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a b s t r a c t

We consider the fast and efficient numerical solution of linear–quadratic optimal control
problems with additional constraints on the control. Discretization of the first-order con-
ditions leads to an indefinite linear system of saddle point type with additional comple-
mentarity conditions due to the control constraints. The complementarity conditions are
treated by a primal–dual active set strategy that serves as outer iteration. At each iteration
step, a KKT system has to be solved. Here, we develop a multigrid method for its fast solu-
tion. To this end,we use a smootherwhich is based on an inexact constraint preconditioner.

We present numerical results which show that the proposed multigrid method pos-
sesses convergence rates of the same order as for the underlying (elliptic) PDE problem.
Furthermore, when combined with a nested iteration, the solver is of optimal complexity
and achieves the solution of the optimization problem at only a small multiple of the cost
for the PDE solution.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The efficient numerical solution of optimal control problems is an important task in a variety of applications such as
control of fluid flow or combustion processes. In this paper, we are concerned with the fast solution of linear–quadratic
optimal control problems with additional constraints on the control. Discretization of the corresponding first-order
conditions yields a large linear indefinite saddle point system and additional complementarity conditions due to the control
constraints. Efficient methods to solve such problems include the primal–dual active set strategy [1–3] and interior-point
methods [4,5]. In both methods a large indefinite linear system – the KKT system – has to be treated in each iteration step.

Solution methods for such saddle point problems can be classified into two broad categories: segregated and coupled
approaches; see the overview article [6] and the references cited therein. The two most notable examples of the segregated
approach are the Schur complement reduction and null space methods. In the Schur complement reduction method (which
is also called the range spacemethod in the optimization context), the saddle point system is reduced to a lower-dimensional
system for the adjoint variables. This approach finds wide-spread use in computational methods for fluid dynamics. In the
null space method, which is more commonly used in optimization problems, the system is reduced to a lower-dimensional
system for the control unknowns alone by projecting onto the null space of the constraints.

In the full space or coupled approach, by contrast, one solves simultaneously for all unknowns. This can be done by
a direct solver (which is prohibitive for PDE-constrained optimization problems due to the problem size) or by some
iterative method, e.g. of Krylov type. To this end, efficient preconditioning is mandatory in order to achieve acceptable
convergence rates. In many practical cases such preconditioners in turn build on a segregated approach. This can be seen as
preconditioning a full space method with a reduced space method [7], or as accelerating a reduced space method by Krylov
iterations on the full space.
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Preconditioners which are based on the multigrid method have the potential to result in a fast and efficient solver with
optimal complexity, at least for elliptic PDEs. In optimization, most applications of multigrid methods for saddle point
systems have been in the context of reduced space methods up until now. Here, multigrid can be used to speed up the
solution of the state and adjoint equations which are required at each iteration in the reduced space. The earliest work in
this direction is [8], where a multigrid method for integral equations of the second kind has been employed to solve elliptic
optimal control problems.

For the full space approach, the use of the multigrid methodology is so far very limited. In [9], a null space iteration was
used as smoother within a multigrid method for unconstrained problems, in [10] a projected Gauss–Seidel smoothing was
used within a Full Approximation Storage (FAS) multigrid method. Moreover, the work in [10] is the only full space method
where additional control constraints were incorporated into a multigrid solution method up until now.

For completeness, wemention the algebraicmultigrid approach introduced in [11]. There, a collective point Gauss–Seidel
smoother is applied within an AMGmethod and thus enables to treat general coefficients within the diffusion equation. We
remark, however, that in contrast to our approach, the AMG method is applied to a partially reduced optimality system in
the sense that the control is eliminated and only the state and the adjoint remain as unknowns. Furthermore, the AMG-based
approach has not been extended to include inequality constraints on the control.

In this article, we employ a primal–dual active set method (PDAS) for the numerical solution of control-constrained
optimal control problems. The PDAS generates a sequence of large indefinite linear systems. We construct a multigrid
solver for the fast and efficient solution of these KKT systems. Here, we pursue the full space approach and propose a
smoothing method that is based on an inexact constraint preconditioner. The construction of the smoothing iteration is
motivated by the favorable properties of constraint preconditioners [12]; however, at the same time we alleviate their
biggest drawback, namely the high computational cost, by introducing an approximative version and a multigrid hierarchy.
Altogether, we obtain a nested inner–outer iterative method which exhibits mesh-independent convergence. Furthermore,
the outer iteration converges at a superlinear rate and the inner systems of each outer iteration step are solvedwith optimal
complexity. These results are numerically demonstrated on a variety of model problems commonly found in the literature.

The difference to previous methods, like e.g. the approach in [10] is as follows: while there a projected Gauss–Seidel
smoothing was used within a Full Approximation Storage, we employ a block smoother in an SQP/PDAS method. This gives
at least an alternative to previous solvers which might be fruitful in certain applications involving the primal–dual active
set approach.

The remainder of this paper is organized as follows: in Section 2, we formulate the optimal control problem and state the
optimality system and the complementarity conditions. In Section 3, we introduce the discretization for the optimality
system. In Section 4, we briefly introduce the primal–dual active set strategy and derive the system to be solved at
each outer iteration. In Section 5, we develop an iterative method based on inexact constraint preconditioning. We then
derive a multigrid method where we use this iteration as smoothing method. In Section 7, we present numerical results
which demonstrate the optimal complexity of the solver for unconstrained problems. Furthermore, we show that control-
constrained problems are solved efficiently as well. Finally, we draw some conclusions and give an outlook on future work.

2. Problem formulation

We consider an objective functional of tracking type given by

J(y, u) =
1
2
‖y− ȳ‖2L2(Ω)

+
σ

2
‖u‖2L2(Ω)

, (1)

with a given target state ȳ ∈ L2(Ω) and a regularization parameter σ > 0. The unknowns y denote the state variables and
u denote the control unknowns. We assume the domain Ω ⊂ Rd, d = 2, to be a bounded Lipschitz domain. The controls u
and the states y are coupled via the state equation

Ly = f + u in Ω (2)
y = 0 on ∂Ω,

where L is an elliptic operator in divergence form given by Ly = −
∑d

i,j=1 Di(aijDjy)with aij ∈ L∞(Ω), aij = aji and ellipticity
constant c > 0. The right-hand side f is a given function in L2(Ω).

The optimization problem defined by (1) and (2) then reads

minimize J(y, u)
subject to Ly = f + u in Ω, y = 0 on ∂Ω

and u ∈ Uad,

(OP)

where Uad denotes a set of admissible controls which is a proper convex and closed subset of U = L2(Ω). Here, we consider
the box constraints given by

Uad = {v ∈ L2(Ω) | ξl ≤ v ≤ ξu a.e. in Ω} (3)

where ξl, ξu ∈ L∞(Ω) ∩ H1(Ω) denote the lower and upper bounding functions for the controls.
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It is well known that the optimization problem (OP) has a unique solution (y∗, u∗); cf. [13,14]. Furthermore, there exists
the adjoint variable p∗ such that the triple (y∗, u∗, p∗) satisfies the following first-order optimality conditions:

Ly∗ = f + u∗ in Ω

y∗ = 0 on ∂Ω

L′p∗ = ȳ− y∗ in Ω

p∗ = 0 on ∂Ω

(σu∗ − p∗, v − u∗) ≥ 0 v ∈ Uad.

(OS)

In the case without constraints on the control, i.e. Uad = U , the last inequality reduces to the optimality condition

σu∗ − p∗ = 0. (4)
The optimal state and associated adjoint satisfy y∗ ∈ H1

0 (Ω) ∩ H2(Ω) and p∗ ∈ H1
0 (Ω) ∩ H2(Ω), respectively. For the

optimal control one obtains u∗ ∈ H1(Ω) for the control-constrained case and u∗ ∈ H2(Ω) for the unconstrained case.
In our case, due to the linear equality constraints, the quadratic functional J and the convexity of Uad, the optimization
problem is convex and therefore the necessary first-order condition (OS) is also sufficient for a solution of the optimization
problem (OP).

3. Discretization

We will now introduce the discrete optimality system. To this end, let Th be a shape-regular quasi-uniform partition of
the domain Ω into convex quadrilaterals Ti, i = 1, . . . ,N . This mesh will serve for the discretization of the controls as well
as for the state and adjoint unknowns.

We discretize the control function u using piecewise constant functions. We denote the space of piecewise constant
functions on the mesh Th by Uh ⊂ U . Let Πh be the local L2-projection operator onto Uh, i.e.

