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1. INTRODUCTION 

In this paper, we study a zero-sum discrete-time nonstationary stochastic 
game model with dependent-on-time metric state spaces, separable metric 
action spaces of players, and semicontinuous admissible action mappings. 
The transition law in our model is a sequence of weakly continuous transi- 
tion probabilities associating with every n-stage history of the game a 
probability distribution of the (n + 1)th state, and the payoff is a bounded- 
below lower semicontinuous function defined on the space of all histories of 
the game. We prove, under certain additional compactness conditions, that 
such a game has a value, the minimizer has an optimal strategy while, for 
each E >O, the maximizer has an &-optimal strategy. We also discuss a 
question of approximation of an infinite horizon game by means of some 
finite horizon subgames. 

The game introduced here constitutes a natural generalization of the 
nonstationary stochastic game model developed in an earlier paper of the 
author [ 163 where the state and action spaces are assumed to be countable 
sets. It also includes the so-called continuous Markov games studied 
among others by Maitra and Parthasarathy [13, 141, Parthasarathy [20], 
Kumar and Shiau [12], and Rieder [23]. For further bibliographic notes 
and some comments on the model and the results obtained we refer the 
reader to Sections 3 and 4. 

The organization of this paper is as follows. Section 2 gives some basic 
facts concerning transition probabilities and multifunctions. The stochastic 
game model is described in Section 3 and the main results are stated in Sec- 
tion 4. In Section 5 we establish a minimax selection theorem which is 
crucial in our developement. Finally, Section 6 presents the proofs of the 
main results. 
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2. PRELIMINARIES 

Let N denote the set of positive integers, R the set of real numbers, and 
R+ the set of real numbers augmented by the point + co. Let X be a 
metric space. We write M(X) for the set of all bounded-below Bore1 
measurable functions w: X -+ R + , and C(X) for the set of all lower 
semicontinuous functions in M(X). By C(X) we denote the set of all 
bounded continuous functions in M(X). Let BX be the o-algebra of Bore1 
subsets of X and let P, be the space of all probability measures on gX 
endowed with the weak topology (cf. [19] or [3, Chap. 71). For any XEX, 
we denote by pX the probability measure on BX which assigns unit point 
mass to x, i.e., pX (B) = 1 if and only if x E B. It is known that the mapping 
6: X+ P, defined by 6(x) =pX is a homeomorphism [3, p. 1301. Let H and 
X be metric spaces. By a Bore1 measurable transition probability from H to 
X we mean a function q: H + PX such that, for each BE gX, q(B1 . ) is a 
Bore1 measurable function on H. (Here q(B 1 . ) means q( . )(B).) It is 
known that every Bore1 measurable function q from H to P, (endowed 
with the Bore1 a-algebra) is a transition probability, and if X is also 
separable, then q: H + P, is a transition probability if and only if q is Bore1 
measurable (cf. [21, Lemma 6.1; 5, Theorem 2.1; 3, Proposition 7.251). If q 
is continuous (with respect to the weak topology in Px), then q is said to 
be a continuous transition probability from H to X. 

Let A: H + BX be a (set-valued) mapping. For any S c X, we define 

A-‘(S)= {h~H:A(h)nS#0}. 

If A-‘(S) is closed (open) in H for each closed (open) subset S of X, then 
A is said to be upper (lower) semicontinuous. A mapping A: H + $IX is 
called continuous if it is both lower and upper semicontinuous. In the 
sequel we shall need the following facts. 

LEMMA 2.1. Let A be a lower semicontinuous mapping from a metric 
space H to the nonempty complete subsets of a separable metric space X. 
Then there exists a sequence of Bore1 measurable functions f,: H + PX, 
n E N, such that the set {f,,(h): n E N} is dense in PaChJ for each h E H. 

Proof First, we note that A is weakly measurable in the sense of Him- 
melberg [S]. Using [8, Theorem 5.61, we infer that there exists a sequence 
{a,} of Bore1 measurable functions a,,, : H + X such that {a,(h)} is dense 
in A(h) for each h E H. Let Q be the set of all sequences (A,, A,,...) of non- 
negative rational numbers such that all but finitely many J,‘s are 0 and 
Cn 1, = 1. Clearly, Q may be represented as a denumerable sequence, say 
{in}. For each n”=(n;,n;,...)~Q, let f,: H-P, be defined by fn(h)= 
cm CPa,(h) 3 hrz H. By the Bore1 measurability of a,‘s and [3, 
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Corollary 7.21.11, each f, is Bore1 measurable. From [19, Theorem 6.33, 
we now conclude that, for each h E H, the set {f,(h): n E N} is dense in 
P A(h). 

