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Abstract

We examinethecoefficientsof thebox functionsin N = 1 supersymmetricone-loop amplitudes.We presentthebox coef-
ficientsfor all six point N = 1 amplitudes and certain alln examplecoefficients.We find for “next-to MHV” amplitudesthat
thesebox coefficientshavecoplanarsupportin twistor space.
 2005ElsevierB.V.

1. Introduction

Recentlya“weak–weak”duality hasbeenproposedbetweenN = 4 supersymmetricgaugetheoryandtopologi-
calstringtheory[1]. Thisrelationshipbecomesmanifestby transformingamplitudesinto twistorspacewherethey
aresupportedonsimplecurves.A consequenceof thispictureis that tree amplitudes, whenexpressedasfunctions
of spinorvariableskaȧ = λaλ̃ȧ , areannihilatedby variousdifferential operators correspondingto the localization
of pointsto linesandplanesin twistorspace.In particularthe operatorcorrespondingto collinearity of pointsi, j, k
in twistorspaceis

(1.1)[Fijk, η] = 〈i j 〉
[

∂

∂λ̃k

, η

]
+ 〈j k〉

[
∂

∂λ̃i

, η

]
+ 〈k i〉

[
∂

∂λ̃j

, η

]

andsimilarly annihilationby

(1.2)Kijkl = 〈i j 〉εȧḃ ∂

∂λ̃ȧ
k

∂

∂λ̃ḃ
l

+ perms
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indicatesco-planarity of pointsi, j, k andl, i.e., these four points lie on a plane in twistor space.
As an example, the collinear operator annihilates the “maximally helicity violating” (MHV)n-gluon tree am-

plitudes,

(1.3)[Fijk, η]Atree MHV
n (1,2, . . . , n) = 0,

indicating that such amplitudes only have non-zero support on a line in twistor space. These MHV colour-ord
amplitudes, where exactly two of the gluons have negative helicity, have a remarkably simple form (see Eq(2.3)),
conjectured by Parke and Taylor[2] and proved by Berends and Giele[3]. Using “cut-constructibility” and collinea
limits, the one-loop MHV amplitudes have also been constructed forN = 4 [4] andN = 1 supersymmetric the
ories [5]. “Cut-constructible” implies that the entire amplitude can be reconstructed from a knowledge
four-dimensional cuts[4–6]. The MHV tree amplitudes appear to playa key role in gauge theories. Cacha
Svrček and Witten have conjectured that Yang–Mills amplitudes could be calculated using off-shell MHV vertic
[7]. This construction can be extended to other particle types[8] and has already had multiple applications[9].

An understanding of the twistor structure of loop amplitudes has proven more difficult. However, Brandhube
et al.[10] demonstrated by computation of theN = 4 MHV n-point amplitudes how the CSW construction can
extended to one-loop amplitudes. Furthermore, the twistor space structure has been shown to manifest its
coefficients of the integral functions defining one-loop amplitudes. ForN = 4 one-loop amplitudes where only bo
integral functions appear, the coefficients of these box functions satisfy co-planarityand collinearity conditions in
twistor space[11,12]. These twistor space conditions have been shown to be useful in determining the coef
of N = 4 one-loop amplitudes[13–16].

For N = 1 supersymmetric one-loop amplitudes much less is known. In Refs.[17,18] it was shown that the
CSW constructions[7,8] can be employed in computing one-loopN = 1 amplitudes by reproducing the MHVn-
point amplitude and in Ref.[19] it was shown how the holomorphic anomaly applies toN = 1 amplitudes.N = 1
amplitudes have a more complicated structure thanN = 4 amplitudes, containing box, triangle and bubble integ
functions. In this Letter, we present the box coefficients of all six point one-loopN = 1 amplitudes and som
specific box coefficients inn-point amplitudes. We find that, as in the case ofN = 4, for amplitudes with three
negative helicities (“next-to-MHV”) the box coefficients have coplanar support in twistor space, while forq > 3
negative helicities this simple behaviour is no longer true.

2. Organization of one-loop gauge theory amplitudes

Tree-level amplitudes forU(Nc) or SU(Nc) gauge theories withn external gluons can be decomposed i
colour-ordered partial amplitudes multiplied by an associated colour-trace[20–22]. Summing over all non-cyclic
permutations reconstructs the full amplitudeAtree

n from the partial amplitudesAtree
n (σ ),

(2.1)Atree
n

({ki, λi , ai}
) = gn−2

∑
σ∈Sn/Zn

Tr(T aσ(1) · · ·T aσ(n) )Atree
n

(
k
λσ(1)

σ (1) , . . . , k
λσ(n)

σ (n)

)
,

whereki , λi , andai are respectively the momentum, helicity (±) and colour-index of theith external gluon,g is
the coupling constant andSn/Zn is the set of non-cyclic permutations of{1, . . . , n}. TheU(Nc) (SU(Nc)) gen-
eratorsT a are the set of Hermitian (traceless Hermitian)Nc × Nc matrices, normalized such that Tr(T aT b) =
δab. The colour decomposition(2.1) can be derived in conventional field theory simply by usingf abc =
−i Tr([T a,T b]T c)/

√
2, where theT a may be eitherSU(Nc) matrices orU(Nc) matrices.