Πhu(x) =
1
|Ti|

∫
Ti
u(y)dy, x ∈ Ti ∈ Th. (5)

For Πh and u ∈ H1(Ω), the well-known estimate
‖u−Πu‖L2(Ω) ≤ Ch‖u‖H1(Ω) (6)

holds [15]. Clearly, in general we cannot expect a better approximation order for the controls than O(h) in the L2-norm if
piecewise constants are used.

By discretizing the bounding functions ξl and ξu with piecewise constants we obtain a discrete approximation to the set
of admissible controls Uad,

Uad,h = {vh ∈ Uh | Πhξl ≤ vh ≤ Πhξu}. (7)
For the approximation error of the solution u∗h to the ‘‘semi-discrete’’ problem

min
u∈Uad,h

J(y, u) (8)

the optimal order result ‖u∗ − u∗h‖L2(Ω) = O(h) has been shown in [16]. Furthermore, for triangular elements, h2-
superconvergence in the midpoints holds; cf. [17]. Recently, two approaches have been presented that achieve h2-
convergence also in a continuous norm. The first approach [18] works by a semi-discretization, where a discrete
approximation to the control is obtained by projecting the adjoint. The second approach [17] uses a post-processing step to
improve the convergence order from h to h2.

It remains to discretize the state and adjoint equations in the optimality system (OS). To this end, we apply amixed finite
element discretization using the lowest-order Raviart–Thomas approximation spaces, i.e. RT0-elements [19]. Employing
midpoint and trapezoidal quadrature, one obtains a positive definite system for the scalar unknowns; see e.g. [20]. In
two dimensions, we then obtain a nine-point stencil and a diagonal mass matrix. All in all, this discretization of the PDE
constraints (2) yields the linear system

Lhyh = Mhfh +Mhuh (9)
with Lh,Mh ∈ RN×N , where N denotes the number of elements in Th, and fh = Πhf . Analogously, for the discretization of
the adjoint equation in (OS) we obtain the system

LThph = Mhȳh −Mhyh, (10)
with ȳh = Πhȳ.

For the employed discretization scheme, optimal order L2-convergence holds, i.e. we obtain a convergence rate of the
order O(h) for the error. Furthermore, under the smoothness assumption C3,1 for the scalar unknown, superconvergence of
the order O(h2) at the midpoints of the elements can be shown for the error measured in a discrete L2-norm with midpoint
rule integral evaluation. We again refer to [20] for details.
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The L2-inner product appearing in the third equation of (OS) is discretized again employing midpoint quadrature. Thus,
the same mass matrixMh as in (9), (10) results. We then obtain

(σMhuh −Mph)T (vh − uh) ≥ 0, vh ∈ Uad,h (11)

as discrete optimality condition.
Let us briefly consider the case without any constraints on the control, i.e. (OS) with (4). Then, the discretization of (OS)

results in the linear system

Khxh = bh (12)

where Kh is the saddle point or KKT matrix

Kh =

Mh 0 LTh
0 σMh −Mh
Lh −Mh 0

 , (13)

xh = (yh, uh, ph) is the vector of unknowns and the right-hand side is given by bh = (Mhȳh, 0,Mhfh).
If the constraints have full row rank and the Hessian block is positive definite on the null space of the constraints then it is

well known that K is regular. Both conditions are obviously satisfied in our case. Furthermore, K is indefinite and its inertia
is given by inertia(K) = (2N,N, 0). Note that systems of this type also have to be solved at each step of the primal–dual
active set strategy. This will be discussed in the following.

4. The primal–dual active set method

In this section we will briefly describe the primal–dual active set strategy that will be used as outer iteration to handle
the control constraints [2,1,3]. Themain advantage of treating the constraints in an outer iteration is as follows: the resulting
inner subsystem and in particular the smoother of a multigrid method applied there does not need to take the constraints
into account. Thus, the inner systems to be solved are strictly linear. Furthermore, compared to interior-point methods, the
PDAS approach is more efficient for control-constrained problems; cf. [2].

Let us now derive the PDAS method in detail. To this end, note that for the variational inequality (11), an equivalent
formulation is given by

hσMhuh −Mhph + λ = 0,
λ = max(λ+ c(uh −Πhξu), 0)+min(λ+ c(uh −Πhξl), 0), c > 0.

(14)

Here, the unknowns λ are the Lagrange multipliers associated with the inequality constraints. They satisfy the Karush–
Kuhn–Tucker conditions

λ ≤ 0 on A∗
−
= {x | u∗h = Πhξl}, (15)

λ ≥ 0 on A∗
+
= {x | u∗h = Πhξu},

λ = 0 on I∗ = {x | Πhξl < u∗h < Πhξu}.

Here, A∗
−
and A∗

+
are the active sets and I∗ is the inactive set at the (discrete) optimal solution u∗h .

The primal–dual active set strategy is an iterative algorithm that makes use of (14) to predict the active and
inactive sets and treats an associated equality-constrained optimization problem at each step. This leads to the following
algorithm:
1: Choose initial values y0h, u

0
h, p

0
h, λ

0 and set k = 1
2: while not converged do
3: predict Ak

−
, Ak
+
, Ik as follows:

Ak
−
=


i | uk−1

h +
λk−1

σ
< Πhξl on Ti


(16)

Ak
+
=


i | uk−1

h +
λk−1

σ
> Πhξu on Ti


(17)

Ik
= {i | i ∉ Ak

−
∪Ak

+
} (18)

4: if k ≥ 2 and Ak
−
= Ak−1

− , Ak
+
= Ak−1

+ , Ik
= Ik−1 then

5: converged= true
6: else
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7: solve the equality-constrained problem
Mhykh + LThp

k
h = Mhȳh

σMhuk
h −MT

h p
k
h + λk

= 0
Lhykh −Mhuk

h = Mhfh
λk
= 0 on Ik

uk
h = Πhξl on Ak

−

uk
h = Πhξu on Ak

+

(EQP)

8: end if
9: k = k+ 1

10: end while.
This concludes the description of the PDASmethod. For details and convergence properties, we refer to [1]. Note that for the
case without control constraints, we have A− = A+ = ∅ and the overall algorithm reduces to just the solution of (EQP)
which in turn reduces to the saddle point system (12).

Themain computational effort in this algorithmhas to be spent for the solution of (EQP). Inmany publications this is done
by eliminating ykh, p

k
h and solving the reduced system for the control unknowns uk

h by a conjugate gradient method. Here,
we want to avoid the high cost for the full solution of the constraints in each iteration step and aim at a full space multigrid
method instead. To this end, we modify the system (EQP) in such a way that it can be formulated as a KKT system (12).

We proceed as follows: first, we partition the control unknowns according to uk
h = [u

Ik

h u
Ak
−

h u
Ak
+

h ]. The same partitioning
applies to the Lagrange multipliers λk

= [λIk
λAk
− λAk

+ ]. Note that this partitioning induces corresponding 3 × 3 block,
3× 1 column and 1× 3 row block partitions of the mass matrixMh. Then, the system given by the first three lines in (EQP)
can be written as

Mh LTh
σMIk,Ik

h σM
Ik,Ak

−

h σM
Ik,Ak

+

h −MIk,∗
h

σM
Ak
−

,Ik

h σM
Ak
−

,Ak
−

h σM
Ak
−

,Ak
+

h −M
Ak
−

,∗

h

σM
Ak
+

,Ik

h σM
Ak
+

,Ak
−

h σM
Ak
+

,Ak
+

h −M
Ak
+

,∗

h

Lh −M∗,I
k

h −M
∗,Ak
−

h −M
∗,Ak
+

h





ykh

uIk

h

u
Ak
−

h

u
Ak
+

h

pkh

 =


Mhȳh

−λIk

−λAk
−

−λAk
+

Mhfh

 . (19)

Nowwe utilize the last three equations in (EQP) to reduce (19) to a system for ykh, u
Ik
h , pkh, i.e. we eliminate u

Ak
−

h , u
Ak
+

h and we
consider the controls uk

h only on the inactive set Ik. The solution of (EQP) then proceeds in two steps: first, the saddle point
system

KIk

h xIk

h = rIk

h (20)

has to be solved, where

KIk

h =

Mh LTh
σMIk,Ik

h −MIk,∗
h

Lh −M∗,I
k

h

 , rIk

h =

 Mhȳh
−σM

Ik,Ak
−

h Πhξl − σM
Ik,Ak

+

h Πhξu

Mhfh +M
∗,Ak
−

h Πhξl +M
∗,Ak
+

h Πhξu

 , (21)

and the vector of unknowns is given by xIk

h = [y
k
h uIk

h pkh]. Note that the KKT operator KIk

h and the right-hand side vector rIk

h
depend on the index k of the outer iteration. In the second step, the Lagrange multipliers λk are computed by

λAk
− = M

Ak
−

,∗

h pkh − σM
Ak
−

,Ik

h uIk

h − σM
Ak
−

,Ak
−

h Πhξl − σM
Ak
−

,Ak
+

h Πhξu, (22)

λAk
+ = M

Ak
+

,∗

h pkh − σM
Ak
+

,Ik

h uIk

h − σM
Ak
+

,Ak
−

h Πhξl − σM
Ak
+

,Ak
+

h Πhξu,

compare lines 3 and4 in (19). On the inactive set,we just setλIk
= 0.Note again that, for the casewithout control constraints,

system (20) reduces to (12), i.e. we just have KIk

h = Kh, rIk

h = bh and xIk

h = xh.
It remains to obtain the solution of (20) in a fast and efficient fashion. To this end, in the following section we will first

derive a stationary iterative method that later serves as smoother in a multigrid approach.

