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1. INTRODUCTION

In this paper we consider free boundary problems of the form

ut=Lu+ f, x=(x1 , ..., xN) # 0t , t>0, (1.1)

with free boundary conditions

u=0 and
�u
�n

= g on �0t . (1.2)

Here 0t is a bounded domain in RN with (free) boundary �0t , L is a
uniformly elliptic operator on RN with smooth time independent coef-
ficients, and f and g are given smooth functions defined on the whole of
RN. We are interested in the stability properties of equilibria of (1.1), (1.2).
We assume that the pair (0, U) is a smooth equilibrium, namely

LU+ f=0 in 0 with U=0 and
�U
�n

= g on �0, (1.3)

with 0 bounded. We consider (1.1), (1.2) with initial data 00 and u0 close
to 0 and U, in a sense to be made precise below. The only structural
assumption is that g does not vanish on �0, which we think of as a trans-
versality or ``non-degeneracy'' condition. Thus obstacle type problems are
excluded. A simple example with a fixed gradient condition is

2U=1 in 0 with U=0 and
�U
�n

=1 on �0. (1.4)

By a suitable change of coordinates, Problem (1.1), (1.2) is reduced to a
problem in the fixed domain 0_[0, �). Then, using a generalisation of
methods derived in the framework of travelling waves (see [4�6]), we
get that the local behaviour of solutions near the equilibrium (0, U) is
determined by the operator L defined by

Lv=Lv for v # D(L)

={v # ,
p>1

W 2, p (0), Lv # C(0� ), Bv=0 on �0= , (1.5)

where

Bv=
�v
�n

+
1
g \

�g
�n

&
�2U
�n2 + v. (1.6)
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This boundary operator is strongly reminiscent of a ``Hadamard formula'',
see [12], derived in [19] in the context of shape optimisation problems.

More precisely, we set

u=U+8 } {U+w, (1.7)

where 8 measures the local difference between the free boundary �0t and
the fixed boundary �0, and will be defined in Section 2. We emphasise that
the unknown 8 does not appear in the final formulation: Problem (1.1),
(1.2) is rewritten for w as the fully nonlinear problem

wt=Lw+F(w, Dw, D2w) on 0, t>0, (1.8)

with boundary conditions also fully nonlinear,

Bw=G(w, Dw) on �0, (1.9)

where G only depends on w and its tangential derivatives. The price to be
paid for changing the free boundary problem to a fixed boundary problem
are the nonlocal and fully nonlinear terms F and G.

As initial datum for w we take w(x, 0)=w0 (x) for x # 0� , with
w0 # C2+: (0� ) close to 0 in this norm, satisfying the compatibility condition
Bw0=G(w0 , Dw0) on �0. This will correspond to initial data 00 and u0

close (in the new coordinates) to 0 and U in the C2+:-norm, satisfying the
two compatibility conditions

u0=0 and
�u0

�n
= g on �00 . (1.10)

Thus, near an equilibrium, the free boundary problem is equivalent to a
problem on a fixed domain: the solution of (1.1), (1.2) with initial data u0

and 00 can be retrieved from the solution of (1.8), (1.9) with initial datum
w0 . Our first result concerns the local existence.

Theorem 1.1. For every T>0 there are r, \>0 such that Problem
(1.8)�(1.9) has a solution w # C1+:�2, 2+: ([0, T]_0� ) if &w0&C2+:(0� )�\.
Moreover w is the unique solution in B(0, r)/C1+:�2, 2+: ([0, T]_0� ).

The reformulation of (1.1), (1.2) as the fully nonlinear problem (1.8),
(1.9) with initial datum w0 also enables us to perform a stability analysis
of the free boundary problem. The stability question for the original equi-
librium (1.3) is rephrased as the stability of w=0 for Problem (1.8), (1.9).
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Theorem 1.2. If all elements of the spectrum _(L) of the operator L
have negative real part then w=0 is a stable equilibrium of Problem (1.8),
(1.9). If _(L) contains elements with positive real part then w=0 is unstable.

For the description of the stable and unstable manifolds we need the
spectral projections P+ and P& associated to the subsets of _(L) with
positive and negative real parts.

Theorem 1.3. Assume that _(L) contains elements with positive real
part.

(i) There exists a unique local unstable manifold of the form

.: B(0, r0)/P+ (C 2+: (0� )) � (I&P+)(C2+: (0� )),

. Lipschitz continuous, differentiable at 0 with .$(0)=0.

(ii) There exist a unique local stable manifold of the form

�: B(0, r1)/[w0 # P& (C2+: (0� )) : Bw0=G(w0 ( } ))]

� (I&P&)(C2+: (0� )),

� Lipschitz continuous, differentiable at 0 with �$(0)=0.

We note that in the special case that

_(L) & iR=<, (1.11)

Theorem 1.3 is a generalisation of the classical saddle point theorem.
Our investigations are motivated by the mathematical modelling of com-

bustion [16], where typically at the free boundary separating the fresh and
the burnt regions one encounters jump conditions involving the normal
derivative �u��n. In particular we consider the model problem (see the
survey [21])

ut=2u in 0t , u=0 and
�u
�n

=1 on �0t . (1.12)

In the case of bounded domains, (1.12) does not allow nontrivial equilibria.
It is called a focussing problem because typically the domain 0t vanishes
in finite time, a behaviour exhibited by selfsimilar solutions. Transforming
to selfsimilar variables the problem can be rewritten as

ut=Lu=2u& 1
2x } {u+ 1

2u, x # 0t (1.13)
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with the same boundary conditions. The stability analysis of the equi-
librium corresponding to the selfsimilar profile fits in the framework
presented above.

The paper is organised as follows. In Section 2 we describe the general
method to transform (1.1), (1.2) into (1.8), (1.9). In fact, we consider a
slightly more general problem, namely

ut=Lu+ f, x=(x1 , ..., xN) # 0t , t>0, (1.14)

with

u= g1 and
�u
�n

= g2 on �0t . (1.15)

In Section 3 we give the extension of the local existence and saddle point
theorems in [17] to the case of (1.8), (1.9). This is needed because unlike
in [3], where we had a linear boundary condition, we now arrive at the
fully nonlinear boundary condition (1.9) and therefore a significant part of
this paper will deal with adapting the functional analytic framework to this
case. The proofs are based on fixed point arguments and rely on results for
the asymptotic behaviour of linear inhomogeneous problems which we give
in the appendix. In Section 4 we describe the application to the two
examples mentioned above.

2. THE GENERAL PROCEDURE FOR LINEARISATION

We consider Problem (1.1), (1.15) from the introduction, where L is a
uniformly elliptic operator with smooth coefficients, and f, g1 and g2 are
given smooth functions defined on the whole of RN. We assume that the
pair (0, U), with 0 bounded, �0 and U smooth, is an equilibrium:

LU+ f=0 in 0 with U= g1 and
�U
�n

= g2 on �0. (2.1)

The non-degeneracy condition we need is that

�g1

�n
& g2 {0 at �0. (2.2)

The method consists in

v fixing the domain by transforming to new independent variables
! # 0 and {;
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v linearising around U in the new variables;

v rewriting the problem as a fully nonlinear problem in 0.

2.1. Fixing the Domain

We transform the problem on the variable domain 0t (space variable x,
time variable t) to a problem on the fixed domain 0 (space variable !, time
variable {). The normal to �0t being denoted by n, we will use & for the
normal on �0.

For $>0 we define a map

X: �0_[&$, $] � RN, X(,, r)=,+r&(,). (2.3)

If $ is sufficiently small, then (2.3) defines a bijection to a compact
neighbourhood N(�0) of �0. In N(�0) every ! can be written in a unique
way as !=X(,, r) with , # �0 and r # [&$, $]. For convenience we shall
write !$ for ,. Clearly, if ! # �0 then !=!$.