In a supersymmetric theory amplitudes with all helicities identical, or with all but one helicity identical, v
due to supersymmetric Ward identities[23]. Tree-level gluon amplitudes in super-Yang–Mills and in purely gluoni
Yang–Mills are identical (fermions do not appear at this order), so that

(2.2)Atree
n

(
1±,2+, . . . , n+) = 0.
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The non-vanishing Parke–Taylor formula[2] for the MHV partial amplitudes is,

(2.3)Atree MHV
jk (1,2, . . . , n) ≡ Atree

n

(
1+, . . . , j−, . . . , k−, . . . , n+)

,= i
〈j k〉4

〈1 2〉〈2 3〉 · · · 〈n1〉 ,
for a partial amplitude wherej and k are the only legs with negative helicity. In our convention all legs
outgoing. The result(2.3)is written in terms of spinor inner-products,〈j l〉 ≡ 〈j−|l+〉, [j l] ≡ 〈j+|l−〉, where|i±〉
is a massless Weyl spinor with momentumki and chirality± [22,24]. In terms of the variablesλi

m, λ̃i
ṁ,

(2.4)〈i j 〉 = εmnλi
mλ

j
n, [i j ] = εṁṅλ̃i

ṁλ̃
j
ṅ.

The spinor products are related to the momentum invariants by〈i j 〉[j i] = 2ki · kj ≡ sij with (〈i j 〉)∗ = [j i].
The tree amplitudes contain many residual features of higher symmetries[25]. For one-loop amplitudes, one ma
perform a similar colour decomposition to the tree-level decomposition(2.1) [26]. In this case there are two trac
over colour matrices and one must also sum over the different spins,J , of the internal particles circulating in th
loop. When all particles transform as colour adjoints, the result takes the form,

(2.5)An

({ki, λi, ai}
) = gn

∑
J

�n/2�+1∑
c=1

∑
σ∈Sn/Sn;c

Grn;c(σ )A
[J ]
n;c(σ ),

where�x� is the largest integer less than or equal tox. The leading colour-structure factor,

(2.6)Grn;1(1) = Nc Tr
(
T a1 · · ·T an

)
,

is justNc times the tree colour factor, and the subleading colour structures (c > 1) are given by

(2.7)Grn;c(1) = Tr
(
T a1 · · ·T ac−1

)
Tr

(
T ac · · ·T an

)
.

Sn is the set of all permutations ofn objects, andSn;c is the subset leaving Grn;c invariant. Once again it is
convenient to useU(Nc) matrices; the extraU(1) decouples[26]. (For internal particles in the fundamental (Nc +
N̄c) representation, only the single-trace colour structure (c = 1) would be present, and the corresponding co
factor would be smaller by a factor ofNc. In this case theU(1) gauge boson willnot decouple from the partia
amplitude, so one should only sum overSU(Nc) indices when colour-summing the cross-section.)

For one-loop amplitudes, the subleading in colour amplitudesAn;cc > 1 may be obtained by summations
permutations of the leading in colour amplitude[4],

(2.8)An;c(1,2, . . . , c − 1; c, c + 1, . . . , n) = (−1)c−1
∑

σ∈COP{α}{β}
An;1(σ ),

whereαi ∈ {α} ≡ {c − 1, c − 2, . . . ,2,1}, βi ∈ {β} ≡ {c, c + 1, . . . , n − 1, n}, andCOP{α}{β} is the set of all
permutations of{1,2, . . . , n} with n held fixed that preserve the cyclic ordering of theαi within {α} and of theβi

within {β}, while allowing for all possible relative orderings of theαi with respect to theβi . Hence, we need onl
focus on the leading in colour amplitude and use this relationship to generate the full amplitude if required

For N = 1 super-Yang–Mills with external gluons there are two possible supermultiplets contributing to t
one-loop amplitude: the vector and the chiral matter multiplets, which can be decomposed into single
contributions,

(2.9)AN=1 vector
n ≡ A[1]

n + A
[1/2]
n , AN=1 chiral

n ≡ A
[1/2]
n + A[0]

n .

For spin-0 we always consider a complex scalar. Throughout we assume the use of a supersymmetry p
regulator[27–29]. ForN = 4 super-Yang–Mills theory there is a single multiplet whose contribution is given

(2.10)AN=4
n ≡ A[1]

n + 4A
[1/2]
n + 3A[0]

n .
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The contributions from the three supersymmetric multiplets are not independent but satisfy

(2.11)AN=1 vector
n ≡ AN=4

n − 3AN=1 chiral
n .