5. A stationary iterative method for KKT systems

Now we discuss an iterative method for the solution of the KKT system (20) which arises at each iteration step of the
PDAS method. A stationary iterative method for (20) can be written as a preconditioned Richardson method, i.e. we have,
using a damping factor of 1,

xI,i+1
h = xI,i

h + (CI
h )−1(rI

h − KI
h x

I,i
h ). (23)
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Here and in the following we omit the parameter k of the outer PDAS iteration step for reasons of simplicity. We define the
preconditioner CI

h in (23) as the block triangular matrix given by

CI
h =

 L̂Th
ĤI

Z −MI,∗
h

L̂h −M
∗,I
h

 . (24)

The blocks L̂h and L̂Th are suitable approximations to the discretized differential operators Lh and LTh in the state equation (9)
and the adjoint equation (10), respectively. We stress the fact that these approximations are not constructed explicitly but
are rather given implicitly by definition of the action of L̂−1h and L̂−Th on a given vector by means of a few steps of an iterative
method. The precise approximations will be made clear later. The blocks M∗,Ih and MI,∗

h associated to corresponding parts
of the mass matrix are carried over unchanged from the KKT operator (21). The matrix ĤI

Z is given by

ĤI
Z = MI,∗

h L̂−Th MhL̂−1h M∗,Ih + σMI,I
h . (25)

We point out that the matrix ĤI
Z is never formed explicitly but rather is defined through its matrix–vector product, again

making use of the approximations L̂h and L̂Th .
Due to the block triangular form of CI

h , the computation of wI
h = (CI

h )−1vI
h , with wI

h = (w
y
h, w

uI

h , w
p
h) and vI

h =

(v
y
h, v

uI

h , v
p
h) is achieved by performing the block back substitution given by the algorithm

1: w
p
h ← L̂Thw

p
h = v

y
h

2: wuI

h ← ĤI
Z wuI

h = vuI

h +MI,∗
h w

p
h

3: w
y
h ← L̂hw

y
h = v

p
h +M∗,Ih wuI

h .

Here, in lines 1 and 3, solutions of linear systems with the approximations L̂h and L̂Th are required. These solutions are
computed approximately by a fixed small number of steps (in many cases, just one) of two stationary iterative methods

w
y,i+1
h = w

y,i
h + G−1h (v

p
h +M∗,Ih wuI

h − Lhw
y,i
h ) and w

p,i+1
h = w

p,i
h + G−Th (v

y
h − LThw

p,i
h ), (26)

respectively. The matrix Gh results from an appropriate splitting of the discrete differential operator Lh. For Lh being
the discrete Laplace operator, we use the Gauss–Seidel iteration, i.e. Gh = Dh − Eh, where Dh is the diagonal and Eh
the lower triangular part of Lh. For a more difficult Lh, different schemes such as incomplete LU factorization of Lh or
alternating line Gauss–Seidel may be used. In general, any appropriate smoothing iteration for a robust multigrid solver
for Lhw

y
h = v

p
h +M∗,Ih wuI

h and LThw
p
h = v

y
h is a good candidate for (26) and its corresponding Gh here.

In line 2, formally the inversion of the operator ĤI
Z is required. As mentioned before, ĤI

Z is never formed explicitly and
thuswe apply a Krylovmethod,where only thematrix–vector productwith ĤI

Z is needed. This again involvesmultiplications
with L̂−1h and L̂−Th , i.e. the application of a few steps of the iterative methods (26). It is clear that the resulting operator is
symmetric. Furthermore, for exact inner solves, the operator would be positive definite.1 For these reasons, we employ
the conjugate gradient method with the matrix–vector product given by (25). Again, we do not solve to a tight absolute
tolerance, but rather perform only a small fixed number of cg iterations, here in the extremal case this even might be only
one.

All in all, we obtain an iterative method that we write as

xI,i+ν
h = (SI

h,α,β)ν(xI,i
h , rI

h ), (27)

where the operation of SI
h,α,β is given by (23), ν is the number of applications of SI

h,α,β ,α denotes the number of iterations for
the inner solves with L̂h and L̂Th and β denotes the number of conjugate gradient steps employed to obtain an approximate
solution to the system on line 2, i.e. to approximate the action of (ĤI

Z )−1.
At this point, let us comment on the relation of (24) to the so-called constraint preconditioner; see [6]. Here, a specific

preconditioner corresponding to (24) is given by

BI
h =

 LTh
H̃I

Z −MI,∗
h

Lh −M
∗,I
h

 , (28)

where the matrix H̃I
Z is some approximation to the reduced Hessian restricted to the inactive set

HI
Z = MI,∗

h L−Th MhL−1h M∗,Ih + σMI,I
h . (29)

1 In the case of inexact inner solves by just one or a few iterations steps, positive definiteness is not guaranteed for arbitrary values of σ and general
choices of Gh . However, in our numerical experiments, it turned out that the cg method always converged.
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The expression constraint preconditioner is apparent from the structure of Bh: the blocks associated with the constraints are
adopted without modification from the KKT matrix KI

h of (21). Now let us denote the upper left 2 × 2 block of the KKT
matrix (21), which corresponds to the Hessian of the Lagrangian, by H , i.e.

H =
[
Mh

σMI,I
h

]
. (30)

Let us recall that a reducedHessian is computed byHI
Z = ZTHZ where the columns of thematrix Z span any basis for the null

space of the constraints; see e.g. [21]. Such a null space basis Z is often computed by factorization or reordering methods;2
however, if the constraints represent a discretized PDE, this approach is computationally prohibitive. A feasible alternative
is given by the so-called fundamental basis [21], which is given in our context by

Z = [−L−1h M∗,Ih Ih]T , (31)

where Ih denotes the identity. Using (31) in HI
Z = ZTHZ , we just obtain the expression (29) for HI

Z . As shown in [12], the
following properties hold for the preconditioned matrix (BI

h)
−1KI

h : first, an eigenvalue 1 arises with multiplicity 2N , then
N eigenvalues are defined by the generalized eigenvalue problem HI

Z x = µH̃I
Z x and finally, the dimension of the Krylov

subspace K((BI
h)
−1KI

h , rI
h ) associated with the preconditioned matrix (BI

h)
−1KI

h and the right-hand side rI
h is at most N+ 2.

Thus, if H̃I
Z = HI

Z , i.e. if the true reduced Hessian is used in BI
h , a Krylovmethod preconditionedwith BI

h will converge in three
iterations. The main limitation of this approach is the high computational cost due to the exact inversions of the discretized
PDE operators Lh and LTh . Some of the cost could be avoided by replacing the Krylovmethod for the solution with H̃I

Z by some
quasi-Newton approximation like BFGS. On the other hand, BFGS approximations can yield dense matrices, in this case of
dimensionN , unless one resorts to limitedmemory variants with lower approximation quality. For these reasons, a first step
in improving efficiency is to use only approximate solutions for the inner and outer linear systems, which may just result in
the presented iteration (23). Note here that, for α, β →∞, we have CI

h → BI
h with H̃I

Z = HI
Z . In this sense, the developed

iteration could as well be interpreted as an inexact constraint preconditioner. To be precise, however, we stress the point
that in contrast to (28), the operator (24) is not a constraint preconditioner, since for small α the constraints are not exactly
eliminated.