We will look for 0t close to 0 in some time interval I in the sense that
�0t will be given by

�0t=[x=!$+s(!$, t) &(!$), !$ # �0], (2.4)

where s: �0_I � [&$, $] is a smooth function which is an unknown of
the problem. In what follows it will be convenient to write, for ! # �0,

8(!, t)=s(!, t) &(!). (2.5)

We extend this field to the whole of RN by setting

8(!, t)={:(!) s(!$, t) &(!$)
0

if ! # N(�0),
otherwise.

(2.6)

Here :: RN � [0, 1] is a smooth mollifier which is equal to 1 near �0 and
has compact support in the interior of N(�0). Thus, the field 8 is localised
near �0. It contains all the information about the difference between the
fixed boundary �0 and the free boundary �0t .

Now it is clear how to transform the problem on the variable domain 0t

to a problem on the fixed domain 0. We define a (bijective) coordinate
transformation

x=!+8(!, {), t={. (2.7)

From (2.7) and (2.5) we see that {x and �
�t transform as

{x=(I+A)&1 {! ,
�
�t

=D� {=
�
�{

&
�8
�{

} (I+A)&1 {! , (2.8)
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where

A=A(!, {)={!8(!, {) (2.9)

is the column gradient of 8, i.e. the transposed Jacobian matrix of 8 (with
respect to the !-variables only). The normal n on �0t is related to the
normal & on �0 by

n=
(I+A)&1&

|(I+A)&1&|
. (2.10)

2.2. Expansion in the New Variables

The transformation of 0t to 0 also acts on the equilibrium U itself and
this has to be taken into account when we expand u near U in the new
variables. It is convenient to extend U to a smooth function defined in the
whole of RN. The extension of U outside 0 will not appear in the final
formulation. Observing that

U(!+8(!, {))=U(!)+({!U(!)) } 8(!, {)+R(!, 8(!, {)), (2.11)

where here and in what follows R(!, 8) is a nonspecified smooth function
bounded by a multiple of |8|2, we are led to look for a solution the form

u(x, t)=û(!, {)=U(!)+({!U(!)) } 8(!, {)+w(!, {). (2.12)

This non-standard formula is crucial: it will allow us to rewrite the free
boundary problem as a problem for w.

First we rewrite the action of L on u as

(Lu)(x, t)=(L� û)(!, {)=(L� 0 û)(!, {)+(L� 1 û)(!, {)+(L� r
2 û)(!, {), (2.13)

where L� 0 is the original operator L with x replaced by ! and L� 1 is an
operator with coefficients linear in 8 and its first and second order
!-derivatives. The remainder term L� r

2 has coefficients bounded by a mul-
tiple of |8|2+|D!8|2+|D2

!8|2. This is easily seen from the expansion

(I+A)&1=I&A+A2 (I+A)&1, A={!8. (2.14)

Likewise we get an expansion for the time derivative which reads

�u(x, t)
�t

=D� { û(!, {)=
�û
�{

&
�8
�{

} {! û+
�8
�{

} A(I+A)&1 {! û.

(2.15)
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Equation (1.1) for u thus transforms into an equation for û,

(D{&L� )(û)= f (!+8(!, {))= f (!)+({! f (!)) } 8(!, {)+R(!, 8(!, {)),

(2.16)

in which we substitute (2.12). Next we expand the resulting equation using
(2.13) and (2.15). We observe beforehand that the terms of zero and first
order in 8(!, {) and its derivatives coming from the first two terms of
(2.12) must be equal on both sides and arrive at

�w
�{

&L� 0w=\�8
�{

} {!+L� 1 + w+\&
�8
�{

} A(I+A)&1 {!+L� r
2+ w

+\�8
�{

} {!+L� 1+ (8 } {!U)+\&
�8
�{

} A(I+A)&1 {!+L� r
2 +

_(U+8 } {!U)+R(!, 8(!, {)). (2.17)

The linear part (the left hand side) is now in the form we want, but the
higher order terms contain derivatives of both 8 and w, including �8

�{ .
Equation (2.17) is of the type

�w
�{

&L� 0w=F1 (!, w, Dw, D2w, 8, D8, D28)+
�8
�{

} F2 (!, Dw, 8, D8),

(2.18)

with F1 consisting of second and higher order terms and F2 consisting of
first and higher order terms in the w, 8-dependent arguments.

To eliminate 8 and its derivatives from (2.18) we have to transform the
free boundary conditions.

2.3. Expansion on the Boundary: New Boundary Conditions

At the boundary the expansion (2.12) reduces to, using (1.15) and (2.5),

g1 (!+s(!, {) &(!))= g1 (!)+s(!, {) g2 (!)+w(!, {), ! # �0. (2.19)

Expanding the left hand side this gives

s(!, {) \�g1

�&
(!)& g2 (!)++R(!, s(!, {))=w(!, {), (2.20)
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where R(!, s) is as before a nonspecified smooth function bounded by a
multiple of s2. In view of the structural assumption (2.2) we may invert this
equation for w small to obtain

s(!, {)=
w(!, {)

�g1

�&
(!)& g2 (!)

+R(!, w(!, {)), (2.21)

where R(!, w) is again smooth and bounded by a multiple of w2. In the
special case that g1 is constant this term is zero. Note that w and s (or 8)
are of the same (small) size. More importantly, (2.20) will allow us to
decouple the system and obtain a problem for w only.

To transform the second free boundary condition in (1.15) we have to
expand (2.10) using (2.14). We find, since

A&=({!8) &={!s={!
tangs (2.22)

(not to be confused with (D!8) &=0), whence A& } &=0,

n=&&{!s+R(A). (2.23)

The vector valued function R(A)=R(!, s, {!s) is bounded by a multiple of
&A&2 and hence, in view of (2.6) and (2.9), by a multiple of s2+|{!s|2.

For the normal derivative we then have

�
�n

=n } {x=& } {!&{!s } {!+{! s } A(I+A)&1 {!

+R(A) } (I+A)&1 {! ,

which we can rewrite as

�
�n

=
�
�&

&{!
tangs } {!

tang+B(!, s, {! s) {! , (2.24)

with B a smooth matrix valued function bounded by a multiple of
s2+|{! s|2.

Applying (2.24) to (2.12), expanding g2 (!+8(!, {)) as usual, we arrive
at, omitting the subscripts !,

�w
�&

+s \�2U
�&2 &

�g2

�& +&{tangs } {tangg1=B(!, s, {s) {w+R(!, s, {s), (2.25)
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with a slightly different matrix B. The derivation of this boundary condi-
tion for w is independent of the partial differential equation to be satisfied
in the interior. What we have done here is related to methods in domain
optimisation problems where solutions of boundary value problems are dif-
ferentiated with respect to the domain. See [18, 19, 10, 8].

2.4. The Fully Nonlinear Problem

We recall that we have derived (2.18) for ! in 0 and equations (2.20)
and (2.25) for ! on the boundary �0. Note that (2.20) is equivalent to
(2.21). Now we can eliminate the free boundary terms s, 8 and their
derivatives from the problem.