LEMMA 2.2. [ll, Lemma 3.11. Let B be an upper semicontinuous mapp- 
ing from a metric space H to the nonempty compact subset of a separable 
metric space Y. Then there exists a Bore1 measurable function g: H -+ P y 
such that g(h) E Pet,,, for each h E H. 

Proof By [6, Theorem 11, there exists a Bore1 measurable selection of 
B, that is, a Bore1 measurable function 6: H -+ Y such that b(h) E B(h) for 
each h E H. Defining g: H + P, by g(h) =pbchj and using [3, 
Corollary 7.21.11, we complete the proof. 

3. THE STOCHASTIC GAME MODEL 

A zero-sum discrete-time nonstationary stochastic game G which we con- 
sider is defined by a sequence of objects {S,, X,,, Y,, A,, , B,, q,,, u; n E N} 
having the following meaning: 

(i) S, is a metric space, endowed with the Bore1 a-algebra gBsn, the 
state space at stage n. 

(ii) X, and Y, are separable metric spaces, endowed with their Bore1 
o-algebras ax, and W,, the action spaces of players I and II, respectively, 
at stage n. 

Let H,=S,, H, = S, x Xi x Y, x ... x S,, and H, = S1 x X, x Y1 x 
s, x x, x Yz x . . . . Then H, is the set of histories up to stage n E N, and H, 
is the set of all histories of the game. We assume that the sets H, and H, 
are given the product topologies and the product o-algebras. 

(iii) A, (B,) is a mapping from H, to the nonempty complete (com- 
pact) subsets of X,, (YJ. We assume that A, (B,) is lower (upper) semicon- 
tinuous for each n EN. The set A,(h,) (B,(h,)) represents the set of 
admissible actions for player I (II) under the history h, E H,. 

(iv) qn is a continuous function from H, x X, x Y,, endowed with the 
product topology to P,+, equipped with the weak topology. In other 
words, q,, is a (weakly) continuous transition probability from H, x X,, x Y, 
to %I+,. The sequence { qn} constitutes the transition law of the game. For 
given a history h, and actions x, and y, chosen by the players at stage n, 
qn ( . 1 h,, x,, y,) is the conditional distribution of the state at stage n + 1. 

(v) u E C(H,) is the payoff function for player I. 
The game is played as follows. The players I and II observe the initial 

state s1 E S1 and choose simultaneously actions xi E A, (si) and y, E B, (s,), 
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respectively. Then the result (xi, yi) is announced to both of them and the 
game moves to a new state s2 E S2 according to the probability distribution 
q, ( . ) si, xi, yi), upon which I chooses x2 E A2(h2) while II chooses 
Y2 E B2@2)9 @2 = ( s,, x,, y,, sZ)), and so on. The result of this infinite 
sequence of moves is a point h = (s,, xi, yi, s2, x2, y2 ,...) E H, and II pays 
I the amount u(h). 

Let p$ (n EN) be the set of all Bore1 measurable transition probabilities 
f”: H, + P, such that fn (h,) E PAnCh.) for all h, E H,,. The set FH is called 
the set offeasible controls of player I at stage n. Similarly, we define the set 
$n offeasible controls of player II at stage n. Under our assumption (iii) we 
know from Lemmas 2.1 and 2.2 that 9” and ?& are nonempty for every 
HEN. 

A (Bore1 measurable) strategy for player I (II) is a sequence f= {fn} 
(g = {g,}) where fn E Fn (g, E gn?,) for each n E N. We denote by 9 (3) the 
set of all strategies for player I (II). 