Thus, provided theN = 4 amplitude is known, one need only calculate one of the two possibilities forN = 1. The
N = 4 six-point amplitudes are known[4,5] and their twistor space structure has been examined. In this Letter w
focus on theAN=1 chiral

6 amplitudes.

3. Basis of functions

In general, one-loop amplitudes can be decomposed in terms of a set of basis functions,Ii , with coefficients,ci ,
that are rational in terms of spinor products,

(3.1)A =
∑

i

ciIi .

In a Feynman diagram calculation the coefficients may, in principle, be obtained from a Passarino–Velt
duction[30]. For supersymmetric amplitudes, the set is restricted due to cancellations within the loop-mom
integrals. ForN = 1 amplitudes the set can be taken to contain scalar boxes,I4, scalar triangles,I3, and scalar bub
bles,I2. In this Letter we focus on the behaviour of the box functions. In general, we can organize the box fu
according to the number of legs with non-null input momenta andthe relative labeling of legs. Specifically we hav

(3.2)I1m
4:i , I2me

4:r;i , I2mh
4:r;i , I3m

4:r,r ′,i , I4m
4:r,r ′,r ′′,i

with the labeling as indicated,

There is a choice as to which basis of functions to use, particularly with the bubble and triangle functio
the boxes there is rather less freedom. Nevertheless we can consider three choices of basis, each of
advantages in certain circumstances:

• D = 4 scalar box integrals;
• D = 6 scalar box integrals;
• D = 4 scalar boxF -functions.
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TheD = 4 scalar box integrals are the natural choice, butD = 6 scalar box integrals have several practical adv
tages. Firstly they are IR finite, which makes determiningtheir collinear limits particularly simple. Secondly, fo
theN = 1 chiral multiplet, the amplitude has a leadingε−1 singularity in dimensional regularization[31]. Scalar
triangles have 1/ε2 and ln(s)/ε singularities. As theD = 6 boxes are IR finite, there can be no cancellation
theε−2 and ln(s)/ε terms between them and the triangles. This implies the absence of the scalar triangle in
in these amplitudes. The relationship between theD = 4 boxes andD = 6 boxes involves an overall factor an
triangles functions, specifically, using the notation of Ref.[32],

(3.3)ID=4
4 = 1

2N4

[∑
i

αiγiI
(i)
3 + (−1+ 2ε)∆̂4I

D=6
4

]
.

The∆̂4 are rational functions of the momentum invariants,

∆̂1m
4:i

2N4
= −2

(
t
[2]
i−3 + t

[2]
i−2 − t

[n−3]
i

t
[2]
i−3t

[2]
i−2

)
= 2

(ki−1 + ki−3)
2

(ki−3 + ki−2)2(ki−2 + ki−1)2 ,

∆̂2mh
4:r;i

2N4
= −2

(
(t

[r+1]
i−1 − t

[r]
i )(t

[r+1]
i−1 − t

[n−r−2]
i+r ) + t

[r+1]
i−1 t

[2]
i−2

t
[2]
i−2(t

[r+1]
i−1 )2

)
= tr(/ki−1/P i−1...i+r−1/ki−2/P i−1...i+r−1)

(ki−2 + ki−1)2(P 2
i−1...i+r−1)

2
,

(3.4)
∆̂2me

4:r;i
2N4

= −2

(
t
[r+1]
i−1 + t

[r+1]
i − t

[r]
i − t

[n−r−2]
i+r+1

t
[r+1]
i−1 t

[r+1]
i − t

[r]
i t

[n−r−2]
i+r+1

)
,

wheret
[p]
a ≡ (ka + ka+1 + · · · + ka+p−1)

2 = P 2
a...a+p−1 andPi...j = ki + ki+1 + · · · + kj .

The four-dimensional boxes have dimension−2. It is convenient to define dimension zeroF -functions by
removing the momentum prefactors of theD = 4 scalar boxes[5],

(3.5)ID=4
4 = 1

K
F4.

For theN = 4 amplitudes, it is the coefficients of theseF -functions which the collinearity and co-planarity ope
tors annihilate[11,13,14]. Explicitly,

I1m
4:i = −2r�

F 1m
n:i

t
[2]
i−3t

[2]
i−2

, I2me
4:r;i = −2r�

F 2me
n:r;i

t
[r+1]
i−1 t

[r+1]
i − t

[r]
i t

[n−r−2]
i+r+1

, I2mh
4:r;i = −2r�

F 2mh
n:r;i

t
[2]
i−2t

[r+1]
i−1

,

(3.6)I3m
4:r,r ′,i = −2r�

F 3m
n:r,r ′;i

t
[r+1]
i−1 t

[r+r ′]
i − t

[r]
i t

[n−r−r ′−1]
i+r+r ′

, I4m
4:r,r ′,r ′′,i = −2

F 4m
n:r,r ′,r ′′;i

t
[r+r ′]
i t

[r ′+r ′′]
i+r ρ

.

