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Abstract; This paper is concerned with the development of a parameter-free method, closely related to penalty 
function and multiplier methods, for solving constrained minimization problems. The method is developed via the 
quadratic programming model with equality constraints. The study starts with an investigation into the convergence 
properties of a so-called “primal-dual differential trajectory”, defined by directions given by the direction of steepest 

descent with respect to the variables x of the problem, and the direction of steepest ascent with respect to the 
Lagrangian multipliers h, associated with the Lagrangian function. It is shown that the trajectory converges to a 
stationary point (x *, h*) corresponding to the solution of the equality constrained problem. Subsequently numerical 
procedures are proposed by means of which practical trajectories may be computed and the convergence of these 
trajectories are analyzed. A computational algorithm is presented and its application is illustrated by means of simple 
but representative examples. The extension of the method to inequality constrained problems is discussed and a 
non-rigorous argument, based on the Kuhn-Tucker necessary conditions for a constrained minimum, is put forward 

on which a practical procedure for determining the solution is based. The application of the method to inequality 
constrained problems is illustrated by its application to a couple of simple problems. 

Keywords: Constrained minimization, multiplier methods, penalty function methods, augmented Langrangian. 

1. Introduction 

In an important class of methods the approach to solving constrained minimization problems 
is by transforming the constrained problem into a sequence of unconstrained problems which 
may be solved by standard methods. The most important methods in this class are the penalty 
function methods and so-called multiplier methods. Reviews of these two methods are given by 
Avriel [l] and by Bertsekas [2]. Both cases involve the solution of a sequence of unconstrained 
minimizations in which parameters are adjusted from one minimization to another. Exact 
penalty function methods, performing a single unconstrained optimization, have also been 
proposed [ 11. 

In this paper we propose a method which has much in common with the multiplier methods 
but which performs a single unconstrained minimization and requires no parameter adjustments. 
The method is developed via the quadratic programming model with equality constraints. 
Extension of the method to deal with inequalities is also considered. 
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2. Penalty and multiplier methods 

Because of their relevance to the current work we briefly describe the penalty and multiplier 
methods for the equality constrained problem 

minimize F(x), x E R”, 

subjecttoh,(x)=O, i=l,2 ,..., m (1) 
where F, h,, h,, . . . , h, are real valued functions on R ‘. The most common penalty function 
method uses a quadratic penalty and consists of sequential minimizations of the form 

minimizeP(x, ck)=F(x)+ck(Ih(x))(*, k=O,l,2,... (2) 
where h(x) = [h,(x), . . . , h,( x)IT and the euclidean norm is used and the positive scalar 
sequence { ck } is such that ck 4 ck+ i for all k and ck + 00. It can be shown that, under relatively 
mild assumptions on the nature of F and h, the sequence of corresponding optimal solutions 
{ x$ } of (2) converges to the optimal solution x* of (1). Penalty methods are simple to 
implement, are applicable to a broad class of problems and take advantage of the very powerful 
minimization methods which have been developed for solving the unconstrained problem (2). On 
the other hand penalty methods are hampered by slow convergence and numerical instabilities 
associated with ill-conditioning of the Hessian matrix of the penalty function when the values of 
ck become large. 

The necessity for methods in which the parameters { ck} would need to assume moderate 
values only, prompted the development of a new class of methods known as multiplier methods. 
The first method, representative of this class of methods, was independently put forward by 
Hestenes [3] and by Powell [4]. We present the formulation due to Hestenes. In this method the 
penalty term is added not to the objective function F but rather to the Lagrangian function 
associated with (1). Consequently, Hestenes considers the sequence of minimizations of the form 

minimize L(x, A,, ~~)=F(x)+A~h(x)+:c~~~h(x)~~~, k=O,l,2,... (3) 
where { ck } again is a sequence of positive penalty parameters and where the multiplier sequence 
{ hk} is updated by the formula 

x k+i =&+ckh(Xk*)* (4) 
Here x$ is the optimal solution corresponding to (3) and the initial multiplier vector A, is 
selected a priori. The sequence { ck} may be either preselected or generated during the 
computation according to some scheme. 