Let f = ( fn} E fl and g = (g,} E CC?. For each n E N, we define a mapping 
Qf,,: WHn+ 1) + WHJ by 

where WEM(H,,+,) and h, EH,. 
According to the theorem of Ionescu Tulcea (cf. [ 15, p. 1621 or [3, 

Proposition 7.28]), for each pair f = (f,}, g = {g,) of strategies there exists 
a unique conditional probability Pf,(. 1 sl) on X, x Y, x S2 x X, x Y, x ... , 
endowed with the product o-algebra, given the initial state s1 such that, for 
every w  E M(H, + 1), we have 

s w(~~,h)Pfg(dhls,)=(Q,,;..Qf,,w)(~~), s, E s1. (3.1) 

Thus, each pair (f, g) E 9 x 3 defines an expected payoff to player I in 
the game G at an initial state si ES, to be 

From (v) and the Ionescu Tulcea theorem [ 151, it follows that E(u,f, g) is 
a bounded below Bore1 measurable function of the initial state. 

In the sequel we shall make use of the following result of Kertz and 
Schal (cf. [26, p. 209; 27, p. 3611). 
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LEMMA 3.1. A function u: H, + R+ belongs to C(H,) if and only if 
there exist functions u, E C(H,), n E N, such that u, < u, + 1 for each n E N, 

and u = lim, u,. 

Of course, it is assumed above that every function u, on H, is also a 
function on H, depending on the first 3n - 2 coordinates only. 

Now, from Lemma 3.1, the monotone convergence theorem and (3.1), 
we infer that 

E(u,~, g) = lim E(u, + 1 ,f, g) = lim Qfig, . . . Q/rig, un + 1) (3.2) n n 

foreachf={f,,}EPandg={g,}E9. 
Define, for each s1 E Sr, 

and 

Then L(G) (U(G)) is called the lower (upper) value function of the 
game G. It is alway true that L(G) d U(G). If L(G) = U(G), this common 
function is called the value function of the game G and will be denoted 
by V(G). Suppose that the value function exists and define 
D = {sl E S1: V(G)(s,) -c + cc >. Let F >O be given. 

A strategy f~ 9 is called c-optimal for player I if 

inf E(u,.f g)(sl) + E 2 VG)(sl) for all s1 E D, 
&-cg 

and 

inf &,j: g)(sl) k l/E 
gpg 

foralls, ES,--. 

A strategy g E ‘9 is called optimal for player II if 

SUP E(u,f, dbl) d VG)(s,) for all s1 ES,. 
fs-@ 

The aim of this paper is to prove that the game G has a value function, 
player II has an optimal strategy while player I has an e-optimal strategy 
for each E > 0. 
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To simplify the derivations in the sequel, we employ the following 
operator terminology. For each n E N and w  E M(H, + , ), define the 
functions L, w and U,, w  on H,, by 

and 

WPJMJ = inf sup (&w)(U 
gnE%he=% 

where h, E H,,. If L, w = U, w  for some w  E M(H, + , ), then this common 
function will be denoted by V, w. 

Remark 3.1. The game model introduced here constitutes a 
generalization of the so-called continuous (discounted and positive) Markov 
game model described below. Assume that S, = S, X, = X, and Y,, = Y, for 
each n EN, i.e., the state and action spaces are independent of time. Let 
qn = q for some continuous transition probability q from S x Xx Y to S, 
that is, qn(. I h,, xnr YJ = qt. I s,, x,, Y,) for every h, = (sl, xl, Y, ,..., s,) E 
H,,, x, EX,,, Y, E Y,,, n E N. Such a transition law is called stationary. 
Assume further that the payoff is accumulated over stages with a discount 
factor /3~ [0, 11, so that for each history h = (sl, x1, y, ,.., )E H,, 

u(h) = f P”- 14%, xn, Ynh 
n=l 

where I is a bounded continuous and nonnegative (payoff per stage) 
function on S x Xx Y. A Markov game is called discounted (positive) when 
/I-Cl (j?=l). 

The theory of zero-sum Markov games started with the fundamental 
paper of Shapley [30], in which the state and action spaces are assumed to 
be finite sets. Maitra and Parthasarathy have first studied Markov games 
with uncountable state and action spaces [ 13, 141. They have assumed that 
S, X and Y are compact metric spaces. For further generalizations of 
Shapley’s work allowing the state space in a Markov game to be a (stan- 
dard) Bore1 (or even a metric) space we refer the reader to [4, 12, 17, 20, 
231 and the references therein. 

Remark 3.2. The game developed here is inspired by a nonstationary 
stochastic control system introduced by Hinderer [lo] and subsequently 
studied by Schal [25-281 and Kertz and Nachman [ll]. Especially, this 
paper owes much to Schal’s work [26,27]. 

