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INTRODUCTION

Let p be a prime, let F
q
be a "nite "eld with q"pm elements, and let F1

q
be

an algebraic closure of F
q
. In this paper we present a method for constructing

curves over "nite "elds with many points which are Kummer covers of P1 or
of other suitable base curves. For this we look at rational functions f3F

q
(x)

such that f assumes a "xed value a3F
q
on a (preferably large) set P-P1(F

q
).

To take a concrete example we set a"1. Then the algebraic curve which is
the Kummer covering of P1 given by the equation

yq~1"f (x)

has "bres with many rational points and judicious choices of f lead to
improvements and extensions of the tables [2] of curves with many points.
The methods we employed in the past were mostly based on Artin}Schreier
covers of the projective line.

In Section 1 we sketch the method and describe a way to obtain good
rational functions as above. This is based on an appropriate splitting
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f"f
1
#f

2
of a linearized polynomial f having as zero set a linear subspace

¸ of F
q
. In the following section we treat the case where the linear space ¸ is

the full space F
q
. We "nd curves C

m
de"ned over F

q
for which the ratio

dC
m
(F

q
)/g(C

m
) of the number of rational points by the genus exceeds Jq for

m even and 2Jpq/(p#1) for m odd. For g large compared to q the only way
known so far to prove the existence of curves with a comparable ratio is by
class "eld theory, which is less explicit (cf. [1]). Note that the result of
Drinfeld}Vladut, that lim sup

g?=
dC(F

q
)/g (C)4Jq!1, shows that for

given q there are only "nitely many isomorphism classes of curves C over
F
q

whose ratio dC(F
q
)/g(C) exceeds Jq for m even.

In Section 3 we consider the case where the linear subspace is of codimen-
sion 1 in F

q
and we complement this note with a section with variations. We

illustrate the sections with numerous examples and thus obtain a number of
improvements of the existing tables. In many cases the methods also give
a relatively easy way to construct for certain pairs (q, g) a curve realizing the
lower entry of the interval in the tables [2]. We conclude the article with
a table summarizing the new results from the examples.

1. THE METHOD

We consider the non-singular complete irreducible Kummer curve C over
F
q

de"ned by the a$ne equation

yq~1"f (x),

where the rational function f (x)3F
q
(x) satis"es the following conditions.

(1.1) Conditions.
(i) f is not the dth power of an element g3F1

q
(x) for any divisor d'1 of

q!1;
(ii) f (x)"1 on a substantial subset P of P1 (F

q
);

(iii) f (x) has many multiple zeros and poles.

By (i) the curve C is a cyclic cover of P1 of degree q!1, by (ii) the curve
C has at least (q!1)dP rational points, and condition (iii) keeps the genus
of C within bounds.

The Hurwitz-Zeuthen formula gives the genus of C (cf., e.g., [3]):

(1.2) PROPOSITION. If the divisor of f is ( f )"+l

i/1
d
i
P

i
with distinct P

i
3

P1(F1
q
) then the genus g(C) of C is given by

2g (C)!2"(l!2) (q!1)!
l

+
i/1

gcd(q!1, Dd
i
D). (1)
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Note that a small value of l and the greatest common divisors in#uence the
genus in a favourable way for our game.

Rational functions which satisfy Conditions (1.1) arise for instance in the
following way.

Let ¸ be an r-dimensional subspace of the F
p
-vector space F

q/pm with r52.
Then the polynomial

R"<
c|L

(x!c)

is a p-linearized polynomial, i.e., is of the form

R(x)"
r
+
i/0

a
i
xpi

3F
q
[x],

and moreover satis"es a
0
a
r
O0.

Now we split R as

R(x)"R
1
(x)#R

2
(x) (2)

so that R
1
(x)"+r

i/s
b
i
xpi

3F
q
[x] and R

2
(x)"+t

i/0
c
i
xpi with 0(s(r, t4s,

b
s
b
r
O0, and c

0
c
t
O0. We denote the zero sets of R

1
(resp. R

2
) by ¸

1
(resp.