For the box functions it is easy to switch between bases since

(3.7)A|boxes=
∑

i

cD=4
i ID=4

i =
∑

i

cD=6
i ID=6

i =
∑

i

cF
i Fi ,

thus the coefficients must satisfy

(3.8)cD=4
i = cD=6

i

(−∆̂4/2N4)
= cF

i K.

4. Box coefficients of the six point N = 1 amplitudes

We can organise the six point amplitudes according to the number of negative helicities; amplitudes wi
one, five or six vanish in any supersymmetric theory. The amplitudes with two negative helicities are the
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amplitudes, which were computed previously[5], while those with four are the“googly” MHV amplitudes which
are obtained by conjugation of the MHV amplitudes. Here we present the remaining box coefficients and e
the twistor structure of all the six point amplitudes.

The two independent types of six point amplitude have rather different box structures. The MHV amp
contain “two-mass easy” and single mass boxes, whereas the amplitudes with three negative helicities
“two-mass hard” and single mass boxes. This feature does not extend to higher point functions.

4.1. MHV amplitudes

There are three independent MHV amplitudes. In terms of theD = 6 boxes the box parts of these amplitud
are,

A
(
1−,2−,3+,4+,5+,6+)∣∣

box = 0,

A
(
1−,2+,3−,4+,5+,6+)∣∣

box = bD=6
1 I2me

4:3 + bD=6
2 I1m

4:5 + bD=6
3 I1m

4:3 ,

(4.1)A
(
1−,2+,3+,4−,5+,6+)∣∣

box = cD=6
1 I2me

4:1 + cD=6
2 I2me

4:3 + cD=6
3 I1m

4:6 + cD=6
4 I1m

4:3 ,

where,

bD=6
1 = Atree MHV

13
tr+(1325)tr+(1352)

s2
13s25

, bD=6
2 = Atree MHV

13
tr+(1324)tr+(1342)

s2
13s24

,

(4.2)bD=6
3 = Atree MHV

13
tr+(1326)tr+(1362)

s2
13s26

,

cD=6
1 = Atree MHV

14
tr+(1436)tr+(1463)

s2
14s36

, cD=6
2 = Atree MHV

14
tr+(1425)tr+(1452)

s2
14s25

,

(4.3)cD=6
3 = Atree MHV

14
tr+(1435)tr+(1453)

s2
14s35

, cD=6
4 = Atree MHV

14
tr+(1426)tr+(1462)

s2
14s26

,

where tr+(abcd) = [a b]〈b c〉[c d]〈d a〉. If we examine the coefficients of theF -functions we have, for example,

(4.4)bF
1 = Atree MHV

13 × tr+(1325)tr+(1352)

s2
13s

2
25

= Atree MHV
13 × 〈3 2〉〈1 5〉〈3 5〉〈2 1〉

〈1 3〉2〈2 5〉2 ,

which is a holomorphic function (i.e., a function ofλ alone). The amplitude has an overall factor in dimensio
regularisation ofr� , where

(4.5)r� = (µ2)ε

(4π)2−ε

�(1+ ε)�2(1− ε)

�(1− 2ε)
,

which we will not write explicitly here or in following cases.

4.2. Amplitudes with three minus helicities

There are also three independent amplitudes with three minus helicities:A(1−,2−,3−,4+,5+,6+), A(1−,2−,

3+,4−,5+,6+) andA(1−,2+,3−,4+,5−,6+). Of these, the first consists only of triangle and bubble integ
[19] so we have a trivial box structure,

(4.6)A
(
1−,2−,3−,4+,5+,6+)∣∣

box = 0.
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The next amplitude,A(1−,2−,3+,4−,5+,6+), does have a non-trivial box structure, which we express in te
of D = 6 boxes as,