Since it is well known that the Richardson method may require strong damping in order to enforce convergence and
may in general only converge slowly, we advocate here a further acceleration by using a multigrid method in which (23) is
merely employed as a smoother. This will be discussed in the following section.

6. A multigrid method for KKT systems

When applying an iterative method such as (27) as a smoothing iteration within a multigrid context, its smoothing
property is of primary interest. Therefore, in the following we will briefly comment on the smoothing behavior of (27)
and compute the so-called smoothing factor based on the local Fourier analysis for a special case of (27). For the sake of
readability, we omit the technical details and refer to the Appendix and [22]; for a general introduction to the local Fourier
analysis, see [23–25].

The smoothing factor obtained by the local Fourier analysis is a quantitativemeasure for the largest possible amplification
factor of an iteration with respect to high frequency components. In the scalar case, the smoothing factor for an operator SLh
is defined as

µLFA(SLh) = sup

|S̃Lh(θ)| : θ ∈ [−π, π)2 \


−

π

2
,
π

2

2
, (32)

where θ are the frequencies considered on an infinite grid and S̃Lh(θ) is the symbol or generalized eigenvalue of SLh ; c.f. (58)
in the Appendix. For systems,we consider a vector of frequency functions and the symbol corresponding to (24) is thematrix
composed of the respective scalar symbols.

The smoothing factor will be derived for the iteration in the unconstrained case, i.e. A = ∅ and thus we will omit
the indices I on matrices and vectors. In order to compute the smoothing factor, the iteration (27) has to allow a simple
splitting. To this end, we set α = 1, β = 0, and ĤZ = σMh. Furthermore, we consider the linear–quadratic model problem
with Laplace’s equation as constraint, i.e. Lh is given by the usual five-point stencil, and as constraint smoother, we employ
the damped Jacobi iteration with the optimal damping factor ω = 4/5. With hj, j = 0, . . . , J we denote the mesh sizes of
the different grid levels in the multigrid hierarchy where the smoothing iteration is applied. In the following, this particular
case of iteration (27) will be denoted by Sj,1.

2 This is closely related to the family of null space methods; cf. [21].
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Proposition 1. Under the above assumptions, the smoothing factor for (27) is obtained as

µLFA(Sj,1) =
3
5
+

h4
j

50σ
+

 h4
j

50σ


6
5
+

h4
j

50σ


. (33)

Note that µLFA(Sj,1), in contrast to µLFA in the scalar case, explicitly depends on the mesh size hj. This is usually the case
when deriving smoothing factors for systems, due to differential operators of different order appearing in Kj.

A smoothing factor µLFA(Sj,1) > 1 is an indication for degradation of convergence or even divergence of the multigrid
process. For (33) it holds that µLFA(Sj,1) = 1 for σ = h4

j /4 and thus we obtain the condition

µLFA(Sj,1) < 1 if σ >
h4
j

4
. (34)

In Section 7 we will further elaborate on (34) with numerical experiments and a discussion of the consequences of (34) for
the robustness of our multigrid solver.

Now we develop a multigrid method for the KKT system (12) and for its particular form (20). In general, any multigrid
approach makes use of discretizations on successively coarser levels. Its further components are suitable interpolation
operators between different grid levels, a smoothing iteration which is employed on each level, and a solution method
for the equation on the coarsest grid level. For details on the multigrid approach, we refer the reader to [24–26].

In the construction of a multigrid method for the KKT system (20), several challenges arise due to the block and saddle
point structures of the system. The first task is the design of a suitable smoothing iteration. To this end, we apply the
preconditioned Richardson iteration (23) derived in the previous section. In most of our numerical experiments, it was
sufficient to use ν = α = β = 1. Furthermore, we use the direct discretization approach, that is, we apply the cell-centered
RT0 and piecewise constant discretizations of Section 3 for the state and adjoint components and the control unknowns
of the system, respectively, on a sequence of successively coarser grids. The different grid levels are here denoted by the
parameter j, j = 0, . . . , J where j = 0 stands for the coarsest mesh. The mesh size for each grid level is given by hj = 2−jhc
with hc denoting the coarsest mesh size. For a given level j and associated mesh size hj, we denote the associated mesh with
Tj. We recall that for the cell-centered discretization and d = 2, a coarse grid cell Ti ∈ Tj−1 is the union of four fine grid cells
which we sometimes denote with T ν

i ∈ Tj, ν = 1, 2, 3, 4.
From the two-step solution of (EQP) it follows that the Lagrange multipliers λ as well as the bounding functions ξl and ξu

need to be discretized on the finest grid level only. However, for the discretization of xI
hj
, rI

hj
and the operator KI

hj
in (20) on

a grid level j < J , it is evident that we have to approximate the inactive set I on that grid level. This has to be done in each
PDAS iteration, after the inactive and active sets on the finest level J have been determined by the algorithm and before the
solution of system (20). Here, the third step of the PDAS algorithm yields index sets I, A− and A+ on the finest level J and
we denote the set of grid cells corresponding to I with TIJ . Now, for given TIj we define TIj−1 as the set of all coarser grid
cells for which at least one fine grid subcell is contained in that of the next finer inactive set, i.e.

TIj−1 = {Ti ∈ Tj−1 | T ν
i ∈ TIj for ν ∈ {1, 2, 3, 4}}, j = J, . . . , 1. (35)

Note that no representation of the active sets A− and A+ is needed on coarser levels. From the sequence of meshes given
by (35)we then obtain a sequence of operators KI

j by direct discretization, wherewe nowuse the grid level j as index in (20).
In the same way, we will use the index j instead of the subscript hj for other operators, vectors and variables.

The intergrid transfer operators are defined in a blockwise manner, e.g. restriction and prolongation are given by

R
j−1
j =

Rj−1
j

Rj−1,I
j

Rj−1
j

 , P
j
j−1 =

P j
j−1

P j,I
j−1

P j
j−1

 , (36)

respectively. Note that the three unknown components yj, uI
j and pj resulting from the discretization are all located at the

cell-centers. Therefore, basically the same scalar restriction and prolongation operator can be used for all three components.
To be precise, we choose here the four-point average restriction for Rj−1

j and the bilinear interpolation for P j
j−1.

3 In the usual
stencil notation [26,25], the four-point average restriction and the bilinear interpolation are given by

Rj−1
j,FPA =

1
4

1 1
·

1 1


, P j

j−1,BL =
1
16

1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

 . (37)

3 These transfer operators are consistentwith the general rulemp+mr > 2m, wheremp andmr are the order of prolongation and restriction, respectively,
and 2m is the order of the differential operator; see [25].
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Furthermore, in (36), the symbol Rj−1,I
j represents the four-point average operator giving values only for grid cells Ti ∈ TIj−1 .

When applying Rj−1,I
j to obtain a coarse grid value of the uI

j−1-component, fine grid values on the active set Tj \ TIj could be
needed. However, onA− andA+ the solution is fixed to the constraints uα, uβ , respectively and the corresponding residuals
vanish. Thus, active nodes should provide no contribution here and consistently the corresponding stencil entries are set to
zero. Analogous considerations apply to the prolongation P j,I

j−1. Here, coarse grid values on the active set Tj−1 \ TIj−1 could
enter the prolongation stencil when computing the correction for a fine grid value of uI

j . However, again the corrections due
to active nodes should be zero and the corresponding stencil entries are set to zero.

It remains to define the solution method for the coarsest mesh. There, the operator KI
0 is assembled explicitly and the

associated equation is solved with a direct method.
All in all, we obtain the following algorithm for one iteration of the multigrid method on a level j:
xI,m+1
j ← MGγ (j, bI

j , x
I,m
j )

1: if j = 0 then
2: Solve KI

0 x
I
0 = bI

0
3: else
4: Presmooth x̃I

j = (SI
h,α,β)ν1(xI,m

j , bI
j )

5: Residual restriction bI
j−1 = R

j−1
j (bI

j − KI
j x̃

I
j )

6: Grid recursion vI
j−1 = MGγ (j− 1, bI

j−1, 0)

7: Correction ˜̃x
I

j = x̃I
j + P

j
j−1v

I
j−1

8: Postsmooth xI,m+1
j = (SI

h,α,β)ν2(˜̃x
I

j , b
I
j )

9: end if
For γ = 1 we obtain the well-known V -cycle, γ = 2 yields the so-calledW -cycle. The F-cycle can be defined recursively by
an F-cycle on level j, followed by a V -cycle on the same level. Each of these cycles has the cost O(N) per iteration. Finally,
the Full Multigrid algorithm (FMG) combines nested iteration with somemultigrid cycle. This way, an approximation to the
discrete solutionmay be obtained inO(N) operations with an error that is below the discretization error. For further details,
we again refer to [25,24].