The important aspect of this method is that it can be shown that under mild conditions, 
convergence may occur to the solution x* of (1) without the need to increase ck to infinity. In 
this case convergence is induced not merely by ever increasing values of the penalty parameters 
but also by the multiplier iteration (4). In this way the ill-conditioning, associated with the 
penalty methods, can be avoided and consequently multiplier algorithms have emerged as 
attractive methods for constrained optimization. 

3. The primal-dual trajectory 

It is well known that the constrained problem (1) may be considered via the unconstrained 
Lagrangian function 

,5(x, A) = F(x) + ATh(x), (5) 
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where A E R”. If F, h;, i=1,2 ,..., m, are continuously differentiable functions and if x* is a 
constrained local minimum of problem (1) then there exists a vector of multipliers A* = 

(AT, G,..., A*,)T such that 

V&(X*, A*) =0 and v,L(x*, X”) =O. (6) 

One may therefore in principle obtain candidates for x* by applying the above necessary 
conditions for stationarity and solving for x* and the Lagrange multipliers A*. However, since 
equations (6) are in general difficult to solve, direct methods such as the penalty and multiplier 
methods mentioned in the previous section have been developed. These methods, as has been 
pointed out, require the solution of a sequence of subproblems as well as the selection of suitable 
parameters. We now investigate the possibility of obtaining the solution (x*, A*) to equations 
(6) by following a single trajectory and without the need for selecting parameters. When solving 
the unconstrained minimization problem; minimize F(x), x E lF4 “; then the application of the 
steepest descent method to convex functions leads to the minimum x *. Essentially the steepest 
descent method consists of following the gradient path given by the solution of 

g:(t) = -m(x), x(0) = x0, 

where x,, is some given initial starting point. For the Lagrangian function the gradient path 
defined by 

dx _=_._ 
dt 
dX _=- 
dt 

X0, 

(8) 
x 0, 

will not necessarily converge to (x * , A* ) since if it represents a solution to constrained problem 
(1) it also corresponds to a saddlepoint. The two equations in (8) correspond to directions of 
steepest descent with respect to both x and A. One intuitively feels that by switching the sign of 
the second equation to be positive, i.e. to steepest ascent one may improve the convergence 
property of the resulting gradient path. Switching the sign may be viewed as attempting to solve 
the primal and associated dual problem simultaneously. Consequently we consider the conver- 
gence property of the ‘primal-dual trajectory’ defined by 

dx -= 
dt - VXL, 40) =x0, 

dX 
-& = +vhL, h(0) = A,. (9) 

To simplify matters we consider the quadratic programming problem 

minimize F(x) = +xTAx + bTx, 

subject to h(x) = Cx-d=O, (10) 

where A is a n X n positive definite matrix and C a m X n matrix, m -c n. The Lagrangian 
function is given by 

L(x, A)=:XTAX+bTx+hT(Cx-d) (11) 
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and the corresponding primal-dual trajectory is defined by 

dx 
-= -v,L= -Ax-b-C-%, 
dt 

dX 
_ = +v,L=Cx-d. 
dt 

By equation (6) the necessary conditions for stationarity at (x * , A* ) is 

-t7,L= -Ax*-b-CTA*=Q 

and 

vkL=Cx*-d=O. 

Let X = x - x* and A = h - h* then it follows by subtracting (13) from (12) that 

:[:I = -[-“c Cal];] 

which may be written as 

dZ 
==-GZ 

where Z = 
X 

[ 1 A 
and G= [ tC Cal. 

(12) 

03) 

04) 

(15) 

06) 

It follows that 

-Z=GZ= -X=AX-X=C=A + A=CX 

= -X=AX< 0 (17) 

for all X # 0, by virtue of the fact that A is positive definite. Thus if Z(t) represents the solution 
of (15) from some initial point Z(0) = Z,,, then 

+( ,,Z,,2) =ZTdZ = -ZTGZ<O X#O. 
dt , (18) 

If X = 0 and A # 0 then we momentarily have 

dllZ)I/dt=O with dA/dt = 0 and dX/dt = - CTA # 0. 