(4.7)A
(
1−,2−,3+,4−,5+,6+)∣∣

box = cD=6
1 I2mh

4:4 + cD=6
2 I2mh

4:6 + cD=6
3 I2mh

4:2 + cD=6
4 I1m

4:2 + cD=6
5 I1m

4:3 ,

where the integral boxes are,

cD=6
1 + cD=6

2 + cD=6
3

+ cD=6
4 + cD=6

5

and the coefficients have been computed to be,

cD=6
1 = i

(〈3|/P |1〉)2〈5|/P |4〉〈3|/P |5〉
〈4|/P |5〉〈2|/P |5〉

〈5 1〉
[2 3]〈5 6〉〈6 1〉P 2 , P = P234,

cD=6
2 = i

(〈3|/P |4〉)2〈6|/P |1〉
〈1|/P |6〉

[3 1]〈6 4〉
[1 2][2 3]〈4 5〉〈5 6〉P 2, P = P123,

cD=6
3 = i

(〈6|/P |4〉)2〈2|/P |4〉〈3|/P |2〉
〈2|/P |3〉〈2|/P |5〉

[6 2]
〈4 5〉[6 1][1 2]P 2

, P = P345,

cD=6
4 = i

(〈3|/P |1〉)2〈2|/P |1〉
〈2|/P |5〉

〈2 4〉
〈5 6〉〈6 1〉P 2[2 4], P = P234,

(4.8)cD=6
5 = i

(〈6|/P |4〉)2〈6|/P |5〉
〈2|/P |5〉

[3 5]
[6 1][1 2]P 2〈3 5〉 , P = P345,

where〈a|/K|c〉 ≡ 〈a+|/K |c+〉.
The remaining amplitude,A(1−,2+,3−,4+,5−,6+), contains all six one-mass and all six “two-mass-ha

boxes,

A
(
1−,2+,3−,4+,5−,6+)

box = aD=6
1 I1m

4:1 + aD=6
2 I1m

4:2 + aD=6
3 I1m

4:3 + aD=6
4 I1m

4:4 + aD=6
5 I1m

4:5 + aD=6
6 I1m

4:6
+ bD=6

1 I2mh
4:1 + bD=6

2 I2mh
4:2 + bD=6

3 I2mh
4:3 + bD=6

4 I2mh
4:4 + bD=6

5 I2mh
4:5

(4.9)+ bD=6
6 I2mh

4:6 .

Fortunately these are not all independent and symmetry demands relationships amongst theaD=6
i ’s,

aD=6
3 (123456)= aD=6

1 (345612), aD=6
5 (123456)= aD=6

1 (561234),

aD=6
4 (123456)= aD=6

2 (345612), aD=6
6 (123456)= aD=6

2 (561234),

(4.10)aD=6
2 (123456)= āD=6

1 (234561), aD=6
1 (123456)= aD=6

1 (321654),

where āD=6
1 denotesaD=6

1 with 〈i j 〉 ↔ [i j ]. Thus there is a single independentaD=6
i . Similarly we can use

symmetry to generate all thebD=6
i ’s from bD=6

1 . The expressions foraD=6
1 andbD=6

1 are,

aD=6
1 = i

〈2|/P |5〉2〈1|/P |5〉〈3|/P |5〉
〈3|/P |6〉〈1|/P |4〉P 2

〈3 1〉
[1 3]〈4 5〉〈5 6〉, P = P123,
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(4.11)bD=6
1 = i

〈2|/P |5〉2〈3|/P |5〉〈2|/P |4〉〈4|/P |3〉
〈3|/P |6〉〈1|/P |4〉〈3|/P |4〉P 2

1

[1 2]〈5 6〉, P = P123.

4.3. Googly MHV amplitudes

The googly MHV amplitudes can be obtained from the MHV amplitudes by conjugation. These amplitudes a
useful for testing hypotheses regarding amplitudes containing four minus helicities. For example, we have,

(4.12)A
(
1+,2−,3+,4−,5−,6−)∣∣

box = bD=6
1

′I2me
4:3 + bD=6

2
′I1m

4:5 + bD=6
3

′I1m
4:3 ,

with bD=6
i

′ = b̄D=6
i . The coefficients of theF -functions are anti-holomorphic functions, e.g.

(4.13)bF ′
1 = Ātree

24 × [3 2][1 5][3 5][21]
[1 3]2[2 5]2 .

5. Cut constructibility

In this section, we review and discuss the status of the box coefficients calculated by evaluating the cut
loop amplitudes. In Ref.[4] the concept that an amplitude was “cut constructible” was introduced. At first sig
meaning of this term appears obvious: that one may calculate an amplitude from a knowledge of its cuts,

(5.1)Ci...j ≡ i

2

∫
dLIPS

[
Atree(�1, i, i + 1, . . . , j, �2) × Atree(−�2, j + 1, j + 2, . . . , i − 1,−�1)

]

in all channelsi . . . j .
Any amplitude involving massless particles can be reconstructed from afull knowledge of its cuts (see Ref.[33]

for a modern review). This means that if we calculate the cuts precisely and regularize them in the same fa
the amplitude, then we can determine any amplitude. Specifically, if we regularize the amplitude by dime
regularization then, for consistency, in the cutCi...j we should use tree amplitudes with external momenta in
dimensions, while the momenta crossing the cut should reside in 4− 2ε dimensions. These are not the norm
tree amplitudes. In Ref.[34] this was explicitly realized and used to determine a specific non-supersymme
amplitude. This method may also be used for amplitudes beyond one-loop[35,36].