Note that in order to apply FMG to system (20), certain modifications are necessary. In the case of unconstrained
problems, these modifications are straightforward. For control-constrained problems, there is some additional work
required. Note that now the box-constraint functions ξl, ξu have to be explicitly discretized on each level for two reasons:
first, the right-hand side vector rI

j needs to be constructed on all discretization levels j < J , and second, in FMG an
approximation to the solution instead of the correction is to be prolongated to the next finer level. Thus, the associated
prolongation P̃ j,I

j−1 has to take the current values of uj−1 on the active set into account instead of the zero contributions of the
usual prolongation P j,I

j−1 in the multigrid cycle. For these reasons, additionally A− and A+ need to be represented on each
level.4 To this end, instead of proceeding as in (35), we restrict A− and A+ according to

TA±,j−1 = {Ti ∈ Tj−1 | ∪T s
i ∈ TA±,j for s ∈ {1, 2, 3, 4}}, j = J, . . . , 1, (38)

where A± stands for A− or A+. After the restriction step (38) we set

Aj−1 = A−,j−1 ∪A+,j−1 and TIj−1 = Tj−1 \ TAj−1 . (39)

7. Numerical results

In this section, we present numerical results which have been obtained with our multigrid method and our multigrid
PDAS method. First, in order to assess the properties of the multigrid method, we consider a model problem with Uad =

L2(Ω), i.e. we have no additional constraints on the control. Afterward, we present results for control-constrained problems
solved with the PDAS multigrid method.

We introduce the discrete L2-norm of the error with respect to the control unknown uh as

emuh = ‖u
m
h − u∗‖L2,h =

−
Ti∈Th

|Ti||um
h,i − u∗(xi)|2

1/2

, (40)

with |Ti| and xi denoting the area and the center of the quadrilateral Ti, respectively and m denoting the iteration index of
the multigrid cycle. Analogously we define the errors emyh and emph . The total discrete L2-error for the mth multigrid iterate is
defined as

emh = ((emyh)
2
+ (emuh)

2
+ (emph)

2)1/2. (41)

4 Note that, in contrast to this, only the sequence TIj , j = J, . . . , 0 was needed in the case of the conventional multigrid cycles.
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Table 1
Reduction factors ϱ20 and ϱ20

avg with respect to the discrete L2-error emh and
different types of multigrid cycles.

J
5 6 7 8 9 10

V1,1 ϱ20 1.13−1 1.14−1 1.14−1 1.14−1 1.15−1 1.15−1
ϱ20
avg 1.05−1 1.06−1 1.08−1 1.08−1 1.09−1 1.09−1

V2,1 ϱ20 7.07−2 7.21−2 7.30−2 7.31−2 7.31−2 7.31−2
ϱ20
avg 6.57−2 6.79−2 6.84−2 6.89−2 6.93−1 6.93−1

V2,2 ϱ20 5.15−2 5.26−2 5.34−2 5.35−2 5.35−2 5.35−2
ϱ20
avg 4.70−2 4.92−2 4.99−2 5.04−2 5.07−2 5.07−2

F1,1 ϱ20 8.18−2 8.20−2 8.20−2 8.20−2 8.21−2 8.21−2
ϱ20
avg 7.81−2 7.82−2 7.88−2 7.86−2 7.87−2 7.87−2

W1,1 ϱ20 8.18−2 8.20−2 8.20−2 8.20−2 8.21−2 8.21−2
ϱ20
avg 7.80−2 7.82−2 7.88−2 7.86−2 7.87−2 7.87−2

Fig. 1. Reduction of discrete L2-error emJ vs. number of multigrid iterationsm (left) and wall-clock time (right). The fine grid mesh size is hJ = 2−10 .

Furthermore, the residual norm in themth multigrid iteration is given by

‖resmh ‖2 = ‖r
I
h − KI

h x
I,m
h ‖2 (42)

with KI
h and rI

h of (21). For control-constrained problems, we define the errors ẽkuh and ẽkh analogously to (40) and (41),
respectively, with k denoting the iteration index of the outer PDAS loop.

7.1. A model problem

Weminimize the tracking type functional (1) subject to the constraints

−1y− u = 0 in Ω, y = 0 on ∂Ω (43)

with Ω = [0, 1]2 ∈ R2 and Uad = L2(Ω). In this case, we have A− = A+ = ∅ and the PDAS algorithm with system (20)
reduces to the solution of a KKT system (12). The weighting parameter in (1) is chosen as σ = 1.0e−2. The target state ȳ
as well as the right-hand side f are chosen identically zero. The unique solution of the optimization problem is then zero,
and the current iterate is equal to the error. The initial guess is a normalized random vector. The smoothing iteration (27) is
employedwithα = β = 1 and as iterativemethod for the approximate solution of the state and adjoint equation, i.e. in (26),
we apply the symmetric point Gauss–Seidel iteration.

In Table 1, we present the asymptotic reduction rate for the error eh defined in (41) for different types of multigrid
cycles. The size of the coarsest mesh is hc = 1/4, the mesh size of the finest grid is then 2−(J+2). From Table 1 we clearly
observe that the reduction rates are independent of the resolution on the finest mesh. Furthermore, the reduction rates are
of the same order as the reduction rates which one obtains when solving the scalar Poissonmodel problem for cell-centered
discretizations with a multigrid method. Stronger smoothing obviously results in better reduction rates. Fig. 1 shows the
iteration history for the different tested multigrid cycles on the fixed level J = 7. The reduction rates are constant. As can be
seen in Fig. 1(right), the better reduction per iteration does not always pay off in terms ofwall-clock time due to a higher cost
per iteration. In particular, the relatively small gain in convergence speed does not justify the higher cost for aW -cycle. Here,
the most efficient cycle is the V2,2-cycle. The performance for all tested V -cycles is roughly the same, i.e. a doubled amount
of smoothing results in about half as much iterations at a doubled cost per iteration. These findings are also in agreement
with results for the scalar Poisson model problem.
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Table 2
Discrete L2-error eh and wall-clock time in seconds for one FMG cycle. On each
level, one multigrid iteration with a V1,1-cycle is used.

J hJ n Time (s) Ratio eh Ratio

5 1/128 49,152 0.1680 – 6.06389−5 –
6 1/256 196,608 0.7578 4.511 1.59350−5 0.263
7 1/512 786,432 3.6797 4.856 4.06443−6 0.255
8 1/1024 3145,728 16.4102 4.459 1.02422−6 0.252
9 1/2048 12,582,912 68.3516 4.165 2.56857−7 0.251

10 1/4096 50,331,648 276.5470 4.045 6.42940−8 0.250

Fig. 2. Ratio of wall-clock time in seconds for FMG/Opt and FMG/PDE.

We now solve the same problem using the full multigrid approach. To this end, on each level in FMG a V1,1-cycle
is employed. Table 2 shows the wall-clock time and the discrete L2-error eh after one cycle of the FMG iteration. The
discretization parameter hJ is themeshwidth on the finest level J , the total number of fine grid unknowns n of the optimality
system thus is given by n = 3h−2J . Since the number of unknowns quadruples from one level to the next, we expect a
corresponding fourfold increase in computational time. This is clearly observed from the presented data, thus showing that
the total cost for one FMG iteration is indeed O(n). The employed discretization is superconvergent with second order in
the discrete L2-norm. Therefore, we should expect a decrease of the error with a factor of 4, if the mesh resolution of the
finest level is doubled. In the last two columns of Table 2 we indeed see that this is the case, i.e. after one FMG iteration, the
error is of the order of the discretization error on the finest mesh. All in all, we conclude that the FMG solves the discrete
optimal control problem up to discretization error accuracy with optimal complexity O(n).

