)

Define the family of measures{σt,µ: t ∈ R+} and the corresponding maximal functi
on Rn by∫

Rn

f dσt,µ = 1

t

∫
|y|�t

b̃µ(y)

|y|n−1
f (y) dy and σ ∗

µ(f )= sup
t∈R+

||σt,µ| ∗ f |.

Then the following holds fort ∈ R+, ξ ∈ Rn andp > 1:

(i) ‖σt,µ‖ � C;
(ii)

∫ 2(k+1)Bµ

2kBµ |σ̂t,µ(ξ)|2 dtt �CBµ|2kBµξ |α/Bµ;
(iii )

∫ 2(k+1)Bµ

2kBµ |σ̂t,µ(ξ)|2 dtt �CBµ|2kBµξ |−α/Bµ;
(iv) ‖σ ∗(f )‖p � Cp‖f ‖p for all f ∈Lp.

(5.7)
µ
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so,

the

(1999)

h rough

aces,

990)

ourier

.
89.
(1998)

c. 88

ceton,

ceton

roc. Nat.
First, the proof of (5.7)(i) is obvious, and (5.7)(ii) follows by (5.7)(i) and (1.1). Al
(5.7)(iv) follows easily by Proposition 1 on p. 477 of [12].

On the other hand, by the proof of Corollary 4.1 on p. 551 of [6],

|σ̂t,µ(ξ)| � C‖b̃µ‖q |tξ |−1/6;
which when combined with (5.7)(i) and (5.4) gives

|σ̂t,µ(ξ)|2 � C|tξ |−1/(3Bµ)

and this leads easily to (5.7)(iii).
By (5.7) and Theorem 2.1 we get

‖Mb̃µ
(f )‖p � Cp(Bµ)1/2‖f ‖p (5.8)

for all f ∈ Lp and 1< p <∞. By (5.1), (5.6), and (5.7) we get (1.3). This completes
proof of Theorem 1.2(a).
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