¸
2
) with d¸

1
" pr~s (resp. d¸

2
"pt). Furthermore, in connection with

Condition (1.1) (i) we require that ¸
1
O¸

2
.

It is obvious that

f (x)"!

R
1
(x)

R
2
(x)

"!

(+r
i/s

b1@ps

i
xpi~s)ps

+t
i/0

c
i
xpi

(3)

satis"es f (x)"1 for x3¸!(¸
1
X¸

2
). From (2) it follows that ¸W(¸

1
X¸

2
)"

¸
1
W¸

2
, which means that ¸!(¸

1
X¸

2
)"¸!(¸

1
W¸

2
). Moreover, the zeros

of R
1

and the pole R have multiplicities '1. Hence f satisi"es Conditions
(1.1).

(1.3) PROPOSITION. ¹he Kummer cover C of P1 de,ned by the equation
yq~1"f (x) with f (x)"!R

1
/R

2
as in (3) has genus

g"M(pr~s#pt!d!1) (q!2)!dp'#$(m,s)!p'#$(m,r~t)#2d#2N/2 (4)

and the number of F
q
-rational points on C satis,es

dC(F
q
)5(pr!d)(q!1), (5)

where d"d (¸
1
W¸

2
).
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Proof. By the assumption ¸
1
O¸

2
it follows that the function f satis"es

(1.1) (i). The divisor of f is

( f )" +
P|L1

WL2

(ps!1)P# +
P|L1~(L1

WL2)

psP! +
P|L2~(L1

WL2)

P!(pr!pt)P
=

.

The number l of distinct zeros and poles of f is

d¸
1
#d¸

2
!d (¸

1
W¸

2
)#1"pr~s#pt!d#1.

According to Proposition (1.2) the genus satis"es

2g(C)!2"(pr~s#pt!d!1) (q!1)!d(p'#$(m,s)!1)

!(pr~s!d)!(p'#$(m,r~t)!1)

and we obtain (4). For x3¸!(¸
1
W¸

2
) we have f (x)"1 and thus over each

y3F*
q

we "nd pr!d rational points on C. Other rational points could come
from the branch points of C. The set of branch points is ¸

1
X¸

2
XR and they

contribute rational points if the rami"cation points over such branch points
happen to be rational. This yields the required estimate (5). j

(1.4) EXAMPLE. Take F
16

with ¸"F
16

. Then R"x16#x and we split
R as R"R

1
#R

2
with R

1
"x16#x2 and R

2
"x2#x. In this case r"4,

s"t"1, ¸
1
"F

8
, ¸

2
"F

2
and d"2. From Proposition (1.3) we see that

the curve C de"ned over F
16

by

y15"(x16#x2)/(x2#x)"x14#x13#2#x

has genus g (C)"49 and dC(F
16

)"14]15#3"213 since the rami"ca-
tion points over the branch points in F

2
XR are rational. This provides

a new entry for the tables in [2].
We remark that the ratio dC (F

q
)/g(F

q
) for the curves that appear in

Proposition (1.3) exceeds 2pr/(pr~s#pt), which is optimal for s"t"[r/2].
For that choice

dC(F
q
)/g(C)'G

Jpr for r even,

2Jpr`1/(p#1) for r odd.
(6)

From (6) it follows that the case ¸"F
pm with R"xpm

!x is of special
interest.
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2. THE CASE ¸"F
q

In this section we consider the case where ¸ equals the full vector space F
q
.

For odd m we write

xpm
!x"R

1
#R

2
"(xpm!axp(m~1)@2)#(axp(m~1)@2

!x),

with a3F*
q
; i.e., we look at the case s"t"[m/2]. Since

gcd(xpm
!axp(m~1)@2, axp(m~1)@2

!x)"gcd(xpm
!x, axp(m~1)@2

!x)

we have for u3F*
q

u3¸
1
W¸

2
8up(m~1)@2~1"1/a.