Fortunately, forN = 4 andN = 1 supersymmetric gauge theory amplitudes it is not necessary to evalua
cuts in this precise manner, instead one may calculate the cut using amplitudes where the cut legs lie
dimensions. This means that the cut can be evaluated using the conventional four-dimensional tree amplitud
In principle this introduces errors in the trees atO(ε). It is non-trivial that these errors do not produce fin
terms within the possibly divergent integrals. The proof of this lies in a detailed study of the possible i
functions which may occur within a one-loop calculation. For the restricted case of supersymmetric theo
cuts contain enough information to determine the coefficients of these functions unambiguously. This is
precise definition of ‘cut-constructibility’. A small number of supergravity amplitudes are also cut-constru
[37]. ForN = 4 amplitudes the integral functions are precisely scalar boxes. ForN = 1 amplitudes we have scal
boxes plus scalar triangles and bubbles. As presented in Refs.[4,5] the uniqueness of the coefficients hinges
the uniqueness of the classes of logarithms appearing in the cuts. Generically, the boxes are in a differen
functions from bubbles and triangles since the latter do not contain terms like

(5.2)ln
(
P 2

i...j

)
ln

(
P 2

i′...j ′
)
,

which reside in boxes. By considering such terms, or specifically the coefficients of ln(P 2
i′ ...j ′) in thePi...j -channel

cut, together with the limited number of boxes which may contain such a term in thePi...j -channel, one can sho
that the coefficients are uniquely defined. Generically this makes it unambiguous to extract the coeffic
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boxes from a single cut. In performing a cut in, e.g., thePi...j -channel we can determine boxes with terms l
ln(P 2

i...j ) ln(P 2
i′...j ′) by determining the coefficients of ln(P 2

i′...j ′) in this cut. In fact we tend not to evaluate the c
directly, but rather manipulate the cut into a form where it can be recognized as the cut of specific scala
with coefficients.

We have carried out such a process in evaluating the coefficients of the box functions in the six point amp
We shall illustrate this explicitly in the following section where we evaluate the coefficients of certain bo
higher point functions.

6. Higher point box coefficients

In this section we evaluate some sample box coefficients for certainn-point amplitudes. This will enable us t
examine whether the twistor space structure of the six-point amplitudes extends to higher point amplitude

For higher point amplitudes the number of helicity configurations grows quite rapidly with increasing numb
of legs. As our first example we will consider the specific amplitude,

(6.1)AN=1, chiral(1−2− . . . j+(j + 1)−5+ . . .n+)
.

We calculate the 123. . .j -cut of this amplitude, i.e.,

C123...j = i

2

∫
dLIPS

∑
h∈{−1/2,0,1/2}

Atree(�h
1,1−,2−, . . . , j+, �−h

2

)

(6.2)× Atree((−�2)
h, (j + 1)−, . . . , n+, (−�1)

−h
)
.

The sum is over the particles in theN = 1 chiral multiplet. The two tree amplitudes are a MHV amplitude an
MHV-googly amplitude. For MHV amplitudes the different tree amplitudes for different particle types are relate
by simple cofactors determined by solving the supersymmetric Ward identities[22,23]. Using these to replace th
tree amplitudes by the amplitudes for scalars with cofactors and summing the cofactors we obtain,

C123...j = i

2

∫
dLIPSAtree MHV(

�s
1,1−,2−, . . . , j+, �s

2

)
(6.3)× Atree MHV googly((−�2)

s, (j + 1)−, . . . , n+, (−�1)
s
) × ρN=1,

where,

ρN=1 = −x + 2− 1

x
= − (x − 1)2

x
, with x = [j �2]〈j + 1�2〉

[j �1]〈j + 1�1〉
so that,

(6.4)ρN=1 = −[j �1]〈j + 1�1〉
[j �2]〈j + 1�2〉

( [j �2]〈j + 1�2〉
[j �1]〈j + 1�1〉 − 1

)2

= − 〈j |P123...j|j + 1〉2

[j �1]〈j + 1�1〉[j �2]〈j + 1�2〉 .

This gives the integrand above as,

[j �1]2[j �2]2
[1 2][2 3] · · ·[j − 1j ][j �2][�2 �1][�1 1] × 〈j + 1�1〉2〈j + 1�2〉2

〈j + 1j + 2〉〈j + 2j + 3〉 · · · 〈n − 1n〉〈n�1〉〈�1 �2〉〈�2 j + 1〉
× 〈j |P123...j|j + 1〉2

[j �1]〈j + 1�1〉[j �2]〈j + 1�2〉
= 〈j |P123...j|j + 1〉2

[1 2][2 3] · · ·[j − 1j ]〈j + 1j + 2〉〈j + 2j + 3〉 · · · 〈n − 1n〉P 2 × [j �1]
[�1 1] × 〈j +〉1�1

〈n�1〉
123...j
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valuated

es,
(6.5)= 〈j |P123...j|j + 1〉2

[1 2][2 3] · · ·[j − 1j ]〈j + 1j + 2〉〈j + 2j + 3〉 · · · 〈n − 1n〉P 2
123

× [j �1]〈�1 1〉〈j + 1�1〉[�1 n]
(�1 − k1)2(�1 + kn)2 .