In order to give a rough estimate of the computational cost needed to solve the optimality system compared to the cost
needed to solve the constraint PDE only, let us now consider the cost for one application of our smoothing method in more
detail. To this end, recall that N = h−2J is the number of each of the three unknowns yh, uh, ph appearing in the discretized
optimal control problem. The cost CN for the relaxation of the state and adjoint equation by (26) is O(N). Note that this is
also the cost order for the smoothing iteration when solving the constraint PDE with a multigrid method. A rough (lower
bound) estimate of the overall solution cost of the optimality system is as follows: from the definition of the smoother (27)
it follows that a cost of at least 2CN operations incurs by the matrix–vector product with KI

h . Here, we have neglected all
operations not involving the discretized PDE operator Lh, such as multiplications with the mass matrices. The application
of the preconditioner Ch again contributes a cost of 2CN for the constraint blocks given by Lh and LTh . Finally, the conjugate
gradient iteration with BZ adds a cost of 2CN for the first iteration and again a cost of 2CN for the initialization of the cg
method. Thus we obtain a cost count of 8CN as a lower bound estimate for the total cost for one application of the smoother,
counting only the operations which involve the constraint blocks Lh and LTh . Fig. 2 shows the ratio of the wall-clock times
needed for the FMG solution of the optimal control problem versus the solution time of the underlying PDE problem, again
using FMG. Here we see values between 8 and 10. Bearing inmind that the cost was estimated neglecting several operations
such as multiplications with mass matrices, we conclude that these values which were achieved with our implementation
aremore than reasonable. In summary,wehave seen that the discretized optimal control problemcanbe solvedwith optimal
complexity at a small multiple of the cost which is required for the solution of the underlying PDE alone.

Let us finally remark on the regularization parameter σ in the objective functional (1). Depending on σ , there is a
limitation on the size of the coarsest possible grid which results from the specific form of the reduced Hessian (and not
only its approximation!). For our linear model problem, we obtained the condition (34), which requires that σ ≥ ch4

1 with
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Fig. 3. Convergence for varying regularization parameter σ .

a small constant c ∼ 1
4 . As long as this condition is met, the convergence rates do not deteriorate with decreasing value

of σ but remain robust. This is demonstrated in Fig. 3. In the left plot, we see the iteration history of the residual norm for
different values of σ on level J = 10. The mesh size of the coarsest level is given as hc = 1/4. Thus h4

1/4 ≈ 6.104–5. We
clearly see for values σ ≥ 1.0e−4 that the convergence rates do not deteriorate. Only for smaller values of σ a degradation
of convergence is observed. Moreover, a further decrease of the regularization parameter will lead to divergence. This can
be seen from the right part of Fig. 3. Here the black curve shows the stalled convergence for σ = 1.0e−6 and the same
coarse mesh. Using the multigrid method as a preconditioner and possibly more robust cycles such as the F(2, 2)-cycle,
acceptable rates could be established again. We also clearly see that a reduction of the coarse grid size regains perfect linear
convergence. Altogether, we have demonstrated that the reduction rates are independent of σ and that they are already very
good for the cheap V1,1-cycle as long as the condition σ ≥ ch4

1 on the next to coarsest mesh is met. Thus, fairly small values
of σ can be computed for reasonable coarsemeshes. Note that reduced spacemethods have no such possibility of alleviating
the ill-conditioning of the reduced Hessian for small regularization parameters. Thus, for such methods the corresponding
iteration numbers of outer solves by e.g. the cg method will inevitable depend on the regularization parameter even if the
inner solves are done with multigrid.

7.2. General diffusion constraints

In this section we consider the general diffusion equation

−∇ · D∇y = u, (44)

with homogeneous Dirichlet boundary conditions as constraints. We minimize again the tracking type functional (1), all
other parameters stay the same as before unless noted. First, we consider the diffusion tensor

D =
[
11 9
9 13

]
. (45)

Note that this choice of D introduces a strong diagonal component of the flux. When solving the diffusion equation with
multigrid methods where only pointwise smoothing is employed, degradation of convergence occurs. Therefore, smoothers
with stronger coupling of unknowns have to be employed. Here,we use the incomplete LU factorizationwith zero fill (ILU) as
the iteration in (26). Again, we use the inexpensive V1,1-cycle. Fig. 4(left) shows the discrete L2-error emuh defined in (40) and
the reduction of the residual norm (right). Note here that the error emuh ismeasured against a non-vanishing exact solution u∗.
Thus, the final error emuh ,m ≥ 5, reflects the discretization error. Analogous results are obtained for the errors eyh and eph and
will therefore not be given here. The resolution of the finest grid is given by h = 2−(J+3), i.e. hc = 2−3. The average residual
reduction rate for the computation with finest level J = 7 is 0.0987, which is in excellent agreement with the multigrid
solution for the underlying PDE problem.

Another example which requires sophisticated smoothing in the inner iterations is given by discretizing the Laplace
equation on a non-uniform grid. Fig. 5 shows a deformation of the unit square. The deviation from the unit square boundary
on each side is given by the parameter δ, which is 0.25 for the depicted mesh. The discretization of the Laplace operator
on this grid yields a full diffusion tensor and strong anisotropies in the discrete operator. This is well known to prevent the
successful use of pointwise smoothingmethods. Again, stronger coupling of the unknowns is requiredwithin the smoothing
method. Here, we employed an alternating line Gauss–Seidel method (ALGS) as smoothing iteration (26). Fig. 6 shows the
residual reduction for two different values of the contraction δ, namely 0.05 (left) and 0.25. For comparison, we show the
iteration history for the two cases of a V1,1- and a V2,2-cycle applied to the discrete constraint PDE alone. For the smoothing
of the KKT system we have used the V1,1-cycle, i.e. ν = 1, and α = β = 2. We again obtain convergence rates that closely
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Fig. 4. Convergence for diffusion equation with diffusion tensor D.

0 0.5

0.5

1

1
0

Fig. 5. Non-uniform mesh with indentation for δ = 0.25.

Fig. 6. Residual norm for the optimal control problem on the non-uniform mesh, δ = 0.05 (left) and δ = 0.25.

match those of the multigrid method for the PDE problem. This can be inferred from the data in Table 3. There, convergence
rates for the three different cases are given for different levels J of the discretization.

The results of this section show that our overall method easily allows us to exploit the knowledge of sophisticated
multigrid solution methods for the constraint PDE by adapting the smoothing iteration for the inner linear systems in a
suitable way.
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Table 3
Convergence rates for PDE only and KKT system.

J 4 5 6 7 8

V2,2 PDE 0.0390 0.0502 0.0571 0.0622 0.0654
V1,1 PDE 0.0997 0.1155 0.1217 0.1301 0.1313
V1,1 KKT 0.1332 0.1352 0.1363 0.1350 0.1316

Fig. 7. Computed constrained optimal controls for the two test cases.

7.3. Control-constrained problems

Nowwepresent numerical results for the solution of optimal control problemswith additional constraints on the control.
We consider two test cases. For both problems, the linear PDE constraint is given by the Poisson equation. As a first example
we consider the unilateral constraint given by an upper bound

u ≤ ξu = 0. (46)

The second test case is given by the bilateral constraints

ξl =


−0.75 for y ≤ 0.5
−0.9 for y > 0.5 and ξu = y3 − 0.5. (47)

In Fig. 7, we depict the corresponding computed controls. Fig. 8 serves to illustrate the restriction of the inactive set I onto
different coarse grids as given by (35). Here, the inactive set I for a unilaterally constrained problem with the upper bound
ξu from the second test case is shown. The shaded region represents the active set A+ and is just given by TJ \ TIJ . We here
show the inactive set as computed in the last PDAS iteration, i.e. at the discrete solution u∗h .

In Fig. 9(left), we give the error ẽkuh for each step k of the outer PDAS iteration. Clearly, superlinear convergence is observed
as predicted by the theory. On the right, the error with respect to the upper bound, given by

eubnd = max
Th

(uh −Πhξu), (48)

is shown. Again, superlinear convergence is obtained. Note that eubnd vanishes for the discrete solution and therefore eubnd is
not plotted in the fourth iteration.