We take the restriction of equation (2.18) to the boundary �0 (where
8(!, {)=s(!, {) &(!)) and rewrite it as

�w
�{

&L� 0w=F1 (!, w, Dw, D2w, s, Ds, D2s)+
�s
�{

F2 (!, Dw, s, Ds), (2.26)

where now F1 and F2 are considered to be depending on s rather than on
8. In (2.26) we use (2.21) to express s, Ds and D2s in terms of w, Dw, D2w
and !. The important point is the elimination of �s

�{ . For this we use (2.20)
which we first differentiate with respect to { to obtain

�w
�{

&\�g1

�&
& g2+ �s

�{
=Rs (!, s)

�s
�{

=R� (!, w)
�s
�{

. (2.27)

The partial derivative Rs (!, s) is a smooth function bounded by a multiple
of s and thus, using (2.21) again, R� (!, w) is smooth and bounded by a
multiple of w. Using (2.27) to eliminate �w

�{ we obtain

\�g1

�&
& g2+R� (!, w)+ �s

�{
&L� 0

=F1 (!, w, Dw, D2w)+
�s
�{

F2 (!, w, Dw, D2w), (2.28)

where F1 and F2 are the same as before, with the s-dependence absorbed
in w-dependence. Therefore, provided w, Dw and D2w are small,

�s
�{

=
L� 0w+F1 (!, w, Dw, D2w)

�g1

�&
& g2+R� (!, w)&F2 (!, w, Dw, D2w)

. (2.29)
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We emphasise that (2.29) holds for ! at the boundary �0 only. Returning
to (2.18) and using (2.6) we have for ! # 0� & N(�0) (where :(!) is supported)
that the equation for w becomes of the form

�w
�{

&L� 0 w

=F(!, w(!, {), Dw(!, {), D2w(!, {), w(!$, {), Dw(!$, {), D2w(! $, {)),

(2.30)

with F smooth, quadratic in the w-dependent variables. We recall that
!$ # �0 is the projection of ! # N(�0) on the boundary, see the beginning
of Section 2.1. Thus the right hand side of (2.31) is fully nonlinear and non-
local. Note that the right hand side, which contains the nonlocal terms,
may be nonzero only for ! # 0� & N(�0), where :(!) is supported. Else-
where in 0 it vanishes identically. Therefore, the final equation for w is

F(!, w(!, {), Dw(!, {), D2w(!, {), w(!$, {), Dw(! $, {), D2w(!$, {))
�w
�{

&L� 0 w={ for ! # 0� & N(�0), {�0, (2.29)
0 for ! # 0� "N(�0), {�0.

The boundary condition to be satisfied by w follows directly from (2.20),
(2.21) and (2.25). It comes out as

Bw=
�w
�&

+
w

�g1

�&
& g2

\�2U
�&2 &

�g2

�& +&{tang

\
w

�g1

�&
& g2+ } {tangg1

=G(!, w, Dw), (2.32)

In the special case that g1 #0 and g2= g the boundary operator defined by
(2.32) reduces to Bw defined by (1.6).

Now we have found a fully nonlinear problem for w, namely (2.31),
(2.32), with initial datum w(!, 0)=w0 (!) determined by 00 and u0 via (2.4)
and (2.12). Since u0 is assumed to satisfy the boundary conditions (1.15) at
t=0, it follows that w0 satisfies Bw0=G( } , w0 , Dw0) at �0. We shall solve
this initial boundary value problem for w provided w0 is sufficiently small
by means of the general results in Section 3.

3. GENERAL THEORY

Problem (2.31), (2.32) is of the type

{wt (!, t)=Lw+F(w( } , t))(!), ! # 0� ,
Bw=G(w( } , t))(!), ! # �0,

(3.1)
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with initial condition given by

w(!, 0)=w0 (!), ! # 0� , (3.2)

where 0 is a bounded open set in RN with regular boundary �0, F and G
are regular functions defined in a neighbourhood of 0 in C 2 (0� ) with values
in C(0� ) and C1 (�0) respectively and L and B are linear differential
operators with regular coefficients. Moreover,

F(0)=0, F $(0)=0, G(0)=0, G$(0)=0,

so that w#0 is a solution of Problem (3.1) and the linearisation of (3.1)
around the null solution is wt=Lw with boundary condition Bw=0.

Below we state precise regularity assumptions for the local existence and
uniqueness of a regular solution to (3.1), (3.2) and the construction of the
stable and unstable manifolds of the null solution. Such assumptions are
easily seen to be satisfied in the case of Problem (2.31), (2.32).

H1. 0 is a bounded open set in RN with C2+: boundary, 0<:<1.

H2. F: B(0, R)/C2 (0� ) � C(0� ) is continuously differentiable with
Lipschitz continuous derivative, F(0)=0, F $(0)=0 and the restriction of F
to B(0, R)/C2+: (0� ) has values in C : (0� ) and is continuously differen-
tiable; G: B(0, R)/C1 (0� ) � C(�0) is continuously differentiable with
Lipschitz continuous derivative, G(0)=0, G$(0)=0 and the restriction
of G to B(0, R)/C2+: (0� ) has values in C1+: (�0) and is continuously
differentiable too.

H3. L=aijDij+biDi+c is a uniformly elliptic operator with coef-
ficients aij , b i , c in C : (0� ) and B=;i Di+# is a nontangential operator
with coefficients ;i , # in C1+: (�0).

H4. w0 # C 2+: (0� ) satisfies the compatibility condition

Bw0=G(w0 ( } ))(!), ! # �0. (3.3)

A local existence and uniqueness result for Problem (3.1), (3.2) may be
shown using a standard linearisation procedure, which works also in the
fully nonlinear case thanks to optimal regularity results and estimates for
linear problems. It gives existence of the solution for arbitrarily long time
intervals, provided the initial datum is small enough. This may be seen as
continuous dependence of the solution on the initial datum at w0=0.

We shall use the functional spaces C:, :�2 (0� _I ), C2+:, 1+:�2 (0� _I ),
C1+:, 1�2+:�2 (�0_I ), I being a real interval, with the usual meanings and
norms. We recall that a function w belongs to C2+:, 1+:�2 (0� _I ) if and
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only if t � w ( } , t) is in C1+:�2 (I ; C(0� )) & B(I ; C 2+: (0� )) (B stands for
bounded) and there is K:>0 such that

&w&C 2+:, 1+:�2(0� _I )�K: (&w&C 1+:�2(I; C(0� ))+&w&B(I; C2+:(0� ))).

Similarly, v # C1+:, 1�2+:�2 (�0_I ) if and only if t � v( } , t) is in
C1�2+:�2 (I; C(�0)) & B(I; C 1+: (�0)) and there is C:>0 (independent of
I) such that

&v&C1+:, 1�2+:�2(�0_I )�C: (&v&C 1�2+:�2(I; C(�0))+&v&B(I; C 1+:(�0))).

Theorem 3.1. Under the above assumptions, for every T>0 there are r,
\>0 such that (3.1), (3.2) has a solution w # C2+:, 1+:�2 (0� _[0, T])
if &w0&C 2+:(0� )�\. Moreover w is the unique solution in B(0, r)/
C2+:, 1+:�2 (0� _[0, T]).

Proof. Let 0<r�R, and set

K(r)=sup [&F $(.)&L(C2+:(0� ), C:(0� )) : . # B(0, r)/C2+: (0� )],

H(r)=sup [&G$(.)&L(C2+:(0� ), C 1+:(�0)) : . # B(0, r)/C2+: (0� )].

Since F $(0)=0 and G$(0)=0, K(r) and H(r) go to 0 as r � 0. Let L>0 be
such that, for all ., � # B(0, r)/C2 (0� ) with small r,

&F $(.)&F $(�)&L(C 2(0� ), C(0� ))�L&.&�&C 2(0� ) ,

&G$(.)&G$(�)&L(C 1(0� ), C(�0))�L&.&�&C1(0� ) .

For every 0�s�t�T and for every w # B(0, r)/C2+:, 1+:�2 (0� _[0, T])
with r so small that K(r), H(r)<�, we have

&F(w( } , t))&C:(0� )�K(r) &w( } , t)&C 2+:(0� ) ,

&F(w( } , t))&F(w( } , s))&C(0� )�Lr &w( } , t)&w( } , s)&C2(0� )

�Lr |t&s|:�2 &w&C2+:, 1+:�2(0� _[0, T]) ,

and similarly

&G(w( } , t))&C 1+:(�0)�H(r) &w( } , t)&C2+:(0� )

�H(r) &w&C 2+:, 1+:�2(0� _[0, T]) ,

&G(w( } , t))&G(w( } , s))&C(�0)�Lr &w( } , t)&w( } , s)&C 1(0� )

�Lr |t&s|1�2+:�2 &w&C2+:, 1+:�2(0� _[0, T]) .
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Therefore, (!, t) � F(w( } , t))(!) belongs to C:, :�2 (0� _[0, T]), (!, t) �
G(w( } , t))(!) belongs to C1+:, 1�2+:�2 (�0_[0, T]) and

&F(w)&C:, :�2(0� _[0, T])�(K(r)+Lr) &w&C 2+:, 1+:�2(0� _[0, T]) ,

&G(w)&C 1+:, 1�2+:�2(�0_[0, T])�C: (2H(r)+Lr) &w&C2+:, 1+:�2(0� _[0, T]) .