Remark 3.3. A special case of the game introduced here has already 
been studied in [ 161 under the assumption that the state and action spaces 
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are countable sets. Some different nonstationary stochastic games have 
been studied by Sengupta [29] and Schal [28]. In the model of Sengupta 
[29] the state space is a compact metric space, the action spaces are finite, 
the payoff is lower semicontinuous on H,, but the transition law is 
stationary. SchIl has considered in [28] a game with Bore1 state and 
action spaces in which, at every stage n E N, player I (similarly, player II) 
knows the sequence of states (s, , So,..., s,) occurring up to this stage and his 
own previous choices only. 

Remark 3.4. In a subsequent paper [ 181, we investigate an alternative 
framework for zero-sum discrete-time nonstationary stochastic games 
involving universally mea,surable strategies. We assume there that S,, X,, 
and Y, are Bore1 spaces and the payoff u depends semicontinuously on the 
actions of one player only. It is also assumed that each transition 
probability qn is continuous in the actions of one player only, but with 
respect to the strong topology in Ps”+, . 

4. MAIN RESULTS 

In the first place we shall consider the so-called finite horizon games in 
which the payoffs are decided in a finite number of stages. 

Let urn+1 E C(H, + i) be a bounded function. For each 12 6 m, we denote 
by G; a game which has the payoff function u = u,+ , and proceeds from 
an arbitrary history h, E H,, till stage m. (The games G;, m > n, will play 
the crucial role in the analysis of the infinite horizon game G, cf. Sect. 6.) A 
strategy for player I (II) in such a game is simply a sequencef= (f,,...,f,) 
(g = kY, &J)T where fk E & (gk E 4), k = n ,..., m. Let f and g be 
arbitrary strategies for players I and II, respectively, in the game G;. Then 
the expected payoff to player I corresponding to f and g at a partial history 
h, E H, is given by 

E(u ,+,,f,g)(h,)=(Q,,;..Q,,,Um+,)(h,). 

Of course, the value functions L(G;), U(G;), V(G;) and the optimal 
strategies of both players in the game G’: are defined just as in the game G. 

We are now prepared to state the main results of this paper. 

THEOREM 4.1. The game G; has a value function V(G;), player II has an 
optimal strategy, and for each E > 0, player I has an E-optimal strategy. 
Moreouer, V( G,“) E C( H,,) and 

V(G;)= I/;.. I/mum+,. 
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Let (urn) be the sequence of functions from Lemma 3.1. For each m EN, 
let G” = G’; be an m-stage game corresponding to the payoff u, + 1. 

We now turn to the game G from Section 3. We have the following 
result. 

THEOREM 4.2. The game G has a value function V(G), player II has an 
optimal strategy, and for each E > 0, player I has an E-optimal strategy. 
Moreover, V(G) E C( S, ) and 

V(G) = lim V( G”). 
m 

COROLLARY 4.1. Assume (i), (ii), and (iv). Zf in addition the admissible 
action mappings A,, and B, (n EN) are continuous and compact-valued while 
the payoff u is bounded and continuous on H,, then player I has an optimal 
strategy too. 

Remark 4.1. Suppose u is lower semicontinuous on H, . Then player I 
need not have optimal strategies even when his action spaces are finite. 
Often such a situation takes place in the positive Markov games [12, 
Example 11. Therefore we do not make any compactness assumptions in 
Theorem 4.2 regarding the sets of admissible actions for player I. 

Remark 4.2. Theorem 4.1 generalizes [ 16, Proposition 2.11 while 
Theorem 4.2 extends [ 16, Theorem 4.11 where the state and action spaces 
are assumed to be countable sets. 

5. A MINIMAX SELECTION THEOREM 

In this section we establish a minimax selection theorem which is crucial 
in our development. A related result was given by Rieder 123, 
Theorem 4.11 in the context of Markov games. 

THEOREM~.~. Assume (i)-(iv). Z~W,+~ EC(H,,+~), then 

L”w”+l=unwn+l= VnWn+I, and V,,W,+~ EC(H,). 