This equation has no solutions in F*
q

if a is not a (p(m~1)@2!1)th power in
F*
q

and the number of solutions in F*
q

is gcd(p(m~1)@2!1, pm!1)"p!1 if
a is a (p(m~1)@2!1)th power in F*

q
. The latter holds always if p"2.

First we consider the case that a is a (p(m~1)@2!1)th power in F*
q
. Often we

shall write a3(F*
q
)d to indicate that a is a dth power in F*

q
.

(2.1) PROPOSITION. For odd m53 the curve C
m

de,ned over F
q/pm by the

equation

yq~1"!

(xp(m`1)@2
!ap(m`1)@2 x)p(m~1)@2

axp(m~1)@2
!x

with a3(F*
q
)p(m~1)@2~1 has genus

g(C
m
)"M(p(m`1)@2#p(m~1)@2!p!1) (q!2)!p2#p#2N/2

and has the following number of rational points:

dC
m
(F

q
)"G

(q!1) (q!p) for odd p,

(q!1) (q!p)#3 for p"2.

Proof. The degree of gcd(R
1
, R

2
)"gcd(xp(m`1)@2

!ap(m`1)@2 x, axp(m~1)@2
!x)

is the cardinality of the F
p
-vector space ¸

1
W¸

2
. The condition that a is

a (p(m~1)@2!1)th power implies d"p. We have s"t"(m!1)/2 and the
expression for the genus now follows directly by substitution in Proposition
(1.3). Over each y3F*

q
we have pm!d"pm!p rational points on C

m
. The

only branch points which possibly contribute rational points to C
m

are
the branch points in F

p
XR. Over each point of F

p
XR there lie p!1
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rami"cation points on C
m
. These are rational if and only if !a is a (p!1)th

power in F
q
. This holds for pairs (p, m) with pm even, which implies our

formula for dC
m
(F

q
). j

(2.2) EXAMPLE. As an illustration of Proposition (2.1) we take p"3,
m"3 and get the curve C over F

27
given by

!y26"x24#x22#2#x2

with g (C)"98 and dC(F
27

)"624. In this case the OesterleH upper bound is
b"745, so C satis"es our quali"cation criterion dC(F

27
)5[b/J2] for the

tables in [2].
For another example we take F

32
. Then the curve C with a$ne equation

y31"(x8#x)4/(x4#x)

has genus g (C)"135 and dC(F
32

)"31]30#3"933. The OesterleH upper
bound in this case is 1098.

For q"35 we obtain from Proposition (2.1) a curve C of genus g(C)"
3854 and dC(F

243
)"58,080. The OesterleH upper bound is 81,835.

For a not a (p(m~1)@2!1)th power in F*
q

we have a similar proposition.

(2.3) PROPOSITION. For odd m53 the curve C
m

over F
q/pm de,ned by

yq~1"!

(xp(m`1)@2
!ap(m`1)@2 x)p(m~1)@2

axp(m~1)@2
!x

with a N (F*
q
)p(m~1)@2~1 has genus

g (C
m
)"M(p(m`1)@2#p(m~1)@2!2) (q!2)!2p#4N/2

and has the following number of rational points:

dC
m
(F

q
)"G

(q!1)2 if !aN (F*
q
)p~1,

(q!1)2#2(p!1) if !a3 (F*
q
)p~1.

Proof. The proof is similar to that of Proposition (2.1) with the following
modi"cations. In this case gcd(R

1
, R

2
) has degree 1 which means that

d"d (¸
1
W¸

2
)"1 and over each y3F*

q
we have pm!d"pm!1 rational

points on C
m
. The branch points which possibly contribute rational points on

C
m

are 0 and R. Over these points there are p!1 rami"cation points on C
m

which are rational points if and only if !a is a (p!1)th power in F
q
. This

gives the formula for the number of rational points. j
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(2.4) EXAMPLES. For p odd we take a"!1 since !1 is not a (p(m~1)@2

!1)th power in F*
q
. Over F

27
the curve C

m
has genus g (C

m
)"124 and dC

m
(F

27
)"680 while the OesterleH upper bound is 901. Over F

35 we "nd g(C
m
)"

4096 and dC
m
(F

35)"58,568. The OesterleH upper bound is here 86,441.
For q"pm with m even the splitting

xq!x"(xq!axJq)#(axJq
!x),

where a3F*
q

is such that aN (F*
q
)Jq~1 yields very good curves.