The trajectory therefore continues with X changing to X # 0 and consequently, by (18), this 
results in a further decrease in 11 Z 11. The overall effect is that a spiralling trajectory is obtained 
which converges to 11 Z 11 = 0 as t tends to infinity, i.e. 

h?J 11 z(t) \I = 0. (19) 

In the case of the quadratic problem (10) the primal-dual trajectory therefore converges to the 
unique saddle point (x *, A*) corresponding to the solution of the constrained problem. 

More generally it can also be 
h(x) = 0, the equilibrium point 

A=(aij)= & 
i I J 

shown that, for a general function F(x) with general constraints 

(x*, A* ) is asymptotically stable provided 

a2h 
+?A2 

r=l raxi axj 
(20) 

is positive-definite at (x*, X*). 
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The convergence of practical trajectories 

From the above exposition it appears that under suitable conditions the solution x* and the 
associated multiplier vector A* may be obtained in a single iteration by following the trajectory 
given by the solution of initial value problem (9). To do this economically required that a 
practical numerical procedure be available for computing the trajectory such as, for example, the 
optimal gradient method which is used for the unconstrained minimization of a function. In the 
latter case a trajectory is obtained by successive one-dimensional minimizations in search 
directions given by directions of steepest descent of the function. Unfortunately in our case the 
directions given by equations (9) do not directly correspond to the minimization of an associated 
function. We can however show that, under certain conditions, the directions given by (9) 
correspond to descent directions for the norm of the associated gradient vector. Therefore, since 
the necessary conditions (6) must apply at the solution (x*, A*), the persuit of a trajectory 
obtained by using (9) as search directions with associated one-dimensional minimizations of the 
norm of the gradient vector, should yield the solution (X *, A* ). 

Let p denote a function proportional to the square of the norm of the gradient vector and 
defined by 

p = :I] GZ ]I 2 = +(Gz)‘(Gz). (21) 

For the direction given by (9) and therefore by (15) it follows that in the direction of the 
primal-dual trajectory we have 

$ = (GZ)T$(GZ) =ZTGTG!$ = -ZTGTGGZ. (22) 

Let GZ = [:I, where p = V, L and q = - v~L then we have by (16) and similarly to (17) that 

dp/dt = -pTAp < 0 (23) 

for p # 0, since A is positive definite. 
Using the directions of equations (9) as search directions for minimizing p we have descent to 

p = 0, i.e: to (x*, A* ), provided of course that p # 0 at each step of the computed trajectory. 
Unfortunately, as we may expect and as is also borne out by experiment, the latter is not always 
true and we may have that p approaches 0 at a point along the trajectory which is far removed 
from (X *, A* ) and consequently we have very little or effectively zero descent in p. 

To prevent the above situation we consider the following auxiliary Lagrangian function which 
is similar to the augmented Lagrangian (3) of Hestenes [3] except for the absence of the penalty 
parameter: 

L,(x, A)=F(x)+XT/z(X)++~~h(x))~2. (24) 

The motivation for the use of the above Lagrangian is the following. If the components of p, i.e. 
of v,L, become small, we have by (23) very slow convergence, i.e. the search direction given by 
(9) gives minimal descent. In particular if p = 0 the x-components of dZ/ dt equals zero. In 
such a case we may wish to choose a new search direction as - VP, the direction of steepest 
descent of the more complicated function p. 

Since 

p = +(GZ)TG~ 



160 J.A. Snyman / Constrained minimization 

and the gradient is invariant under a linear transformation it follows that 

Thus the components of 

aP -= 
ax, 

and 

vp are given by 

a*L 

axiaxk 
k=l,2 ,..., n, 

ap n aL a*L -= 
ah +i i=l axi axi ax,’ 

1=1,2 ,..., m. 

Now if p = 0 we have that the components of the steepest descent direction are given by 

-(VP)k= 

- ‘&zj$ k=1,2 ,..., n, 
j=l k 

\O k=n+l,...,n+m. 