Moreover, there exists gn E 4 such that 

vnwn+,= SUP !2,&.Wn+L, (5.1) 
f”Sd 

and if w, + 1 E C(H,, + 1) is bounded, th en , f or each E > 0, there exists f,, E 3$ 
such that 

vnw,+ 1 < inf Q~,~,w,+~+E. (5.2) 
b-n E % 

Before we prove the above result, let us state some auxiliary lemmas. 
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LEMMA 5.1. Let H and T be metric spaces and let w E C(H x T). Then 
there exists a sequence of functions w, E C(H x T), n E N, such that each w, 
is continuous in h E H, unzformly in t E T, and w, 7 w as n + 00. 

Proof Denote by d, and d2 the metrics in H and T, respectively. Define 

cp,(k t)= ( ,p; T CW(G b) + 44 (a, h) + 4(b, t))l, (1, E x 

and 

wn(h, t)=min(cp,W, t), n}, n~N,(h, t)EHxT. 

By the proof of the theorem of Baire [ 1, p. 3903, (P* 7 w  as n + co. Hence 
w, /* w  as n -+ co. Note that w, E C(H x T) for each n E N. Moreover, for all 
h,,h,EH, tET,andnEN,wehave 

lw,(h, t)-w,(h2, t)l %ndl(h,, M, 

which implies that each w, is continuous in h E H, uniformly in t E T. 

LEMMA 5.2. Let H and T be metric spaces and let w E C(H x T). Assume 
that w is continuous in h E H, untformly in t E T, and define the function 
kHxP,+R by 

4h, P) = j w(h, t)p(dt), (h,p)EHxPT. 

Then GtC(HxPT). 

Proof The proof is straightforward. 
The following lemma is an extension of [ 3, Proposition 7.311. 

LEMMA 5.3. Let H, T be metric spaces, x E C(H x T), and let q: H + P, 
be a continuous transition probability from H to T. Define 1: H + R + by 

W) = j w(k t) q(dt I h), hEH. (5.3) 

Then I E C(H). 

Proof Let {wn} be the sequence from Lemma 5.1. Define A, by (5.3) 
where w  is replaced by w,. It is easy to deduce from Lemma 5.2 that 
1, E C(H) for each n E N. By the monotone convergence theorem, 
A= supn I,, which implies that A E C(H). 

The following lemma extends [25, Lemma 3.41. 
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LEMMA 5.4. Let H be a metric space, X, Y separable metric spaces, and 
let WEC(HXXX Y). Define G:HxP,xP,+R+ by 

%h, P, r) = JJ WV, x, y) p(dx) r(dy), (h,p,r)EHxP,xP,. (5.4) 

Then 6 E C(H x PX x Py). 

Proof: Put T= Xx Y and take the sequence {w,} from Lemma 5.1. Let 
G,, be defined by (5.4) where w  is replaced by w,. By [3, Lemma 7.121 and 
Lemma 5.2, G, E C( H x P, x Py) for each n E N. From the monotone con- 
vergence theorem, we infer that tit = sup, 4,. Thus, ti, E C(H x P, x P y). 

LEMMA 5.5. Let w,, 1 E C(H,,+ 1), nE N. Assume (iv) and define 
K,,:H,xPxnxPy”+R+ by 

(5.5) 

(h,,p,r)EH,,xPxnxPy,. Then K,,EC(H,XP~~XP~,). 

ProojI This follows directly from Lemmas 5.3 and 5.4. 
Now we are ready to prove the theorem. 

Proof of Theorem 5.1. The proof utilizes some arguments given by 
Rieder in the proof of Theorem 4.1 in [23]. We recall that the mapping A, 
(B,) is lower semicontinuous (upper semicontinuous and compact-valued). 
By [3, Proposition 7.221, for each h, E H,, Pe,ch,j is a compact subset of 
P,. From [9, Theorem 31, we know that the mapping h, + Pe,ch,j is upper 
semicontinuous too. 