(2.5) PROPOSITION. If q"pm with m even then the curve C
m

de,ned over
F
q/pm by the equation

yq~1"!

xq!axJq

axJq
!x

with a3F*
q
, a N (F*

q
)Jq~1

has genus g(C
m
)"(Jq!1)(q!2)!Jq#2 and dC

m
(F

q
)"(q!1)2.

Proof. In this situation we have s"t"m/2 and the condition aJq`1O1
implies ¸

1
W¸

2
"M0N, so d"1. The formula for g (C

m
) follows from Proposi-

tion (1.3). Over each y3F*
q

there are pm!d rational points on C
m
. The only

branch points which possibly give rise to rational points on C
m

are 0 and R.
The rami"cation points over 0 (resp. R) on C

m
are rational i! the equation

wJq~1"!a (resp. wJq~1"(!1/a)) is solvable in F
q
. Since aJq`1O1 these

equations have no solutions in F
q

and consequently we have dC
m
(F

q
)"

(q!1)2. j

Note that in this case

dC
m
(F

q
)/g(C

m
)'Jq#1.

(2.6) EXAMPLES. For q"9 we "nd g (C
m
)"13 and dC

m
(F

9
)"64. This is

very close to the OesterleH upper bound 66 and might well be optimal (i.e.,
equal to the actual maximum number N

q
(g), cf. [2]). For q"16 we "nd

g(C
m
)"40, dC

m
(F

16
)"225; the OesterleH upper bound is 244. For q"64 we

"nd g (C
m
)"428 and dC

m
(F

64
)"3969 with OesterleH upper bound 4786. For

q"81 we "nd g(C
m
)"625 and dC

m
(F

81
)"6400, still reasonable compared

with the OesterleH upper bound 7824.

3. SUBSPACES OF CODIMENSION 1

We take as a subspace of F
q
the (m!1)-dimensional subspace

¸"Mx3F
q
: TrF

q@Fp
(x)"0N, where TrF

q@Fp
(x)"xpm~1

#2#xp#x,
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and put R(x)"+m~1
i/0

xpi. Note that by a transformation x>ax on F
q
with

a3F*
q

we can transform any codimension 1 space into this subspace ¸. We
split the polynomial R as R

1
#R

2
with R

1
"+m~1

i/s
xpi and R

2
"+s~1

i/0
xpi.

The corresponding curve C
m

over F
q
is de"ned by

yq~1"!(xpm~1~s
#2#x)ps/(xps~1

#2#x). (7)

Applying Proposition (1.3) to this situation gives the following result.

(3.1) PROPOSITION. For m53 and 0(s(m!1 such that gcd(m, s)"1
the curve C

m
given by (7) has genus

g (C
m
)"M(pm~1~s#ps~1!2) (q!2)!2p#4N/2

and

dC
m
(F

q
)"G

(pm~1!1) (q!1) if pm odd and p D/ s (m!s),

(pm~1!1) (q!1)#(p!1) if pm odd and p D s(m!s),

(pm~1!1) (q!1)#2(p!1) if pm even and p D/ s (m!s),

(pm~1!1) (q!1)#3(p!1) if pm even and p D s(m!s).

Proof. In the notation used in Section 1 we "nd

¸
1
"Mx3F

pm~s : TrF
pm~s@Fp

(x)"0N
and

¸
2
"Mx3F

ps : TrF
ps@Fp

(x)"0N.