This direction is in fact orthogonal to the primal-dual direction at the point where p = 0. We 
also notice that if we consider the auxiliary function LA given by (24) instead of the, in general, 
more complicated function p that 

- V&A = - V,P 

at the point where p = 0. This gives the direction of steepest descent of p with respect to the 
x-components and it therefore seems worthwhile to investigate the convergence of the differential 
path (9) with L replaced by LA. 

We consider again the quadratic model (10) for which we have 

L,=~X=Ax+bTx+A=(cx-d)+:(cx-d)=(cx-d). 

The corresponding primal-dual path is defined by 

(25) 

dx 

dt= 
-vXLA= -{Ax+b+C=h+C=(cx-d)}, 

dX 
-= +v,L,=Cx-d. 
dt 

(26) 

Clearly the stationary point (x *, A*) of this path is the same as the previous equilibrium point 
of the trajectory given by (12). 

Again let X=x-x* and A = A - X*. It then follows from (26) and (13) that 

dX/ dt= -(A + C=C)X- C=A, dA/ dt = CX, (27) 

which may be written as 

dZ -=_ 
dt 

A ““,‘” “d z= -GZ-BZ= -DZ, 1 (28) 

where B = c=c 0 
[ 1 0 0’ 
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Here again we have for trajectory (26) that 

+g( ,,.2q2) = -XT@ + CTC)X<O 

for all X # 0, since (A + CTC) is positive definite. Similarly to the argument preceding equation 
(19) it now follows that the trajectory converges to (x*, h*). 

Suppose now we use the directions given by (26) as search directions for minimizing p. We 
then have that 

g = (G~)'$Gz) = (Gz)‘G~ 
= -(Gz)~GD~= -(Gz)~G(G 

= -Z TGTGGZ - ZTGTGBZ. 

+ B)Z 

(29) 
In particular we consider the eventuality p = 0. In this case the first term vanishes and it can also 
easily be shown that the second term reduces to -XTCTCCTCX so that we have 

dp/ dt = -XTCTCCTCX < 0 

for X # 0, since CTCCTC is positive-definite. 
We may now combine search directions (12) and (26), i.e. L and L,, in a convergent 

minimization procedure. This is done by alternative applying search directions (12) and (26). If 
p = 0, X # 0, then the application of (26) gives descent in p by the argument presented 
immediately above. If p # 0 then direction (12) gives descent by (23) even if no descent was 
obtained in the previous step by the application of (26). Thus the alternate application of search 
directions (12) and (26) ensures descent in p unless both X = 0 and p = 0. If this happens then 
obviously x = x * and, since p = vx L( x*, A) = 0, it follows that X = h* and convergence is 
attained. 

Much of the theory of the method developed here, as is the case in the development of many 
other gradient methods, is only valid for the case where F(x) is a positive definite quadratic 
function and h(x) represents linear constraints. We may however expect that this method, which 
essentially is also a gradient method, may be applicable to general nonlinear functions with, in 
reference to (20), the condition that F(x) and h(x) be convex functions. The truth of this 
statement can only be established by much more difficult and sophisticated analysis and in 
practice by applying it to standard test functions. Also if the constraints h(x) are nonlinear the 
stationary point (x *, A*) may no longer be unique. Allowance must then be made for the 
possibility of convergence, depending on the starting point (x0, A,), to more than one stationary 
point corresponding to different constrained local minima. 

5. Computational algorithm 

A formal algorithm representing the method developed in the previous sections may now be 
stated as follows. 

Given a small number E > 0 and a starting point Z, = (x,, A,), set k + 0 and perform the 
following steps. 
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Step I. 

Step 2. 