This corresponds to the cut of a box integral with integrand quadratic in the loop momentum, i.e.,

C123...j = 〈j |P123...j|j + 1〉2

[1 2] · · · [j − 1j ]〈j + 1j + 2〉〈j + 2j + 3〉 · · · 〈n − 1n〉P 2
123...j

(6.6)× (
I2mh
2

[[j �1]〈�1 1〉〈j + 1�1〉[�1 n]])cut.

The specific box integral is the “two mass hard” depicted below,

with a non-trivial (quadratic in loop momenta) numerator.
Rewriting the numerator,

(6.7)〈j |/�1|1〉〈n|/�1|j + 1〉 = 〈j+|/�1|1+〉〈1+|P |n+〉〈n|/�1|j + 1〉
〈1+|P |n+〉 = 〈j |/�1/1/P/kn/�1|j + 1〉

〈1|/P |n〉 ,

and commuting the cut momenta toward/P = /�1 − /�2,

/�1/1/P/kn/�1 = (2�1 · k1)/P/kn/�1 − /1/�1/P/kn/�1

= (2�1 · 1)/P/kn/�1 − (2�1 · kn)/1/�1/P + /1/�1/P/�1/kn

(6.8)= −(�1 − k1)
2/P/kn/�1 − (�1 + kn)

2/k1/�1/P + (2�1 · P)/k1/�1/kn.

In this expression the first two terms cancel a propagator yielding triangle integrals—which we discard
present purposes—and the third term can be rearranged as(2�1 ·P) = −(�1−P)2+�2

1+P 2 = −�2
2+�2

1+P 2 ≡ P 2

discarding momenta null on the cut. The remaining expression is a box with linear integrand which can be e
and the result expressed as aD = 6 scalar box function,

(6.9)C123...j = 〈j |P123...j|(j + 1)〉2〈n|/P |1〉[1j ]〈j + 1n〉
〈1|/P |n〉[1 2][2 3] · · ·[j − 1j ]〈j + 1j + 2〉〈j + 2j + 3〉 · · · 〈n − 1n〉P 2

123...j

(
I

2mh,D=6
4

)
cut

so we deduce, using the arguments of the previous section, that the coefficient of the box is

(6.10)f D=6
1 = i

〈j |/P |(j + 1)〉2〈n|/P |1〉[1j ]〈j + 1n〉
〈1|/P |n〉[1 2][2 3] · · ·[j − 1j ]〈j + 1j + 2〉〈j + 2j + 3〉 · · · 〈n − 1n〉P 2 , P = P123...j,

which is a generalisation of the coefficientc2 within the six point amplitudeA(1−,2−,3+,4−,5+,6+).
As a further example, by looking at theCn...j−1 cut we can deduce that the amplitude,

(6.11)AN=1,chiral(1−2− . . . (j − 1)−j+(j + 1)+ . . . k− . . . (n − 1)+n+)
,

(where legs 1 toj − 1 and legk have negative helicity and the remainder have positive helicity) contains box

gD=6
1 + gD=6

2 + · · ·
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The first appearance of the two-mass easy box in non-MHV amplitudes occurs at seven point amplitudes. T
coefficients are

gD=6
1 = −i

〈n|/P |k〉2〈n|/P |n − 1〉〈k n − 1〉[n − 1j ]〈j k〉
[n1][1 2] · · ·[j − 2j − 1]〈j j + 1〉〈j + 1j + 2〉 · · · 〈n − 2n − 1〉〈j − 1|/P |n − 1〉〈n − 1j 〉P 2 ,

(6.12)

gD=6
2 = i

〈n|/P |k〉2〈j − 1|/P |k〉〈j |/P |j − 1〉[nj − 1]〈j k〉
[n1][1 2] · · ·[j − 2j − 1]〈j j + 1〉〈j + 1j + 2〉 · · · 〈n − 2n − 1〉〈j − 1|/P |j 〉〈j − 1|/P |n − 1〉P 2 .