Then ¸
1
W¸

2
LF

pm~sWF
ps"F

p'#$ (m,s)"F
p
. Combining gcd(m, s)"1 with the

condition on the traces gives ¸
1
W¸

2
"M0N, hence d"1. If p D/ s(m!s)

the rami"cation points over ¸
1
!M0N and ¸

2
!M0N are not rational. On the

other hand, if p Ds(m!s) then F*
q
W(¸

1
X¸

2
)"F*

p
and the rami"cation points

over F*
p

are rational. Over the branch point 0 (resp. R) which has multiplicity
ps!1 (resp. pm~1!ps~1) there lie p!1 rami"cation points on C

m
. These

are rational if and only if !1 is a (p!1)th power in F
q
which holds if and

only if pm is even. The formulas now follow from Proposition (1.3). j

(3.2) EXAMPLES. Take F
27

; then ¸"Mx3F
27

: TrF
27@F3

(x)"0N is given by
R(x)"x9#x3#x and we can consider the curve

C : y26"!(x8#x2).

It follows from Proposition (3.1) that g (C)"24 and dC(F
27

)"208 which
improves [2].



KUMMER COVERS WITH MANY POINTS 335
For F
32

with (7) of the form y31"(x4#x2#x)4/(x2#x) we obtain
according to Proposition (3.1) a curve C of genus 60 and dC(F

32
)"468. The

OesterleH upper bound is 542.

(3.3) EXAMPLE. Finally we consider an example where gcd(m, s)O1.
Take F

64
and

f (x)"
x32#x16

x8#x4#x2#x
"

(x2#x)15

(x4#x#1)(x2#x#1)
.

For the curve C given by y63"f (x) Proposition (1.2) implies that 2g!2"
7]63!3]3!6]1, hence g (C)"214. Each of the branch points 0, 1, and
R induces three rational rami"cation points on C and the zeros of x2#

x#1 induce one rami"cation point each, while the rami"cation points from
the zeros of x4#x#1 are not rational. The number of rational points on
C is thus dC(F

64
)"(32!2)]63#11"1901. The OesterleH upper bound is

2553.

(3.4) Remark. For even m and ¸"Mx3F
q/pm : TrF

pm@Fp
(x)"0N the

splitting

m~1
+
i/0

xpi
"R

1
#R

2
"

m~1
+

i/m@2

xpi
#

(m@2)~1
+
i/0

xpi

does not satisfy condition (i). The corresponding equation yq~1"!R
1
/R

2
"!RJq~1

2
leads to the curve

C : yJq`1"aR
2
"a(xp(m@2)~1#xp(m@2)~2#2#x), (8)

where a3F*
q

is such that aJq
#a"0.

To determine g (C) and dC(F
q
) we consider the F

p
-linear map / on

¸ de"ned by / (x)"aR
2
(x). The kernel of / is

ker(/)"Mx3F
Jq

: Tr
FJq @Fp

(x)"0N and / (¸)"F
Jq

.

For y3F*
q

we have yJq`13F*
Jq

, so over each y3F*
q

there are dker(/)"

Jq/p rational points on C. The set of branch points is ker(/)XR and each
branch point induces one rational point on C. Hence

dC(F
q
)"(q!1)Jq/p#Jq/p#1"(qJq/p)#1.

From Proposition (1.2) we "nd g (C)"(q!pJq)/2p. We thus get explicit
maximal curves:
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(3.5) PROPOSITION. ¹he curve C over F
q

given by (8) with g(C)"(q!p
Jq)/2p and dC(F

q
)"(qJq/p)#1 is a maximal curve; i.e., it attains the

Hasse-=eil upper bound.

By the substitution x>zp!z in (8) we obtain the equation for the

Hermitian curve yJq`1"a (zJq
!z). So the curve C "guring in Proposition

(3.5) is a quotient of the Hermitian curve.

4. VARIATIONS

To "nd curves with many points with this method it is not necessary to
depart from a linearized polynomial. This is illustrated by the following
example, where we take a curve of the form

yq~1"xf (x)p

with f (x)3F
q
[x].

(4.1) EXAMPLE. Take F
16

and consider the irreducible complete non-
singular curve C given by the a$ne equation

y15"x(x2#x#1)2.