So, if &w0&C2+:(0� ) is small enough, we define a nonlinear map

1: [w # B(0, r)/C2+:, 1+:�2 (0� _[0, T]) : w( } , 0)=w0]

� C2+:, 1+:�2 (0� _[0, T]),

by 1w=v, where v is the solution of

vt (x, t)=Lv+F(w( } , t))(x), 0�t�T, x # 0� ,

{Bv=G(w( } , t))(x), 0�t�T, x # �0,

v(x, 0)=w0 (x).

Actually, thanks to the compatibility condition Bw0=G(w0) and the
regularity of F(w) and G(w), the range of 1 is contained in
C2+:, 1+:�2 (0� _[0, T]). Moreover, there is C=C(T )>0, independent of
r, such that (see e.g. [15, Thm. 5.3] or [17, Thm. 5.1.20])

&v&C 2+:, 1+:�2(0� _[0, T])

�C(&w0&C2+:(0� )+&F(w)&C :, :�2(0� _[0, T])+&G(w)&C1+:, 1�2+:�2(�0_[0, T])),

so that

&1(w)&C 2+:, 1+:�2(0� _[0, T])

�C(&w0&C2+:(0� )+(K(r)+Lr+C: (2H(r)+Lr)) &w&C2+:, 1+:�2(0� _[0, T])).

Therefore, if r is so small that

C(K(r)+Lr+C: (2H(r)+Lr))�1�2, (3.4)

and w0 is so small that

&w0&C 2+:(0� )�Cr�2,

1 maps the ball B(0, r) into itself. Let us check that 1 is a 1�2-contraction.
Let w1 , w2 # B(0, r), wi ( } , 0)=w0 . Writing wi ( } , t)=wi (t), i=1, 2, we have

&1w1&1w2&C2+:, 1+:�2(0� _[0, T])

�C(&F(w1)&F(w2)&C:, :�2(0� _[0, T])+&G(w1)&G(w2)&C1+:, 1�2+:�2(�0_[0, T])),
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and, arguing as above, for 0�t�T,

&F(w1 (t))&F(w2 (t))&C:(0� )�K(r) &w1 (t)&w2 (t)&C2+:(0� )

�K(r) &w1&w2 &C 2+:, 1+:�2(0� _[0, T]) ,

&G(w1 (t))&G(w2 (t))&C1+:(�0)�H(r) &w1 (t)&w2 (t)&C2+:(0� )

�H(r) &w1&w2 &C 2+:, 1+:�2(0� _[0, T]) ,

while for 0�s�t�T

&F(w1 (t))&F(w2 (t))&F(w1 (s))&F(w2 (s))&C(0� )

="|
1

0
F $(_w1 (t)+(1&_) w2 (t)(w1 ( } , t)&w2 (t))

&F $(_w1 (s)+(1&_) w2 (s))(w1 (s)&w2 (s)) d_"C(0� )

�|
1

0
&(F $(_w1 (t)+(1&_) w2 (t)

&F $(_w1 (s)+(1&_) w2 (s))(w1 (t)&w2 (t)) d_&C(0� )

+|
1

0
&F $(_w1 (s))(w1 (t)&w2 (t)&w1 (s)+w2 (s))&C(0� )

�
L
2

(&w1 (t)&w1 (s)&C 2(0� )+&w2 (t)&w2 (s)&C 2(0� )) &w1 (t)&w2 (t)&C 2(0� )

+Lr &w1 (t)&w2 (t)&w1 (s)+w2 (s))&C2(0� )

�2Lr(t&s):�2 &w1&w2&C2+:, 1+:�2(0� _[0, T]) ,

and similarly

&G(w1 ( } , t))&G(w2 ( } , t))&G(w1 ( } , s))&G(w2 ( } , s))&C(�0)

�2Lr(t&s)1�2+:�2 &w1&w2&C 2+:, 1+:�2(0� _[0, T]) .

Therefore,

&1w1&1w2&C 2+:, 1+:�2(0� _[0, T])

�C(K(r)+Lr+C: (2H(r)+Lr)) &w1&w2&C 2+:, 1+:�2(0� _[0, T])

� 1
2 &w1&w2&C2+:, 1+:�2(0� _[0, T]) ,

the last inequality being a consequence of (3.4). The statement follows. K
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As in Section 1 we define the realisation of L with homogeneous bound-
ary conditions in X=C(0� ) by

D(L)={v # ,
p�1

W2, p (0) : Lv # X, Bv=0 in �0= ,
(3.5)

Lv=Lv, v # D(L).

We note that, due to [20], L is a sectorial operator and since 0 is
bounded, the resolvent (*I&L)&1 is a compact operator for every * in the
resolvent set \(L). Therefore _(L) consists of a sequence of isolated eigen-
values.

We shall state the principle of linearised stability in terms of the
spectrum _(L) of L.

Theorem 3.2. Let 0 satisfy assumption H1 and let F, G, L, B satisfy
H2, H3.

(i) If all the elements of _(L) have negative real part then w=0 is a
stable equilibrium of Problem (3.1) with respect to the C2+: (0� ) norm. More
precisely, for every | # (0, max[Re * : * # _(L)]), there are C, r>0 such
that for every w0 satisfying H4 and &w0&C2+:(0� )�r, the solution of (3.1) with
initial datum w0 exists in the large and satisfies

&w( } , t)&C2+:(0� )�Ce&|t &w0&C 2+:(0� ) , t�0.

(ii) If _(L) contains elements with positive real part then w=0 is
unstable in C2+: (0� ).

Proof. The proof of statement (i) follows the proof of Theorem 9.1.2 of
[17], replacing the space Y used in [17] by the space of functions w such
that (!, t) � e&|tw(!, t) # C 2+:, 1+:�2 (0� _[0, �)). This is possible thanks
to Theorem 0.1 in the appendix.

The proof of (ii) follows the proof of Theorem 9.1.3 of [17], replacing
the space C: ((&�, 0]; D, |) used in [17] by the space of the functions v
such that (!, t) � e&#tv(!, t) # C 2+:, 1+:�2 (0� _(&�, 0]), with any
# # (0, min[Re * : * # _(L), Re *>0]). K

In the unstable case we shall construct the stable and unstable manifolds
arguing as in Theorems 9.1.3 and 9.1.4 of [17]. To do this we shall use
asymptotic behaviour results for forward and backward linear problems,
whose precise statements and proofs we defer to the Appendix.

We need some notation. We denote by _+ (L), _0 (L) and _& (L) the
subsets of _(L) respectively consisting of elements with positive, zero and
negative real parts. Since _(L) is discrete, _+ (L), _0 (L) and _& (L) are
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spectral sets. Let P+ and P& be the spectral projections associated to
_+ (L) and _& (L).

Theorem 3.3. Let 0 satisfy assumption H1 and let F, G, L, B satisfy
H2, H3.

(i) Assume that _+ (L){< and fix | # (0, min[Re * : * # _+ (L)]).
Then there exist R0 , r0>0 and a Lipschitz continuous function

.: B(0, r0)/P+ (C(0� ))=P+ (C2+: (0� )) � (I&P+)(C 2+: (0� )),

differentiable at 0 with �$(0)=0, such that for every w0 belonging to the
graph of ., Problem (3.1) has a unique backward solution v such that v~
defined by v~ (!, t)=e&|tv(!, t), belongs to C2+:, 1+:�2 (0� _(&�, 0]) and
satisfies

&v~ &C 2+:, 1+:�2(0� _(&�, 0])�R0 . (3.6)

Moreover, for every |$ # (0, min[Re * : * # _+ (L)]) we have (!, t) �
e&|$tv(!, t) # C2+:, 1+:�2 (0� _(&�, 0]). Conversely, if Problem (3.1) has a
backward solution v which satisfies (3.6) and &P+v(0)&�r0 , then v(0) #
graph �.