Note that 

(UnWn+l )(h,) = inf sup K (h,, P, r) 
‘&b,(h,) P E pA,(h,, 

= inf SUP &(hn~~x~r)~ (5.6) 
‘Eb,(h,) X E &(h,) 

and 

(LWn+l Mn) = sup inf K(h,,p, r), 
P E PA,(h,) ‘@B,(h,) 

(5.7) 

where h,, E H,, and K,, is the function (5.5). 
From (5.6), (5.7), Lemma 5.5, and the Fan minimax theorem 

[7, Theorem 21, we get L, w, + 1 = U,, w, + 1 = V, w, + 1. The fact that 
VnW,+I EC(H,,) follows now from (5.6), Lemma 5.5 and the theorems of 
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Berge [2, pp. 115, 1161 while the existence of g, E $ satisfying (5.1) follows 
from [22, Theorem 4.91. It remains to prove that there exists fn E Fn 
satisfying (5.2). By Lemma 2.1, there exists a sequence {f;} c @jj such that, 
for each h, E H,, the set {f;(h,): m E N} is dense in Pa,ch,j. By Lemma 5.5 
and the theorem of Berge [2, p. 1151, the function M,: H, x Pxn + R 
defined by 

is lower semicontinuous in p, for each h, E H,. Consequently, the equality 
(5.7) can be rewritten as 

(Vnwn+ 1 wbJ= (Lw,+,ml)= SUP inf ~,hf::(hJ), (5.8) 
m E N ‘&PB,(h,) 

where h, E H,,. 
Let E > 0 be given. Let (E,} be a sequence of subsets of H, defined by 

El= h, EH,: (Vnwn+l )(h”) 6 w#bd-A(hn)) + 4, 

and (5.9) 

m-1 

Em= {h, EH,: (Vnw,,, )(h,)~M,(h,,f~(h,))+~)- 0 &, form>2 

k=l 

Clearly, Ek n E,,, = @ for k # m, and by (5.8), U,,,, N E,,, = H,. Moreover, 
E,,,ESY~~ for each mEN. Let K={~,EN:E,,#@}. Define Dk=E,,,k, 
where mk E K. Clearly, {Dk} is a measurable partition of H,. Now, let us 
define f,, E Yn by 

f&,)=f~(h,) when/z,, EDk. 

Then from (5.9), it follows that f,, satisfies (5.2). Thus, the proof is com- 
plete. 

6. PROOFS OF THE MAIN RESULTS 

The proof of Theorem 4.1 is based on Theorem 5.1 and proceeds along 
similar lines as that of Proposition 2.1 in [ 161, where the state and action 
spaces are countable sets. 

Proof of Theorem 4.1. The proof proceeds by induction. Let E > 0 and 
n E N be given. If m = n, then the result follows immediately from 
Theorem 5.1. Fix m 2 IZ and suppose the result holds for every game G;. 
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Consider an arbitrary game G; + ’ with a bounded payoff U, + 2 E C(H, + 2). 
By Theorem 5.1, 

L m+l%n+Z = Um+,%l+2= V?n+lkn+2~ 

and there exist f, + 1 E &, + 1 and g, + , E 9$, + 1 such that 

Q fm+l&+l 4n+2< Vm+~~,+~dQfm+,sm+,~m+2+~/2, (6.1) 

Let G; be the game with the payoff U, + 1 = V, + 1 U, + 2. Clearly, u, + , is 
bounded and from Theorem 5.1, it follows that u,,,+r EC(H,+,). By our 
induction hypothesis the game G; has a value function V(G;), V(G;) = 
vn... Vm%n+l, player II has an optimal strategy, say g’, and player I has 
an e/2-optimal strategy, say f ‘. Let f= (S’,fm + i) and g = (g’, g,,, + 1). Then 
from our induction hypothesis and (6.1), it follows that 

E(u ,+2,f,~)b W%E(u,+,,f,d+~, 

for every strategies f and g for players I and II, respectively. Hence 

U(Gr+‘)< V(G;)<L(G;+‘)+&. 

This implies that V( Gr + l) exists and V(G;+‘)= V(G;)= 
VII .-. vm Vm+l%l+2. Moreover, g is an optimal strategy for player II in 
G 7” whilefis an s-optimal strategy for player I in G;+ ‘. Thus, the result 
follows. 

Throughout the sequel, let {u,} be the sequence from Lemma 3.1. Let 
G; be the finite horizon game with the payoff function u = u,+ i. By 
Theorem 4.1, every game G,” has a value function V(G;), which belongs to 
C(H,). The sequence { V(G;)} is nondecreasing, for each n E N, because so 
is {u, >. Therefore, for each n E N, we can define 

W, = lim V( G;). 
m 

Clearly, W,, E C(H,), for each n E A? Since V(Gy) = V(Gm) = L(G”) <L(G), 
for every m E N, so we have 

W, = lim L( G”) < L(G). (6.2) 
m 

Now we state some auxiliary lemmas. 