Furthermore, Fig. 10 shows the residual reduction for the multigrid solution of system (20) in each PDAS step. In the first
iteration of the PDAS method we have A+ = ∅ and thus the unconstrained problem is solved. We see that the reduction
rates are the same for each following PDAS step and thus are independent of the structure of the active and inactive sets
at each PDAS step. In Table 4 we present the discrete L2-error euJ obtained in the final PDAS step. In the second and third
columns, we give the errors and associated ratios which have been obtained by solving (20) with the standard multigrid
solver, i.e. iterations with the V1,1-cycle have been performed until the stopping criterion applied. Clearly convergence of
second order is observed. In the fourth and fifth columns, we give the same data which has been computed by using just
one iteration of the full multigrid for each PDAS step. Within the FMG, the same V1,1-cycle has been used. The absolute
error is roughly one order of magnitude larger than that for the fully converged multigrid solution, but it still reduces at
the same rate. In the last two columns, we again present the analogous data, however this time the FMG has been followed
by one additional V1,1-cycle. This reduces the error to the same order of magnitude as that of the conventional multigrid
solver. These results resemble the situation of scalar elliptic problems. Under the assumption that the convergence rate
of the employed multigrid cycle is smaller than 1/6, one FMG iteration yields an approximate solution with an error of
(5/2)ch2

J and one additionalmultigrid cycle reduces that error below (1/2)ch2
J . Here, c is the constant from the error estimate

‖u∗J − u∗‖ ≤ ch2
J . In Table 5, we see the growth of the active set A+, given by the increase in terms of the corresponding

cells Ti, for each outer PDAS iterations (for the first iteration, the actual size of A+ is given). The results in the first two rows
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Fig. 8. Inactive set I∗ and active set A∗ (shaded) generated by coarsening (35) on levels J = 0, 1, 2, 3 for the second test case.

Fig. 9. Convergence of the outer PDAS iteration, L2-error ẽuh (left) and ebnd (right).

correspond to the case where only one or two multigrid iterations per outer iteration are performed. The third row shows
the results if a stopping criterion for the residual norm of ε ≤ 10−10 is used for the solution of the inner EQP system. The
total number of necessary multigrid iterations is higher if the inner systems are solved to an a priori specified accuracy.
On the other hand, if only a fixed number of multigrid cycles is employed for the solution of the inner systems, the mesh-
independence of the outer iterations is lost. The most efficient method is obtained if the inner systems are solved using
one cycle of the FMG solver. Therefore, we have employed the FMG as solver for the inner systems in the second test case.
The corresponding results are given in Fig. 11. As before, we present the L2-error ẽuh (left) and the error elbnd (right). Again,
superlinear convergence of the outer iteration is clearly observed. The final error obtained for k = 4 is convergent of second
order with respect to hJ . The corresponding data is given in Table 6, where we also list the computing time in seconds. The
numbers confirm the optimal complexity O(3h−2J ) of the FMG solver.

Let us briefly comment on the robustness of the outer PDAS iteration with respect to the regularization parameter σ in
the cost functional (1). To this end, we consider the example problem (46) with different values of σ . In Fig. 12, we give the
discrete L2-error of the control uh (left) and the error eubnd (right) for the finest level J = 8. The superlinear convergence is
obviously obtained in all cases. However, there is an, albeit very mild, dependence on the actual value of σ . For decreasing
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Fig. 10. Residual reduction of multigrid for the EQP in each PDAS step. The red circle indicates the respective initial residual. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Discrete L2-error of the control u∗J for different levels J obtained in the final step of the PDAS iteration with
fully converged V1,1-cycles, FMG and FMG plus one additional V1,1-cycle.

J V1,1 FMG FMG + V1,1

e4uJ Ratio e4uJ Ratio e4uJ Ratio

3 2.9225−5 – 3.1906−4 – 4.8750−5 –
4 7.3051−6 2.49−1 8.3699−5 2.62−1 1.2529−5 2.57−1
5 1.8262−6 2.50−1 2.1282−5 2.54−1 3.1626−6 2.52−1
6 4.5655−7 2.50−1 5.3510−6 2.51−1 7.9325−7 2.50−1
7 1.1414−7 2.50−1 1.3403−6 2.50−1 1.9854−7 2.50−1
8 2.8534−8 2.50−1 3.3527−7 2.50−1 4.9656−8 2.50−1

Table 5
Increments of active set A+ for different accuracies of inner system solutions.

1 2 3 4 5 6 7 Total

1 2044,753 +703069 +104690 +12471 +877 +80 +2
1 1 1 1 1 1 1 7

2 2007,484 +185614 +3921 +27
2 2 2 2 8

ε = 10−10 1998,192 +98254 +706
13 10 9 32

Fig. 11. Convergence of the outer PDAS iterations. L2-error ẽuh (left) and ebnd (right).

σ , the number of outer PDAS iterations increases slightly. This observation can be made independent of the solver used for
the solution of the inner systems and was also reported in [2].
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Table 6
Discrete L2-error of the control u∗J for the second test case and wall-clock time for the solution with FMG
plus one additional V1,1-cycle.

J e4uJ Ratio Time (s) Ratio

5 3.4246−6 – 1.2723+1 –
6 8.5909−7 2.51−1 5.9187+1 4.65
7 2.1570−7 2.51−1 2.6605+2 4.49
8 5.4015−8 2.50−1 1.1127+3 4.18
9 1.3530−8 2.50−1 4.5630+3 4.10

Fig. 12. Convergence of the outer PDAS iterations for different values of the regularization parameter σ . L2-error ẽuh (left) and eubnd (right).

Table 7
Size of the active set A+ and error ebnd for different levels J = 6, 7, 8 and for regularization parameters
σ = 1.0e−2 and σ = 1.0e−5.

σ J 1 2 3 4 5

1.0−2

6 124,952 +6096 +24 – –
6.843−2 4.149−4 0.0 – –

7 499,670 +24474 +144 – –
6.848−2 4.800−4 0.0 – –

8 1998,192 +98254 +706 – –
6.856−2 4.820−4 0.0 – –

1.0−5

6 101,450 +20528 +7744 +1330 +20
2.338−1 9.117−2 8.090−3 3.379−4 0.0

7 405,590 +82330 +30916 +5342 +110
2.326−1 8.836−2 9.050−3 3.848−4 0.0

8 1622,360 +329360 +123534 +21352 +546
2.331−1 9.109−2 1.055−2 3.960−4 0.0

Finally, in Table 7we give the size of the active set and the error ebnd for σ = 1.0e−2 and 1.0e−5 and values of J = 6, 7, 8.
From the given data we conclude that for a fixed value of σ , the mesh-independence of the outer iteration is not affected.

8. Conclusions and outlook

We presented a multigrid method for optimality systems which arise from the discretization of constrained optimal
control problems of tracking type. The method was applied to test problems commonly found in the literature. Certainly
some additional work will be required in order to extend the present approach to real-life applications, however the results
are very promising. We observed convergence rates for the optimization problem that closely match those obtained for the
underlying elliptic PDE problemwhich serves as constraint. The FMGmethod provides a solverwith optimal complexity. The
total cost (measured in wall-clock time) for the solution of optimal control problems is just a small multiple of the cost for
the solution of the constraint equations only. For problems with additional constraints on the control, the multigrid method
was used to solve the equality-constrained subproblems which arise at each step of a primal–dual active set strategy. It
was shown in numerical experiments that superlinear convergence of the outer iteration is obtained provided that the EQP
is solved accurately enough. Furthermore, it was demonstrated that a highly efficient overall solver is obtained if the full
multigrid approach is employed for the solution of the inner systems.
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Appendix. Local Fourier analysis of the smoothing iteration

The aim of the local Fourier analysis, or local mode analysis, as it is termed in [23], is to give quantitative estimates of
the smoothing and convergence factors for a practical multigrid method. In this respect it differs from classical convergence
proofs which mostly provide qualitative results. The local Fourier analysis is seen as an essential tool for the design of an
efficientmultigridmethod for general problems. Herewe focus on the smoothing analysis based on the local Fourier analysis,
i.e. the aim of this appendix is to determine (an estimate of) the smoothing factor µ(Sj,α,β) for smoothing iterations of the
type (27). For a detailed introduction into the topic of the local Fourier analysis we refer to [25].