Step 3. 
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If k equals zero or is even then 
1.1. set g, + (- V,L, + VAL); 
1.2. else set g, + (- V,L,,+ vhLA). 
Perform a one-dimensional minimization of p in the search direction g,, i.e. determine 
CY~ such that 

set zk_, + zk + akgk. 

x 
1 

1.0 T 
0 

-1 

-‘: 2 - 

t 
x = 1 

/‘x* q -2 

Fig. 1. Minimization trajectories for Example 1 computed by the original (full line) and modified (broken line) 
algorithms respectively. The encircled numbers denote the minimization steps for the modified algorithm. 
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Step 4. If p(Z,+,) < E, then STOP; 
elseset k+k+landgotoStepl. 

Typically we have, starting at Z,, that the search direction (1 .l) in step 1 yields Z,, then search 
direction (1.2) gives Z, and again applying (1.1) we obtain Z,. Since, under the conditions 
assumed in the derivation of the method, we must have descent from Z, to Z, for (xi, A,) # 

(x*, A*), we may seek to improve the efficiency of the algorithm by performing a further 
minimization along the descent direction g, = Z, - Z, to obtain Z,. Having determined Z, in 
this manner we may set Z, + Z, and repeat the complete procedure until convergence is 
obtained. The effect of this modification is illustrated in Figure 1 which shows the descent 
trajectories given by both the original and the modified algorithms for the following rather trivial 
example. 

Example 1. Minimize x2, subject to x - 1 = 0. 
The starting point is Z, = (x0, A,) = (0, 1) and the problem has the solution x * = 1, A* = - 2. 
The figure clearly indicates that the modification drastically reduces the number of minimization 
steps required for convergence. On the basis of this evidence the modified algorithm is accepted 

i 

F = x1’+ 2x,2 

Fig. 2. Minimization trajectory in x-space for the quadratic Example 2. 



164 J.A. Snyman / Constrained minimization 

5.' = (0.5611, 0.6623) 

xcl = (0, 0) 

A,= 0 

Fig. 3. Minimization trajectory in x-space for the non-quadratic Example 3. 

as the standard algorithm and in all further references to the algorithm the standard form will be 
assumed. 

The working of the algorithm is further illustrated in Fig. 2 and 3 which depict the respective 
trajectories in x-space for the two problems listed below. The first problem is quadratic with a 
linear constraint in accordance with (10) but the second is nonquadratic with a nonlinear 
constraint. 

Example 2. Minimize xf + 2x22, subject to x1 + x2 - 1 = 0. 
The starting point is x0 = (0,O) and X0 = 0 and the problem has the solution x * = (4, i) and 
A* = $. 

Example 3. Minimize x: + x:, subject to 1 - x: - x2 = 0. 
The starting point is x0 = (0, 0) and h, = 0, and the problem has the solution x* = 

(0.5811, 0.6623) and X* = 1.1622. 

Although these examples are almost trivial in terms of mathematical complexity, the trajectories 
shown in Figs. 2 and 3 are representative of the general performance of the algorithm when 
applied to more complicated problems. 
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6. Treatment of inequality constraints 

Inequality constraints may be treated trivially by converting them to equality constraints by 
using additional variables [2]. Consider the following problem involving one-sided inequality 
constraints. 

minimize F(x) , 

subject to k,(x) 4 0, j= 1, 2 ,..., r. (31) 

This problem is equivalent to the equality constrained problem 

minimize F(x), 

subjecttoki(x)+zj=O, j=l,2 ,..., r; (32) 

where zi, z~,..., z, are additional variables, Thus we may use our parameter-free multiplier 
method to solve (32) in place of (31). One must however bear in mind that the introduction of 
the quadratic terms .zf in the constraints may result in the existence of more than one stationary 
point and therefore, depending on the choice of starting point, convergence to a non-optimal 
point. 