(ii) Fix | # (0, &max[Re * : * # _& (L)]). Then there exist R1 , r1>0
and a Lipschitz continuous function

� : B(0, r1)/[w0 # P& (C2+:(0� )) : Bw0=G(w0( } ))] � (I&P&)(C2+:(0� )),

differentiable at 0 with �$(0)=0, such that for every w0 belonging to the
graph of �, Problem (3.1) has a unique solution w such that w~ defined by
w~ (!, t)=e|tw(!, t) belongs to C 2+:, 1+:�2 (0� _[0, �)) and

&w~ &C2+:, 1+:�2(0� _[0, �))�R1 . (3.7)

Moreover, for every |$ # (0, &max[Re * : * # _& (L)]) we have (!, t) �
e|$tw(!, t) # C2+:, 1+:�2 (0� _[0, �)). Conversely, if Problem (3.1) has a
forward solution w which satisfies (3.7) and &P&w( } , 0)&C2+:(0� )�r1 , then
w( } , 0) # graph �.

Proof. The proof closely follows the proof of Theorems 9.1.3 and 9.1.4
of [17] using as main tools Theorems 0.1 and 0.2. Of course the spaces
used in Theorems 9.1.3 and 9.1.4 of [17] have to be replaced by the spaces
of the functions w such that (!, t) � e&|tw(!, t) # C 2+:, 1+:�2 (0� _
(&�, 0]) and (!, t) � e|tw(!, t) # C 2+:, 1+:�2 (0� _(0, �)). Note that
Theorems 9.1.3 and 9.1.4 of [17] are stated under the assumption that the
spectrum of L does not intersect the imaginary axis. Here, since we only
have a discrete spectrum, this assumption may be dropped. K
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4. APPLICATIONS

We recall that we have transformed Problem (1.14), (1.15) with initial
data u0 and �00 to the fully nonlinear Problem (3.1) with initial condition
(3.2), where w0 is given by

w0 (!)=u0 (!+80 (!))&U(!)&{!U(!) } 80 (!). (4.1)

Thus w0 depends on u0 as well as on �00 , which determines
80 (!)=:(!) s(!$, 0) &(!$) through (2.4) and (2.6) with t={=0.

We solved Problem (3.1),(3.2) under the assumption that w0 is small in
C2+: (0) and satisfies the compatibility condition (3.3). In view of the
smoothness of the data U and �0, the smallness condition on w0 is equiv-
alent to the assumption that �00 is C2+:-close to �0 and that u0 is
C2+:-close to U (through the inverse of the C 2+:-bijection ! # 0 � !+
80 (!) # 00). Moreover, the compatibility condition (3.3) is satisfied
provided (1.10) holds, which, for Problem (1.14), (1.15), reads

u0= g1 and
�u0

�n
= g2 on �00 . (4.2)

Having solved Problem (3.1), (3.2), we recover the solution (u( } , t), 0t)
of the original free boundary problem, using (2.19) rewritten as (2.21) to
express s in terms of w, then defining the free boundary �0t by (2.4),
returning to the original space variables by (2.7) and finally recovering
u(x, t) by (2.12).

We consider the two specific examples mentioned in the introduction to
illustrate the ideas and the theory developed in Sections 2. and 3. In these
two cases we are able to verify the spectral hypotheses of Theorems 1.11
and 1.11.

4.1. A Simple Example

The first example we discuss is the case that, in the notation of (1.1),
(1.2), L=2, f =&1 and g=1, i.e.

ut=2u&1 in 0t , u=0 and
�u
�n

=1 on �0t . (4.3)

The unique (up to translations) negative radial equilibrium solution is

U(x)=
|x|2

2N
&

N
2

, 0=BN=[x # RN : |x|<N]. (4.4)
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The operator L: D(L) � C(0) is defined by

Lv=2v for v # D(L)={v # ,
p>1

W2, p (0), 2v # C(0� ), Bv=0 on �0= ,

(4.5)

with

Bv=
�v
�n

&
1
N

v. (4.6)

It is a standard exercise in spectral analysis to show that the spectrum _(L)
consists entirely of real eigenvalues which may be found, using separation
of variables, from the radial ordinary differential equation

�"+
N&1

r
�$&

n(n+N&2)
r2 �=+�, �(r)trn as r � 0, (4.7)

with boundary condition

�$(N)=
1
N

�(N). (4.8)

The angular part of the eigenfunction is then a harmonic polynomial of
degree n.

We have for each n=0, 1, 2, ... a sequence of eigenvalues

+(n)
1 >+ (n)

2 >+ (n)
3 > } } } a &�, (4.9)

with corresponding solutions � (n)
1 , � (n)

2 , � (n)
3 , ... . Each � (n)

j has exactly j&1
sign changes in the interval (0, N). It follows from Sturm's Comparison
Theorem that the double sequence + (n)

j is also decreasing in j.
In view of the translation invariance we may expect to have zero as an

eigenvalue. Indeed, the functions �U
�xi

, i=1, ..., N, are easily seen to be eigen-
functions with eigenvalue 0. They correspond to n= j=1, i.e. +(1)

1 =0 with
�(1)

1 (r)=r. As a consequence of the monotonicity properties of the + (n)
j we

then have that + (0)
1 >0, so that U is unstable, thanks to Theorem 1.11. We

note that except for + (0)
1 >0 and + (1)

1 =0, all the + (n)
j are negative. To see

this it is sufficient to show that + (0)
2 <0. This is clear because a solution of

(4.7) with n=0 and +�0 cannot change sign while � (0)
2 (r) does.

4.2. The Focussing Problem

The study of (1.12), i.e.

ut=2u in 0t , u=0 and
�u
�n

=1 on �0t , (4.10)
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is motivated by the mathematical modelling of combustion [16, 21].
Problem (4.10) can be seen as the physical high activation limit of the
regularising problems ut=2u+ f= (u), where f= has support in a small inter-
val [&=, 0] and is of the form f= (s)= f1 (s�=)�=. In [9] this regularisation
is used to prove an existence result for (4.10) under appropriate conditions
on the initial data. The same technique has previously been used in [1] for
stationary problems and especially for the travelling wave case.

As far as we know the uniqueness question for Problem (4.10) has not
been settled yet allthough it is clear that additional assumptions have to be
made. Examples of nonuniqueness may be constructed even in dimension
N=1: taking initial data with an internal zero we can choose between a
solution for which the free domain splits up in two domains or a solution
for which the zero disappears instantaneously. Under additional assump-
tions avoiding such counterexamples, wellposedness results have been
obtained in [14] and [11] for radial and one-dimensional problems.

Equilibria of (4.10) with 0 bounded do not exist. Thus solutions of
(4.10) cannot be expected to stabilise. Typically the domain 0t vanishes in
finite time, a behaviour exhibited by selfsimilar solutions of the form

u(x, t)=- T&t f ('), '=
|x|

- T&t
, 0t=[ |x|<b - T&t] (4.11)

with f (') satisfying

f "(')+
N&1

'
f $(')+

1
2

f =
1
2

'f $

for 0�'�b ; f $(0)= f (b)=0, f $(b)=1. (4.12)

This uniquely determines the ``free boundary'' b=bN for which exactly one
solution f of (4.12) with f<0 on [0, b) exists, and yields a similarity
solution of (4.10) which ``focusses'' in the origin at t=T.