409/117/l-7 
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LEMMA 6.1. For each k < n, we have uk 6 W,, . 

Proof: Let k <n. We have uk(hk) <u,+ 1 (hk, h) for every hk E H,, and 
hEXkx Y~xS~+~XX~+~X Yk+lx ... xS,,+~. Hence uk< V(G;)< W,,, 
which completes the proof. 

LEMMA 6.2. Let X be a set, Y a compact metric space, and 
w,: Xx Y--+R+, n E N, a sequence of functions. Assume that w, < w, + , , and 
w,(x, *)EC(Y)foreachxEXandnEN. Then 

Proof. This follows from the fact that the upper envelope of a family of 
lower semicontinuous functions is a lower semincontinuous function and 
from [24, Proposition 10.11. 

LEMMA 6.3. For each n E N, we have W,, = V,, W,, + I. 

Proof By Theorem 4.1, for every m >/ n + 1, we have V(G;) = 
V,, V(G,y 1). Moreover, we know that V(G:) E C(H,) for every k < m. From 
Lemma 5.5, the compactness of sets PBnch.), h, E H,, the monotone con- 
vergence theorem, and Lemma 6.2, it follows that 

Wn=“,” V(G;)=lk VnV(G;+,)= V,,lim V(G;+,)= VnW,,+,, 
m 

which terminates the proof. 

Proof of Theorem 4.2. We have already noted that W, E C(H,), for 
each n E N. By Theorem 5.1, for each n E N, there exists gn ~9~ such that 

(6.3) 

Let ugn Wn + 1 denote the right-hand side of (6.3). Let f = {fn} E 9 be 
arbitrary and let k E N. Using Lemmas 6.3 and 6.1, we get 

WI = v, ~~.V,Wn+,=ug;..ug. Wn+,>/Qfig;..Qfngn W,,,, 

>/Qf,g,...Qfng.uk+,=Q/lg,...Qf~tuk+l, where n > k. 

This and (3.1) imply 
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where g = {g,,}, f is an arbitrary strategy for player I, and k E N. By (3.2), 
we get 

W, > lim E(u k+l,f,a=E(%f;&% 
k 

for each f e 9. Hence 

W, b sup E(u,f, 2) 3 U(G). 
I-eF 

This and (6.2) imply that the game G has a value function V(G), V(G) = 
lim, V(G”) = WI E C(S,), and g is an optimal strategy for player II. 

Let E > 0 be given. We shall construct an e-optimal strategy for player I. 
Recall that D = (s, E S1: V(G)(s,) < + co}. By Theorem 4.1, for each 
m EN, player I has an a/Z-optimal strategy in the game G”, say 
{J = (f;,..;f ,"). fLet f = (f,} E 9 be fixed. Define f” E 9 by f” = 

m m 1 ,*.., rn, ??I+17 m+23- 1. 

We have already shown that V(G) = lim, V(G”). Thus, in a standard 
way (cf. the proof of Theorem 5.1) we can find a measurable partition {Dk} 
of D (k E K, c N), a measurable partition { Ek > of S, - D (k E Kz c A’), and 
subsets {Cm”> and { Gm’k} of {G”} such that 

V(Gmk)(s,) + ~/2 2 V(G)(s,) Whell S1 E Dk, 

and 

V(Gm’k)(s,) 2 l/c + &/2 whens, EEk. 

Let k E K, and sI E Dk. Then we have 

E + inf E(u,fmk, g)(sl) as+ inf E(urnk+~,p, g)(sl) 
gE($ &Teg 

(6.4) 
2 c/2 + V(G”‘)(s,) 2 v(G)(s, 1. 

Let k E K, and s1 E Ek. Then we have 

-542 + 6;; E(d”“k, g)(s,) 2 E/2 + ;‘E; E(“,rk + I >J”‘“, g)(s,) 

2 V(G”‘k)(s,) 2 l/.s + s/2. 

Hence 

(6.5) 
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Let f be a strategy for player I relying on using fmk(f”“) when the initial 
state s1 belongs to Dk (Ek). By (6.4) and (6.5), such a strategyfis E-optimal 
for player I. Thus, the proof is complete. 
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