The local Fourier analysis considers the effect of all appearing operators in the multigrid method when applied to the
frequency functions

φ(θ, x) = eiθ ·x/h = eiθ1x1/heiθ2x2/h (49)

on the infinite grid5

Gh = {x = hk = (hk1, hk2)|k ∈ Z2
}. (50)

Thus the local Fourier analysis neglects the boundary treatment within the multigrid algorithm and in this sense only
predicts rates which can be obtained provided a proper boundary treatment is conducted. Due to the periodicity of (49)
it is sufficient to consider the frequencies

θ = (θ1, θ2) ∈ [−π, π)2. (51)

With Gh we associate the infinite coarse grid GH , which is defined analogously to (50) for the coarse mesh size H = 2h. Due
to aliasing, on GH only those frequencies with θ ∈ [−π

2 , π
2 )2 can be distinguished, which leads to the definition that

φ(θ, x) is a low frequency component, if θ ∈

−

π

2
,
π

2

2
, (52)

φ(θ, x) is a high frequency component, if θ ∈ [−π, π)2 \

−

π

2
,
π

2

2
. (53)

For θ ∈ [−π, π)2 all functions φ(θ, x) are the formal eigenfunctions of any discrete operator represented by a difference
stencil, i.e. the relation

Lhφ(θ, x) = L̃h(θ)φ(θ, x) (54)

holds with

L̃h(θ) =

−
j

sjeiθ ·j, (55)

where j ∈ Z2 and sj are the stencil elements of Lh. Due to (54) we call L̃h(θ) the formal eigenvalue or symbol of the operator
Lh. For the standard five-point stencil of the discrete Laplacian, for example, one obtains

L̃h(θ) =
1
h2

(4− (eiθ1 + eiθ2 + e−iθ1 + e−iθ2)) =
2
h2

(2− cos θ1 − cos θ2). (56)

In order to apply the local Fourier-based smoothing analysis we have to assume that the smoothing iteration can be given
by a local linear splitting which can be written in stencil notation as

L+h x̃h + L−h xh = fh, (57)

where, as in Section 6, x̃h denotes the smoothed approximation of xh. This is a natural assumption formany classicalmethods
such as ω-JAC and GS-LEX, however it is not satisfied for, e.g. coloring-based Gauss–Seidel methods. For the necessary
modifications to treat for instance red–black Gauss–Seidel within the local Fourier analysis framework we refer to [25].
Note that the use of the conjugate gradient iteration for the approximate inversion of (25) prevents to define (27) by a
splitting of a system corresponding to (57). However, we can apply the local Fourier analysis to the iteration Sj,1 as defined
in Section 6, since in this case a splitting is obtained easily.

5 For notational simplicity, we confine ourselves to the case of a uniform mesh size h in both coordinate directions.
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From (57) we obtain the symbol of the corresponding smoothing operator SLh as

S̃Lh(θ) = −
L̃−h (θ)

L̃+h (θ)
, (58)

where L̃+h (θ) and L̃−h (θ) are the symbols of L+h and L−h , respectively. The smoothing rateµLFA(SLh) is then defined as the largest
possible amplification factor with respect to the high frequency components,

µLFA(SLh) = sup

|S̃Lh(θ)| : θ ∈ [−π, π)2 \


−

π

2
,
π

2

2
. (59)

In order to perform the local Fourier smoothing analysis for (27) we need the extension of the definitions (54) and (32) to
systems of equations. To this end, we introduce the frequency functions

Φ(θ, x) = (1, . . . , 1)Tφ(θ, x). (60)

Then we obtain

KhΦ(θ, x) = K̃h(θ)Φ(θ, x) (61)

with the symbol

K̃h(θ) =

K̃ 1,1
h (θ) . . . K̃ 1,Q

h (θ)
...

...

K̃Q ,1
h (θ) . . . K̃Q ,Q

h (θ)

 , (62)

where K̃ l,q
h (θ), 1 ≤ l, q ≤ Q are the symbols of the scalar discrete operators K l,q

h of the Q × Q -system given by Kh.
Corresponding to the splitting (57) in the scalar case we assume that (27) can be given by a splitting

K+h w̃h + K−h wh = fh, (63)

with the associated symbols K̃+h (θ), K̃−h (θ). The smoothing factor for a system of equations is now defined by

µLFA(Sh) = sup

ρ((K̃+h (θ))−1K̃−h (θ)) : θ ∈ [−π, π)2 \


−

π

2
,
π

2

2
, (64)

with ρ denoting the spectral radius. As mentioned before, Sj,1 is amenable to a splitting of the form (63), which is given by

K+h =

 LT ,+
h

ĤZ −Mh
L+h −Mh

 , K−h =

Mh LT ,−
h

L−h

 , (65)

with L+h , L−h and LT ,+
h , LT ,−

h resulting from a splitting (57) of the state and adjoint operators Lh and LTh , respectively. For
notational simplicity in the following we assume that Lh = LTh . The symbols corresponding to (65) are then given by

K̃+h (θ) =

 L̃+h (θ)
˜̂HZ (θ) −M̃h(θ)

L̃+h (θ) −M̃h(θ)

 , K̃−h (θ) =

M̃h(θ) L̃−h (θ)

L̃−h (θ)

 . (66)

With

(K̃+h (θ))−1 =

Ãh(θ)H̃h(θ)(L̃+h (θ))−1 Ãh(θ) (L̃+h (θ))−1

H̃h(θ)(L̃+h (θ))−1 (
˜̂HZ (θ))−1 0

(L̃+h (θ))−1 0 0

 (67)

we obtain

S̃h(θ) =

Ãh(θ)H̃h(θ)Ãh(θ)+ S̃Lh(θ) 0 Ãh(θ)H̃h(θ)S̃Lh(θ)

H̃h(θ)Ãh(θ) 0 H̃h(θ)S̃Lh(θ)

Ãh(θ) 0 S̃Lh(θ)

 (68)

as the symbol of the smoothing operator corresponding to the iteration Sj,1. Both in (67) and (68) we have introduced the
abbreviations

Ãh(θ) = (L̃+h (θ))−1M̃h(θ) and H̃h(θ) = (
˜̂HZ (θ))−1M̃h(θ). (69)
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Fig. 13. The smoothing factor µLFA(Sj) (72) for the smoothing iteration Sj,1 with ω-JAC as constraint smoother, plotted as a function of the regularization
parameter σ ∈ [1.0, 1.0−6] and the mesh size hj ∈ [2−2, 2−12].

Furthermore, note that S̃Lh(θ) (cf. (58)) is the symbol of the smoothing iteration employed for the constraints Lh, i.e it is
based on a splitting of Lh. According to (64), the smoothing factor µFLA(Sh) is given by the largest absolute eigenvalue of (68),
which we determine by computing the roots of the polynomial

det(S̃h(θ)− λ) = λ((Ãh(θ)2H̃h(θ)+ S̃Lh(θ)− λ)(λ− S̃Lh(θ))+ Ãh(θ)2H̃h(θ)S̃Lh(θ)). (70)

The two non-zero roots are given by

λ1,2 = S̃Lh(θ)+
Ãh(θ)2H̃h(θ)

2
±

 Ãh(θ)2H̃h(θ)

2


2S̃Lh(θ)+

Ãh(θ)2H̃h(θ)

2


. (71)

From (71) we gather that µLFA(Sh) can be considered as a perturbation of the constraint smoothing factor. This perturbation
depends on S̃Lh(θ) and on additional terms corresponding to the smoothing of the control component, which are governed
by H̃h(θ). More insight can be obtained if we consider the model problem where Lh is the discrete Laplacian. Furthermore,
we eliminate the explicit dependence of ρ(S̃h(θ)) on θ by considering ω-JAC as constraint smoother with the optimal value
ω = 4/5 for this case. Then we obtain S̃Lh(θ) = 3/5. For ω-JAC one obtains (L̃+h (θ))−1 = ω/4, and since H̃h(θ) = 1/σ this
yields Ãh(θ) = 1

5h
2. Substituting these quantities into (71) the smoothing factor for the iteration Sj,1 is obtained as

µLFA(Sj,1) =
3
5
+

h4
j

50σ
+

 h4
j

50σ


6
5
+

h4
j

50σ


. (72)

Note that, in contrast to scalar problems, µLFA(Sj,1) explicitly depends on the mesh size hj. Due to differential operators of
different orders appearing in Kj, this is usually the case when deriving smoothing factors for systems of equations. In Fig. 13,
we plot the smoothing factor µLFA(Sj,1) of (72) as a function of the mesh size hj and the regularization parameter σ for the
range (σ , hj) ∈ [1.0, 1.0−6] × [2−2, 2−12]. The large light gray area indicates that for these combinations of σ and hj the
smoothing factor µLFA(Sj,1) is close to that of µLFA(SLh) for the constraint smoother. On the other hand, dark gray shading
indicates thatµLFA(Sj,1) > 1, which is obtained for combinations of small σ and large hj. A smoothing factorµLFA(Sj,1) > 1 is
an indication for degradation of convergence or even divergence of themultigrid process. For (72) it holds thatµLFA(Sj,1) = 1
for σ = h4

j /4 and thus we obtain the condition

µLFA(Sj) < 1 if σ >
h4
j

4
. (73)

In Section 7, we further elaborated on (73) with numerical experiments and an ensuing discussion of the consequences
of (73) for the robustness of our multigrid solver.
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