In [14] and [11] it is shown that radial solutions focus at the origin in
finite time and that they are asymptotically selfsimilar. In one dimension
the latter is also true for nonsymmetric initial data, in which case the
asymptotic profile is symmetric but the focussing point does not have to be
the origin. A natural question is to ask whether in every space dimension
all solutions are asymptotically selfsimilar. However, posed in such
generality, the answer is negative since it was proved in [11] that radial
annular solutions focus on a sphere, provided the inner hole does not
shrink to a point. On the other hand, since it is tempting to speculate, we
conjecture that such a behaviour is unstable under nonradial perturbations
causing the domain to change its topology. Further speculations, in par-
ticular on necessary and sufficient conditions on the initial data in terms of
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e.g. the shape of the domain for asymptotic selfsimilarity, are left to the
reader. Here we restrict ourselves to a local affirmative answer given by the
local (linearised) stability analysis of (4.11). To perform this analysis we
follow [14] and [11] and transform the problem to selfsimilar variables

x~ =
x

(T&t)1�2 , t~ =&log(T&t), u~ (x~ , t~ )=
u(x, t)

(T&t)1�2 ,

0� t~ =[x~ : x # 0t]. (4.13)

Omitting the tildes, we arrive at

ut=2u& 1
2x } {u+ 1

2u, x # 0t (4.14)

with boundary conditions

u=0,
�u
�n

=1 on �0t . (4.15)

The selfsimilar solution (4.11) is transformed by (4.13) into an equilibrium

U(x)= f ( |x| ), 0=Bb=[x # RN : |x|<b], (4.16)

for (4.14), (4.15).
In a previous work with C. Schmidt-Laine� [3] we have established a

saddle point property of (4.11) in the class of radial solutions. The local
analysis in [3] is done by scaling the radial r-variable to fix the free
boundary and using a splitting which is essentially equivalent to (1.7). In
that case the boundary condition (1.9) comes out to be linear, i.e. G(w)=0.
As announced in [3] the scaling trick can also be used for nonradial per-
turbations of (4.16) but it leads to singularities at r=0 in the higher order
terms. To avoid this problem one has to localise the transformation which
fixes the free boundary, and this may be done using a mollifier. Rather than
presenting such an adaptation which works for radial equilibria only, we
have chosen to develop the general approach of Section 2, which does not
require any symmetry and is basically a localisatin of the method in [4, 5,
6]. The application to the focussing problem and the spectral analysis
below extend the result of [3] and give a saddle point property of (4.16)
in the class of all (radial and nonradial) solutions.

We cannot expect (4.16) to be stable because the original problem is
invariant under translations in x and t. Thus if we apply a small shift to
(4.16), we obtain another selfsimilar solution which is transformed by
(4.13) into a solution which starts close to (4.16) but moves away from it.
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The unstable manifold of (4.16) must therefore contain the images under
(4.13) of shifts in space and time of (4.16). These are given by

- 1+=2 etU \x&=1e1�2 t

- =2et+1+ , (4.17)

where =1 # RN and =2 # R. As a consequence we have that L: D(L) � C(B� b )
defined by

Lv=2v& 1
2x } {v+ 1

2v, (4.18)

for

v # D(L)={v # ,
p>1

W2, p (Bb), 2v # C(B� b), Bv=0 on �Bb= , (4.19)

where

Bv=
�v
�n

+\N&1
b

&
b
2+ v=0 on �Bb , (4.20)

must have unstable eigenvalues: one with a 1-dimensional eigenspace
spanned by a radial eigenfunction corresponding to a shift in t, and another
with an N-dimensional eigenspace corresponding to shifts in x1 , x2 , ..., xN .
We will show below by means of power series developments that except for
these two unstable eigenvalues, _(L) consists entirely of negative eigen-
values. Therefore the unstable manifold provided by Theorem 1.11 consists
only of the images of (4.17) under the transformation in Section 2. Every
orbit in the unstable manifold has just the same selfsimilar profile, dis-
guised by the transformation to selfsimilar variables which depends on an
arbitrary choice of the focussing point and time. This may be interpreted
by saying that, although the equilibrium (4.16) is unstable, the profile itself
is stable. This is very much like the travelling wave case where the trans-
lates of the equilibrium form a center manifold.

It remains to show that the spectrum of (4.18) with boundary condition
(4.20) has the desired properties. As in the example in Section 4.1, the spec-
trum consists only of real eigenvalues which now are to be found from

�"+\N&1
r

&
r
2+ �$+\1

2
&

n(n+N&2)
r2 + �=+�,

(4.21)

�(r)trn as r � 0,
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with boundary condition

�$(b)+\N&1
b

&
b
2+ �(b)=0. (4.22)

Note that the solution of (4.21) is a multiple of the power series (using the
Pochhammer symbols (k) j defined by (k)0=1 and (k) j+1=(k+ j)(k) j)

�(r)= :
�

j=0

\++
n&1

2 + j

4 j j ! \n+
N
2 + j

rn+2 j

=rn+
++

n&1
2

4 \n+
N
2+

rn+2+
\++

n&1
2 +\++

n&1
2

+1+
42 2! \n+

N
2 +\n+

N
2

+1+
rn+4

+
\++

n&1
2 +\++

n&1
2

+1+\++
n&1

2
+2+

43 3! \n+
N
2 +\n+

N
2

+1+\n+
N
2

+2+
rn+6+ } } } (4.23)

We number the eigenvalues again by +(n)
j ( j=1, 2...) with corresponding

solutions �(n)
j . The monotonicity properties of + (n)

j and the sign change
properties of � (n)

j are the same as in Section 4.3, i.e. + (n)
1 >+ (n)

2 >
+(n)

3 > } } } a &�, � (n)
j has j&1 sign changes in the interval (0, b) and the

double sequence + (n)
j is also decreasing in j.

The eigenvalues due to shifts in the original variables are

+ (0)
1 =1 with � (0)

1 = f "+
N&1

r
f $ and + (1)

1 =
1
2

with � (1)
1 = f $. (4.24)

We have to show that these are the only nonnegative eigenvalues. In view
of the monotonicity properties it suffices to show that + (0)

2 and + (2)
1 are

negative.
By the radial analysis in [3] we have that + (0)

2 <0. We recall that this is
because f solves (4.21) with +=0 and has a first sign change at r=b.
Therefore the solution � of (4.21) with n=0 and +�0 cannot have a sign
change before z=b. Since � (0)

2 must change sign, it follows that + (0)
2 <0.
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It remains to show that + (2)
1 is negative and this is more involved. From

here on let n=2. We will show that + (2)
1 must lie in the interval (&1, 0).

To do so we first observe that for +�&1 the function � defined by (4.23)
is positive on (0, b]. Indeed we have for +=&1 that

�(r)= :
�

j=0

\&
1
2+ j

4 j j ! \2+
N
2 + j

r2+2 j, (4.25)

whence, using

g(b)= :
�

j=0

\&
1
2+ j

4 j j ! \N
2 + j

b2 j=0 (4.26)

to simplify expressions,

�(b)=�(b)&b2g(b)= :
�

j=0

\&
1
2+ j

4 j j ! \2+
N
2 + j

b2+2 j&b2 :
�

j=0

\&
1
2+ j

4 j j ! \N
2 + j

b2 j>0,

so that, because only the first term in (4.25) has a positive coefficient,
�(r)>0 on (0, b]. Increasing + from +=&1 we only make � larger on
(0, b] so we conclude that �(r)>0 on (0, b] for all +� &1.

To finish we prove that (B�)(b) goes from positive to negative when +
goes from 0 to &1. From (4.23) we derive that

(B�)(b)=(N+1) b

+ :
�

j=1

\++
1
2+ j&1

4 j j ! \N
2

+2+ j

\+(2 j+N+1)&2 j&
N+1

2 + b1+2 j.
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Thus, when +=0, we have, using (4.26),

(B�)(b)=(N+1) b& :
�

j=1

\1
2+j&1

4 j j! \N
2

+2+j

\2 j+
N+1

2 + b1+2 j

&(N+1) bg(b)= :
�

j=1

\1
2+j&1

4 j j ! \
N+1

2

\N
2 + j

&
2 j+

N+1
2

\N
2

+2+j
+ b2j

= :
�

j=1

\1
2+j&1

4 j ( j&1)!
Nj+ j+1

2 \N
2+ j+2

b2 j>0.