We now present an alternative approach to inequality constraints via a somewhat non-rigor- 
ous argument involving the Kuhn-Tucker necessary conditions for a minimum involving 
inequality constraints. The Kuhn-Tucker theorem [5] states that if x* is a solution of (31), then 
there exists a vector A* such that 

vJ(x*, x*> = 0, ATkj(X) = 0 (33) 

and 

Xj>O, j=l,2 ,..., r; 

where L(x, A) = F(x) + ATk(x). 
We may therefore conclude that if XT > 0 then kj(x)* = 0, i.e. it is an active constraint. (If 

AT = 0 and k,(x) = 0 we may effectively take the constraint as not being active since it plays no 
active role in determining x*). If the active constraints were known beforehand, i.e. if we knew 
which Xl > 0, we could determine (x *, A*) as we have done for equality constraints before by 
determining the saddle point of the Lagrangian. This is so since the Kuhn-Tucker stationary 
conditions can also be stated in terms of the following Saddlepoint Theorem [5]: If the point 

(X*9 A*), A* 2 0 is a saddlepoint for the Lagrangian associated with primal problem (31) then 
x* solves the primal problem. 

The problem which remains is to determine which constraints are active. Obviously if we 
assumed they were all active and they were not, application of our method would yield a 
stationary point with A, < 0 for some j. This would, by (33), prove that our assumption was 
wrong and that some constraints (those corresponding to XT < O?) should be omitted from the 
active list. 
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Fig. 4. Schematic representation of the convergence of the primal-dual trajectory on the Lagrangian surface for both 
an equality and inequality constraint. 

Consider the quadratic programming problem: 

minimize F(x) = +xTAx + bTx, 

subject to k(x) = Cx - d < 0, 
(34) 

and matrices A and C as defined in (10). We now conjecture that if the primal-dual trajectory, 
defined by (12), is followed with the proviso that hj is not allowed to become negative; i.e. if 
A, = 0 and dX,/ dt < 0, then set Xj + 0; then the trajectory will lead to a point (x*, A*), 
A* 2 0, which corresponds to the solution of the primal problem. This proposition is schemati- 
cally illustrated in Fig. 4. 

Since our practical algorithm of Section 5 in effect attempts to approximate trajectory (12) we 
may apply it to inequality constrained problems with the following modification. Before the 
calculation of the gradient vector g in Step 1, perform the following test: if A, < 0 and k,(x) 6 0 
then set A, + 0 and kj + 0, i.e., we effectively drop the constraints from our active list. We do 
however allow for the subsequent reintroduction of kj(x) should it become positive. The 
algorithm may deal with equality and inequality constraints simultaneously, but the above test is, 
of course, only carried out for those A, which correspond to inequality constraints. 

The application of the algorithm to inequality constrained problems is illustrated in x-space in 
Fig. 5 for the following example. 

Example 4. Minimize F(x) = (xi - 1)2 + (x2 - 2)2 subject to 
Case (i) x2 + xi - 2 G 0 and x2 - x1 + 1~ 0; 
Case (ii) x2 + xi - 2 G 0 and x2 - x1 - 2 G 0. 

In both cases the starting point is x0 = (0, 0), A, = (0, 0). In Case (i) both constraints become 
active and the trajectory converges to x* = (i, $), A* = (1, 2). In Case (ii) only the first 
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F q (x1- 1)’ + (x, - 2)’ 

167 

XT 

\ 
2 

/ 

1 

/ x*-xt-2=o 

case /II) 

A,= (0;O) 

\ 

Fig. 5. Minimization trajectories for the inequality constrained problems of Example 4. In Case (i) two constraints are 
active at the minimum while in Case (ii) a single constraint is active at the solution. 

constraint is active and we have convergence to x * = (t, i), X* = (1, 0). Again the trajectories 
depicted in Fig. 5 are representative of the algorithms general performance when applied to more 
complicated problems. 

7. Concluding remark 

If the matrix A in problem (10) is negative definite instead of positive definite then the 
procedure outlined in this paper still guarantees convergence to the solution provided the 
following modifications are applied. Instead of using search directions (12) we apply 

dx/ dt = + vxL, dX/ dt = - vhL, (35) 
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and in the place of the auxiliary Lagrangian function (24) we consider 

L,(X, x)=F(x)+XTh(X)-:]Ih(x)]]2. (36) 

Proof of convergence, for the negative definite case with these modifications, follows simply 
by substituting expressions (35) and (36) in the argument outlined in Sections 2 and 3. 
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