Remark that x (x2#x#1)2"x5#x3#x satis"es Conditions (1.1).
According to (1) the curve C has genus g(C)"12 and the number of points is
dC(F

16
)"15]5#8"83, where the branch point R contributes 5 ra-

tional points and the branch points in F
4
!M1N each contribute 1 rational

point. This example provides a new entry for the tables [2], where the interval
[68}97] is given.

An advantage of our method is that we can also "nd good curves C such
that only a few "bres over P1(F

q
) contribute to the rational points on C, but

these then do so substantially, as in the preceding example. We can use this
for instance to construct Artin-Schreier covers of C given by

zp!z"h (x),

where in order to obtain good curves one has to impose the condition
Tr(h (x))"0 for a few values x only.

(4.2) EXAMPLE. Take the "eld F
32

and consider the curve C de"ned by

y31"x5#x3.
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The polynomial x5#x3#1 is irreducible over F
2
, so it has "ve zeros in F

32
.

There are three rami"cation points, P
0
, P

1
, and P

=
, lying over 0, 1, and R.

g (C)"15, dC(F
32

)"158,

which comes up to the best value known for (q, g)"(32, 15) in [2].
We immediately see that the zeros x3F

32
of x5#x3#1 satisfy Tr(x)"0.

The divisor of x is

(x)"31P
0
!31P

=
.

The Artin-Schreier cover CI of C given by

z2#z"x

has 2 rational points over each of the 155 points (x, y) of C(F
32

) with y3F*
32

.
We thus "nd

dCI (F
32

)"2]155#1#2"313,

and g (CI )"45. (See [3] for formulas for the genus.) This improves [2], where
the interval is [302}428].

As a variation on this theme we take F
16

with the curve C given by

y15"x4#x3.

This has genus g(C)"6 with 65 rational points. The Artin-Schreier cover
CI of C de"ned by z2#z"1/x yields a curve of genus g (CI )"20 with
dCI (F

16
)"127.

If one has a curve C with many points then often a curve C@ obtained as the
image under a F

q
-morphism CPC@ is also a good curve because the set of

eigenvalues of Frobenius for C@ is a subset of those for C. In the cases dealt
with in the preceding sections where the curve is of the form

yq~1"f (xp~1),

we can consider the curves ys"f (xt) for any divisor s of q!1 and t of p!1.

(4.3) EXAMPLE. From the curve C over F
27

given in Example (2.2) we
obtain the curve C@

!y13"x24#x22#2#x2 with g (C@)"48 and dC@(F
27

)"316,
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where the tables give [325}402], and

!y26"x12#x11#2#x with g (C@)"49 and dC@(F
27

)"314,

a new entry in the tables.
Of course, the methods can be varied in several ways. For example, one can

replace yq~1 by yt for t a divisor of q!1 and take a function f which assumes
for many x a tth power in F

q
. We now give an example of this.

(4.4) EXAMPLE. Take F
81

and consider the curve given by the equation

y10"x2#x.

For y3F
81

we have y103F
9
, so the equation x2#x"y10 always has

solutions x3F
81

. The curve C has genus g(C)"4 and dC(F
81

)"154.
Consider the double cover CI of C given by

z2"x2#x#2.

Over each (x, y)3C(F
81

) with y3F*
81

the curve CI has rational points since
x2#x#23F

9
. A computation of the genus and the number of points yields

g (CI )"17, dCI (F
81

)"288.

This is a new entry for the tables [2].
We can also apply the methods to a base curve di!erent from P1 as the

following examples show.

(4.5) EXAMPLE. Take F
8

and consider the curve C of genus 1 de"ned by

y2#y"x#
1

x
#1.