For +=&1 we have, using (4.26) again,

(B�)(b)=(N+1) b& :
�

j=1

\&
1
2+ j&1

4 j j ! \N
2

+2+ j

\4j+3
N+1

2 + b1+2 j

+\N2+3N&2
2N(N+4)

b2&N&1+ bg(b)

= :
�

j=1

_4(N2+3N&2) j2+4(N+3)(N2+2N&2) j
+N4+8N3+15N2&12N&16&

2N(N+4)( j&1)! 4 j+1

_
\&

1
2+ j

\N
2 + j+3

b1+2 j<0,

because (&1
2) j<0 and the first numerator in the latter expression is, setting

j=1, larger than (N+4)(N3+8N2+7N&12)>0.
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APPENDIX: ASYMPTOTIC BEHAVIOR IN LINEAR PROBLEMS

Throughout the appendix we use the notation of Section 3. Let 0 be a
bounded open set in RN with C2+: boundary, 0<:<1. Consider the
linear problem

ut=Lw+ f (!, t), t�0, ! # 0� ,

{Bw= g(!, t), t�0, ! # �0, (0.1)

u(!, 0)=u0 (!), ! # 0� ,

where the elliptic operator L and the nontangential operator B satisfy
assumption H3, and u0 # C 2+: (0� ).

The realisation L of L with homogeneous boundary conditions in
X=C(0� ), defined in (3.5), is a sectorial operator thanks to [20].
Moreover if f, g and u0 are regular enough the unique solution of (0.1) is
given by the extension of the Balakrishnan formula (see e.g. [17, p. 200])

u( } , t)=etL (u0&G( } , 0))+|
t

0
e(t&s) L[ f ( } , s)+LG( } , s)] ds

&L |
t

0
e(t&s) L[G( } , s)&G( } , 0)] ds+G( } , 0)

=etLu0+|
t

0
e(t&s) L[ f ( } , s)+LG( } , s)] ds

&L |
t

0
e(t&s) LG( } , s) ds, 0�t�T. (0.2)

Here G( } , t)=Ng( } , t), the operator N being any lifting operator such
that

{N # L(C % (�0), C%+1 (0� )), 0�%�:+1,
BNg= g, g # C(�0).

(0.3)

For instance, we can take as N the operator given in Theorem 0.3.2 of
[17].

Theorem 0.1. Let 0<|<&max[Re * : * # _& (L)]. Let f be such that
(!, t) � e|tf (!, t) # C:, :�2 (0� _[0, �)), let g be such that (!, t) � e|tg(!, t) #
C1+:, 1�2+:�2 (�0_[0, �)) and let u0 # C2+: (0� ). Then v(!, t)=e|tu(!, t) is
bounded in [0, +�)_0� if and only if
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(I&P&) u0=&|
+�

0
e&sL (I&P&)[ f ( } , s)+LNg( } , s)] ds

+L |
�

0
e&sL (I&P&) Ng( } , s) ds. (0.4)

In this case, u is given by

u( } , t)=etLP&u0+|
t

0
e(t&s) LP&[ f ( } , s)+LNg( } , s)] ds

&L |
t

0
e(t&s) LP&Ng( } , s) ds

&|
+�

t
e(t&s) L (I&P&)[ f ( } , s)+LNg( } , s)] ds

+L |
+�

t
e(t&s) L (I&P&) Ng( } , s) ds. (0.5)

Moreover, if the compatibility condition

Bu0= g( } , 0) in �0

holds, v is regular up to t=0. To be precise, v # C2+:, 1+:�2 (0� _[0, �)) and

&v&C2+:, 1+:�2(0� _[0, �))

�C(&u0&C2+:(0� )+&e|tf &C :, :�2(0� _[0, �))+&e|tg&C1+:, 1�2+:�2(�0_[0, �))).

Proof. The proof follows [17, Sect. 4.3, Sect. 5.1]. The novelty with
respect to [17] is the nonzero boundary condition which gives additional
terms whose asymptotic behaviour has to be taken into account.

Using the estimates (which hold for small =>0 and for t>0)

&P&etL&L(X)�Ce&(|+=) t,

&LP&etL&L(X)�
Ce&(|+=) t

t
,

&(I&P&) e&tL&L(X)�Ce(|&=) t,

and arguing as in [17], it is easy to check that the function u given by (0.5)
is bounded by Ce&|t.
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Due to (0.2) we have u=u1+u2 , where u1 is the function in the right
hand side of (0.5) and

u2 ( } , t)=etL \(I&P&) u0+|
�

0
e&sL (I&P&)( f ( } , s)+LG( } , s)) ds

&L |
�

0
e&sL (I&P&) G( } , s) ds+

=etLy, t�0,

y being an element of (I&P&)(X). Thus e|tu2 ( } , t) is bounded in [0, �)
with values in X (which means that v is bounded) if and only if y=0, i.e.
if and only if (0.4) holds.

Let us prove that v=e|tu # C2+:, 1+:�2 (0� _[0, �)). Observe that v
satisfies (0.1) with L replaced by L� =L+|I, and f and g replaced
respectively by f� = fe|t and g~ = ge|t. In the following we shall set

& f� &=& f� &C :, :�2(0� _[0, �)) , &g~ &=&g~ &C 1+:, 1�2+:�2(�0_[0, �)) .

Thanks to the compatibility condition Bu0= g( } , 0) and to the regularity
of the data, v belongs to C2+:, 1+:�2 (0� _[0, 1]) and

&v&C 2+:, 1+:�2(0� _[0, 1])�C(&u0&C 2+:(0� )+& f� &+&g~ &).

So we have to check that v # C2+:, 1+:�2 (0� _[1, �)) and that its norm
may be estimated in terms of the norms of the data.

Due to the choice of | the spectrum of L� =L+|I does not intersect the
imaginary axis and the projection (I&P&) is the spectral projection
associated to the unstable part of _(L� ). Therefore the following estimates
hold for some #>0:

&L� kP&etL� &L(X)�
Ck e&#t

tk ,

&L� k (I&P&) e&tL� &L(X)�Cke&#t, t>0, k # N. (0.6)

It is convenient to split v(t)=v( } , t) as v=�3
i=1 vi , where

v1 (t)=etL� P&u0&(etL� &I ) P&Ng~ ( } , 0)

+|
t

0
e (t&s) L� P&[ f� ( } , s)+L� Ng~ ( } , s)] ds

&|
+�

t
e(t&s) L� (I&P&)[ f� +L� Ng~ ] ds,
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v2 (t)=&L� |
t

0
e(t&s) L� P&N[ g~ ( } , s)& g~ ( } , 0)] ds,

v3 (t)=+L� |
+�

t
e(t&s) L� (I&P&) Ng~ ( } , s) ds.

The function v1 may be estimated arguing as in [17]. In fact, both
t� f� ( } , t) and t � L� Ng~ ( } , t) belong to C:�2 ([0, �); X) & B([0, �); C:(0� )).
Therefore,

&v1&C1+:�2([1, �); X)+&v1&B([1, �); DL(1+:�2, �))�C(&u0 &X+& f� &+&g~ &).

Let us consider v2 . Since t � g~ ( } , t) # C1�2+:�2 ([0, �); C(�0)) we
have Ng~ # C1�2+:�2 ([0, �); C1 (0� )). Moreover C1 (0� ) is continuously
embedded in DL (1�2, �), see e.g. [17, Thm. 3.1.31]. Applying [17, Thm.
4.3.16] with %=1�2+:�2, ;=1�2, we get v2 # C1+:�2 ([0, T]; X) and t �
v2 (t)&(I&P)(Ng~ ( } , t)&Ng~ ( } , 0)) # B([0, T]; DL (1+:�2, �)) for every
T>0. Looking at the proof of Theorem 4.3.16 and of the previous
Theorem 4.3.1(iii) one sees that

[v$2]C :�2([0, T]; X)+ sup
0�t�T

[L(v2 (t)&P& (Ng~ (t)&Ng~ (0))]DL(:�2, �)

�C &Ng~ &C 1�2+:�2([0, �); C 1(0� )) ,

with constant C independent of T. A similar estimate holds for the lower
order norms, as is easily seen using (0.6). Recalling that DL (1+:�2, �) is
continuously embedded in C2+: (0� ) (see [17, Thm. 3.1.34(ii)]) and that
P&Ng~ is bounded with values in C2+: (0� ), we get v2 # C1+:�2 ([1, �); X)
& B([1, �); C2+: (0� )) and

&v2&C1+:�2([1, �); X)+&v2&B([1, �); C2+:(0� ))�C &g~ &.