Using symmetry arguments various other box coefficients can be obtained from these expressions by relabelin

7. Twistor structure

It was observed by Witten[1] that the twistor space properties of amplitudes expressed in terms of the h
states (λi, λ̃i ) can be investigated using particular differential operators. Specifically, if a function has no
support when pointsi, j andk arecollinear in twistor space, then it is annihilated by the operator

(7.1)[Fijk, η] = 〈i j 〉
[

∂

∂λ̃k

, η

]
+ 〈j k〉

[
∂

∂λ̃i

, η

]
+ 〈k i〉

[
∂

∂λ̃j

, η

]
,

where the square brackets indicate spinor products rather than commutators. Similarly, annihilation by the

Kijkl = 1

4

[
〈ij 〉εȧḃ ∂

∂λ̃ȧ
k

∂

∂λ̃ḃ
l

− 〈ik〉εȧḃ ∂

∂λ̃ȧ
j

∂

∂λ̃ḃ
l

+ 〈il〉εȧḃ ∂

∂λ̃ȧ
j

∂

∂λ̃ḃ
k

+ 〈jk〉εȧḃ ∂

∂λ̃ȧ
i

∂

∂λ̃ḃ
l

(7.2)+ 〈j l〉εȧḃ ∂

∂λ̃ȧ
k

∂

∂λ̃ḃ
i

− 〈kl〉εȧḃ ∂

∂λ̃ȧ
j

∂

∂λ̃ḃ
i

]
,

indicatesco-planarity of pointsi, j, k andl in twistor space.
Here we will explore the twistor space structure of the box coefficients of theN = 1 amplitudes. At tree-leve

an important implication of the CSW-formalism is that the twistor space properties of amplitudes are com
determined by the number of minus legs. For this reason we organise the one-loop amplitudes according to
number of negative helicities. We have investigated the twistor space properties for all the possible 5-p
coefficients and all the 6-point box coefficients together with then-point coefficients of the previous section. Th
was carried out by generating sets of on-shell kinematic points consisting of specific values ofλi and λ̃i and
determining the action of the operators at these points.

For the six point amplitudes there are three different classes of amplitudes organised by the number of
helicities: MHV-amplitudes, next-to-MHV amplitudes and googly MHV-amplitudes. For then-point amplitudes we
have extended certain six point amplitudes by adding extra plus legs to the MHV side of the cut and extr
legs to the googly side. This produces the following classes ofn-point configurations:(−· · · − + · · · + − + · · ·+)

and(−· · · − + − +· · ·+).
For the MHV-amplitudes all helicity configurations for the box coefficients are holomorphic and are thus

hilated by anyFijk andKijkl operator, as noted in[38]. The geometric picture of these configurations is simp
line in twistor space.

Now we consider next-to-MHV amplitudes with three minus helicities. By acting with theKijkl operators we
find that the box coefficients are annihilated for any four points,

(7.3)Kijkl

[
cF

next-to-MHV

] = 0,

indicating a geometric picture where all points lie in a plane in twistor space.
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The line structure of the box coefficients can be deduced by acting with theFijk operators. In the cuts we hav
used to determine these coefficients, there is a MHV tree amplitude on one side of the cut (the “mostly plu
and a googly MHV tree amplitude on the other (the “mostly minus side”). The box coefficients calculate
each cut will be annihilated byFijk wheni, j andk are any legs lying on the mostly plus side of that cut, indica
that these legs define points in twistor space that lie on a line. Similar behaviour was found for the box coe
in N = 4 amplitudes[11,12].

For theq(> 3) minus configurations, the box coefficients are only annihilated byFijk operators where a
three of the points lie on the MHV, mostly plus, side of the cut used to calculate them. These points wil
a line in twistor space. Hence the box coefficients are annihilated by anyKijkl operator where three or more
these points lie on the line. For generic points in twistor space, we have confirmed explicitly that only thesKijkl

operators annihilate the box coefficients. The geometric interpretation is thus ofn − q points lying on a line with
no restriction on the positions of the remainingq points. In general, if a box has a cut in the channelCi...j and
Atree(i . . . j ) is a MHV tree amplitude, then the box coefficient is supported on configurations in twistor
where pointsi . . . j are collinear. If there are two or more such cuts, this would imply a support of two or
lines with the remaining points unrestricted. When any pair of these cuts have a common leg, the corres
lines intersect at the common point.

We have presented explicitly the results for theN = 1 chiral multiplet. Since theN = 1 vector multiplet is a
linear combination of this and theN = 4 multiplet, the box coefficients of theN = 1 vector multiplet will also
have planar support for next to MHV amplitudes.

8. Conclusions

In the twistor space realisation of gauge theory amplitudes many fascinating geometric features appe
are of interest both formally and, possibly, practically in the determination of scattering amplitudes. On
amplitudes can be expressed as a sum of integral functions whose coefficients, in particular the coeffi
the box functions, contain interesting twistor space structure. For example, inN = 4 gauge theory it has bee
shown that the box coefficients of next to MHV amplitudes have planar support in twistor space, analogous t
behaviour of the tree amplitudes. In this Letter we have investigated whether similar behaviour exists forN < 4
by computing and examining the box coefficients for all six pointN = 1 amplitudes and certain classes ofn point
N = 1 amplitudes. It would be interesting to extend this analysis toN = 0 amplitudes, although in this case, t
box coefficients represent a smaller fraction of the information contained in the amplitude. We find that f
to MHV amplitudes these coefficients have planar support in twistor space, explicitly confirming that theN = 4
structure persists toN = 1.
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