It has 14 rational points, namely the two rami"cation points P
0

and P
=
, and

six pairs of points Pf , P@f , one over each 7th root fO1 of 1. Consider now the
cover CI of C de"ned by

z7"x (x6#1)/(x#1);

cf. Proposition (2.1). It has branch points P
0

and P
=

and P
x
, P@

x
for x a third

root of unity. Then the genus g (CI ) satis"es 2g(CI )!2"7]0#8]6"48,
hence g (CI )"25. The rational points come from 12 "bres of order 7 over
Pf and P@f , and from the two rami"cation points over P

0
and P

=
, giving

dCI (F
8
)"86, which improves the entry [84}97] of the tables.
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(4.6) EXAMPLE. Take F
8

and consider the Klein curve C of genus 3 de-
"ned by y3#x3y#x"0. It has 24 rational points. Consider then the cover
CI given by z7"x (x6#1)/(x#1). The branch points on C are the points
lying over x"0, x"a third root of unity and x"R. We "nd g (CI )"51 and
dCI (F

8
)"132. The OesterleH upper bound is 173.

(4.7) EXAMPLE. Take F
9
"F

3
[i] with i2"!1 and consider the curve

C of genus 1 de"ned by

y2"x3#x.

It has 16 rational points over F
9
, the 4 rami"cation points P

0
, P

=
, P

i
and P

~i
,

and 6 pairs P
x
, P@

x
for x3F

9
!M0,$iN. Take the function f"x/y with divisor

( f )"P
0
#P

=
!P

i
!P

~i
and consider the cover CI of C de"ned by

z4"f 3#f.

Observe that for u3F*
9

the expression u3#u is a 4th power in F*
9
. One has

( f ( f 2#1))"P
0
#P

=
#2P

1
#2P@

1
!3P

i
!3P

~i
. The curve CI has genus

g(CI )"9 and has 10]4#4#4"48 rational points. Here the points P
0
, P

=
,

P
i
, P

~i
are branch points with total rami"cation, while the branch points

P
1

and P@
1

each contribute 2 rational points. This comes up to the best known
curve and is very close to the OesterleH upper bound 51.

(4.8) EXAMPLE. Take F
9
"F

3
[i] with i2"!1 and consider the curve

C of genus 2 de"ned by

z2"x(x4#x2#2).

It has 18 rational points over F
9
. We denote them by P

0
, P

=
and by P

x
, P@

x
in

the "bre over x for each x3F*
9
. According to Proposition (2.5) the Kummer

cover D of P1 de"ned by

y8"!

(x9!ax3)

(ax3!x)
"!

x2(x2!a3)3

ax2!1
with a such that a2#a#2"0

(9)

has "bres consisting of 8 rational points over each x3F*
9
. We consider the

curve CI which is the cover of C de"ned by (9). The branch points on C are the
four points P

0
, P

=
, Pm, P@m with m2"a3 and the four points Pg , P@g with g@"1/a.

The divisor of the function f given by the right hand side of (9) is

( f )"4P
0
#6Pm#6P

~m!Pg!P@g!P
~g!P@

~g!12P
=

.
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By Hurwitz-Zeuthen the genus is 33. Over each x3F*
9

we "nd 16 rational
points on CI giving dCI (F

9
)"128, a signi"cant improvement of the entry

[109}133] in the tables [2].
If we take here instead of the base curve C the curve C@ of genus 2 with 18

rational points de"ned by

z2"x (x4#x3#x2#x#1)

then (9) de"nes a Kummer cover CI @ of C@ of genus 41 with 128 rational points.
By employing the methods in a systematic way we expect more improve-

ments and supplements to the tables in [2].

5. SUMMARY

For a summary of the new results from our examples for tables of curves
with many points, see Table 1.
TABLE 1

q g(C) New entry Old entry

Sp"2T
8 25 [86}97] [84}97]
8 51 [132}173]

16 12 [83}97] [68}97]
16 20 [127}140] [121}140]
16 40 [225}244] [197}244]
16 49 [213}286]
32 45 [313}428] [304}428]
32 60 [468}542]
32 135 [933}1098]
64 214 [1901}2553]
64 428 [3969}4786]

Sp"3T
9 13 [64}66] [60}66]
9 33 [128}133] [109}133]
9 41 [128}158] [119}158]

27 24 [208}235] [190}235]
27 49 [314}409]
27 98 [624}745]
27 124 [680}901]
81 17 [288}387]
81 625 [6400}7824]

243 3854 [58080}81835]
243 4096 [58568}86441]
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