Finally let us consider v3 . By estimates (0.6) it is obviously bounded with
values in D(Lk) for every k # N. Moreover v$3=L� v3&L� (I&P&) Ng~ is
Ho� lder continuous with values in X and

&v3&C1+:�2([1, �); X)+&v3&B([1, �); DL(1+:�2, �))�C &g~ &.

Summing up and recalling once again that DL (1+:�2, �)/C2+: (0� ) we
get

&v&C 1+:�2([1, �); X)+&v&B([1, �); C 2+:(0� ))�C(&u0&X+& f� &+&g~ &).
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It follows that v # C2+:, 1+:�2 (0� _[1, �)), and

&v&C 2+:, 1+:�2(0� _[1, �))�C(&u0&X+& f� &+&g~ &),

which finishes the proof. K

Let us now consider the backward problem

ut=Lu+ f (!, t), t�0, ! # 0� ,

{Bu= g(!, t), t�0, ! # �0, (0.7)

u(!, 0)=u0 (!), ! # 0� .

Theorem 0.2. Let _+ (L){< and 0<|<min[Re * : * # _+ (L)]. Let f
be such that (!, t) � e&|tf (!, t) # C :, :�2 (0� _(&�, 0]) and let g be such that
(!, t) � e&|tg(!, t) # C 1+:, 1�2+:�2 (�0_(&�, 0]), u0 # C2+: (0� ).

Then Problem (0.7) has a solution u such that v(!, t)=e&|tu(!, t) is bounded
in (&�, 0]_0 if and only if

(I&P+) u0=|
0

&�
e&sL (I&P+)[ f ( } , s)+LNg( } , s)] ds

&L |
0

&�
e&sL (I&P+) Ng( } , s) ds. (0.8)

In this case, u is given by

u( } , t)=etLP+u0+|
t

0
e(t&s) LP+[ f ( } , s)+LNg( } , s)] ds

&L |
t

0
e(t&s) LP+Ng( } , s) ds

+|
t

&�
e(t&s) L (I&P+)[ f ( } , s)+LNg( } , s)] ds

&L |
t

&�
e(t&s) L (I&P+) Ng( } , s) ds, t�0. (0.9)

Moreover, v belongs to C2+:, 1+:�2 (0� _(&�, 0]) and

&v&C 2+:, 1+:�2(0� _(&�, 0])

�C(&u0&C(0� )+&e&|tf &C:, :�2(0� _(&�, 0])+&e&|tg&C 1+:, 1�2+:�2(�0_(&�, 0])).
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Proof. Let L� =L&|I. For every #>0 such that #+|<
min[Re * : * # _+(L)] we have

&L� kP+e&tL� &L(X )�Cke&#t;

&L� k (I&P+) etL� &L(X )�Ck
e&#t

tk , t>0, k # N. (0.10)

Using (0.10) it is not hard to see that, if u is the function defined by (0.9),
v(t)=e&|tu( } , t) is bounded. Proving that condition (0.8) is necessary for
v to be bounded is similar to [17, Thm. 4.4.6] and is left to the reader.
Concerning P+v, we remark that it satisfies (see [17, Thm. 5.1.18])

{(P+v)$ (t)=L� P+v(t)+P+ ( f� ( } , t)+L� Ng~ ( } , t))&L� P+Ng~ ( } , t), t�0,
P+v(0)=P+u0 ,

with f� = fe|t and g~ = ge|t, so that

P+v(t)=etL� P+u0+|
t

0
e(t&s) L� P+[ f� +L� Ng~ ] ds

&L� |
t

0
e (t&s) LP+Ng~ ds, t�0,

and (0.9) holds.
Let us prove that v # C1+:�2 ((&�, 0]; X ) & B((&�, 0]; C2+: (0� )).

Using estimates (5.10) it is easy to see that P+v is bounded in (&�, 0]
with values in D(L� k) for every k # N. Moreover, since t � f� ( } , t) and
t � L� Ng~ ( } , t) are in C:�2 ((&�, 0]; X ) (see the proof of Theorem 0.1), we
have P+v$ # C :�2 ((&�, 0]; X). It follows that P+v # C1+:�2 ((&�, 0]; X )
&B((&�, 0]; DL(1+:�2, �))/C1+:�2((&�, 0]; X) &B((&�, 0]; C2+:(0� ))
and

&P+v&C1+:�2((&�, 0]; X )+&P+v&B((&�, 0]; C 2+:(0� ))�C(&u0 &X+& f� &+&g~ &).

Let us split (I&P+) v as (I&P+) v=v1+v2 , where

v1 (t)=|
t

&�
e(t&s) L� (I&P+)[ f� +L� Ng~ ] ds, t�0,

v2 (t)=&L� |
t

&�
e(t&s) L� (I&P+) Ng~ ds, t�0.

Since t � f� ( } , t) and t � L� Ng~ ( } , t) belong to C:�2 ((&�, 0]; X ) &
B((&�, 0]; DL (:�2, �)), by [17, Prop. 4.4.5(ii)(iii)] v1 belongs to
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C1+:�2((&�, 0]; X) & B((&�, 0]; DL (1+:�2, �)) / C1+:�2 ((&�, 0]; X)
& B((&�, 0]; C2+: (0� )) and

&v1&C1+:�2((&�, 0]; X )+&v1 &B((&�, 0]; C 2+:(0� ))�C(& f� &+&g~ &).

To estimate v2 we recall that Ng~ # C 1�2+:�2 ((&�, 0]; C1 (0� )) /
C1�2+:�2 ((&�, 0]; DL (1�2, �)) (see again the proof of Theorem 0.1). By
[17, Prop. 4.4.5(ii)] and [17, Prop. 2.2.12(i)], applied with X replaced by
DL (1�2, �), the function

z(t)=&|
t

&�
e(t&s) L� (I&P+) Ng~ (s) ds

is such that z$ is bounded with values in DL (1+:�2, �)/C 2+: (0� ). Since
z$=v2&(I&P+) Ng~ , and (I&P+) Ng~ is bounded with values in
C2+: (0� ), we get v2 # B((&�, 0]; C2+: (0� )) and

&v2&B((&�, 0]; C 2+:(0� ))�C&g~ &.

Let now a<0 and consider the restriction of v2 to [a, 0]. It is equal to
L� w(t), where

w(t)=&e(t&a) L� |
a

&�
e(a&s) L� (I&P+) Ng~ (s) ds

&|
t

a
e (t&s) L� (I&P+) Ng~ (s) ds

=e(t&a) L� z(a)&|
t

a
e(t&s) L� (I&P+) Ng~ (s) ds, a�t�0.

We have just proved that L� z(a)&(I&P+) Ng~ (a, } )=z$(a) # DL(1+
:�2, �), with norm independent of a. By [17, Thm 4.3.16] and the same
arguments used in the proof of Theorem 5.4, we get v2 # C1+:�2

((&�, 0]; X) and

&v2&C1+:�2((&�, 0]; X )�C &g~ &.

Summing up, we find that v # C1+:�2 ((&�, 0]; X) & B((&�, 0];
C2+: (0� )) so that v # C2+:, 1+:�2 (0� _(&�, 0]) and

&v&C 2+:, 1+:�2(0� _(&�, 0])�C(&u0&X+& f� &+&g~ &),

which finishes the proof. K
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