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Abstract 

The number of spanning trees in a molecular graph (its ‘complexity’) has been of recent 
interest and, in this paper, various methods are applied to calculate the complexities of graphs 
that represent the fullerenes - as exemplified by the molecules C,, and C,,, and the notional 
structures C,, (known as ‘handballene’) and CLzO (‘Archimedene’). These graphs are large, 
regular and highly symmetrical and the methods chosen address the computational difficulties 
and advantages presented by these features. The methods discussed are of general applicability 
when the graph under study has at least one of these properties. One of the methods needs only 
‘pencil-and-paper’ working when applied to the two C,, structures, C,, and the dual of C120. 

For C1,,, the evaluation of the (real) determinant of the (complex) matrices that arise was 
carried out on a personal computer. 

1. Introduction 

The spanning trees of a molecular graph are of chemical interest in areas ranging 
from the magnetic properties of conjugated systems [49-511 to concepts arising in 
chemical nomenclature [24]. There has been some recent activity aimed at counting 
the number of spanning trees in a labelled molecular graph (i.e., finding its ‘complex- 
ity’) [27,61,35,36,9,57,64] and, in this paper, we review the several methods that are 
available. We apply some of them to find the complexities of certain graphs represen- 
tative of the family of carbon clusters now becoming known as the fullerenes [42-48, 
67,66,54,20,3-51. 

We have chosen the molecule C&,, structure (I) of Fig. 1 (the prototype of the series 
- Buckminsterfullerene, also known as soccerballene, footballene, truncated 
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( Ill 1 ( IV ) 

Fig. 1. Depictions of three-dimensional models of the carbon-atom connectivity of the four C, carbon- 

clusters (‘fullerenes’) studied: CsO (Buckminsterfullerene) (I) ( an extant molecule), CGO (‘hand’ form) (II) (a 
hypothetical structure), C,, (III) (extant), and C izO (‘Archimedene’) (hypothetical). Each vertex should be 

taken to represent a carbon atom, each edge a chemical bond between two such carbon atoms. 

icosahedral Cco, etc.) and the recently characterised [56] CT0 (III), as well as the 

notional structures [30,22,65] C& (II) (truncated dodecahedral Cso [30,65], dubbed 

‘handballene’ [22,65,4,5]) and [30,22] C 120 (IV) (truncated icosidodecahedral-, or 

great rhombicosidodecahedral Clzo, also called ‘Archimedene’ [30,22,4,5]). These 

graphs are large, regular and highly symmetrical, and the methods we have chosen 

address the computational difficulties and advantages presented by these features. The 

approaches that we discuss are of general applicability when the graph under study 

has at least one of these properties. One of the methods that we describe needs only 

‘pencil-and-paper’ working when applied to the two CsO structures, CT0 and the dual 

of C,,,. For C12e, the evaluation of the (real) determinant of the (complex) matrices 

that arise was carried out on a personal computer. 

The lay-out of the paper is as follows: Since we have been unable to find all the 

relevant results conveniently and simply brought together elsewhere, in one place, we 

take the opportunity in Sections 2 and 3 to present, in a uniform notation, a review of 

the various ways in which the Matrix Tree Theorem [41,7,8,11-17,29,68,21,32,37, 

59,49,50,62,27,33,58,26,60] may be expressed (Section 2) with emphasis (Section 3) 

on the simplifications that arise when the graphs in question are regular. Section 

4 examines the advantages of a device that is available only if the graph is planar. In 

Section 5 we describe in some detail an approach - briefly referred to above - that 
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we have found useful for highly symmetric graphs (which many fullerene graphs are). 

The final sections, Sections 6-8, are devoted to applying these various methods to find 

the complexities of the representative fullerene graphs (I)-(IV) (Fig. l), and to assess- 

ing the computational advantages and drawbacks of the several approaches con- 

sidered. 

2. The Matrix Tree .Theorem 

Let D = (dij) be an (n x n) diagonal matrix associated with a given labelled graph, G, 

such that dii is the degree (valence) of the ith vertex of G and dij = 0, whenever i #j. 

Let A = (Uij) be the standard (n x n) adjacency-matrix of G, i.e., the matrix for which 

1 if the vertices 

Now define a matrix K by 

K=D-A. 

labelled i and j in G are joined by an edge in G, 

K is occasionally referred to as the Kirchhoff matrix [49,50] of G, but it is also known 

as the Laplacian matrix [SS, 57,691 (of G) while, in electrical contexts, it is also 

sometimes called the admittance matrix [17]. From its definition, K is symmetrical 

about its leading diagonal, and each row and each column of it adds to zero; it is, 

therefore, a singular, equi-cofactorial matrix [7, 231, each of its n cofactors of dimen- 

sion (n - 1) x (n - 1) having the same value - say, v. 

The classic Matrix Tree Theorem may then be stated as follows: If t(G) denote the 

number of spanning trees in G (i.e., its complexity), then 

3. Other forms of the Matrix Tree Theorem 

3. I. The complexity of a graph in terms of the characteristic polynomial of its Laplacian 

matrix 

Define K = D - A, as before, and let K(x) = det(Ix - D + A) be the characteristic 

polynomial of K. Then 

K(X) = ~ ( -l)jSjX”-j, 
j=O 

where the coefficient sj is equal to the sum of all those j x j minors of det(K) whose 

principal diagonals contain only diagonal elements of K [2] (and so = 1). 
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Taking j = n - 1 and bearing in mind that, by the Matrix Tree Theorem, any 
(n - 1) x (n - 1) cofactor of K (and, in particular, each of the n diagonal minors of that 
size) is equal to the complexity, t(G), of the graph, we obtain 

t(G) =&). 

Since K is singular, s, = 0. Therefore, 

and we may write 

x=0 

or 

t(G) = ( - l)“- l ; (K'(O)). 

(3) 

Alternatively, sj can be taken as the sum of the products of the zeros of K(x), the 
eigenvalues of K, takenj at a time. Settingj = n - 1 and remembering that one of the 
eigenvalues of the singular matrix K is 0, we obtain [17,21] 

where the product is taken over the other (n - 1) eigenvalues of K (denoted (x~}). We 
note that, as t(G) # 0, none of these is equal to 0: we may say that the product is taken 
over the non-zero eigenvalues of K. 

3.2. The complexity of a regular graph in terms of the characteristic polynomial of its 

adjacency matrix 

Define A as before and let P(A) = det(D - A) be the characteristic polynomial of A. 
Let I denote the degree of a regular graph, i.e., the common degree of its vertices. We 
observe the convention that the variable in the Laplacian polynomial is x and in the 
adjacency polynomial it is 1. We have 

K(x) = det(Ix - D + A) = det(Ix - Ir + A) 

= det(I(x - r) + A) = ( - l)“det(I(r - x) - A). 
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Comparing the last of these expressions with P(A) = det(IA. - A), we obtain the 
identity 

P(i) = ( - l)“K(r - R). 

Eqs. (3) and (4) may therefore be put in the form [17,32] 

and 

t(G) = k (P’(r)). 

(6) 

(7) 

To recast Eq. (5), we obtain from the same identity the relations 

Y - /zj = xi, j = 1,2, . . . ,n, 

among the zeros of K(x) and P(A), or, equally well, among the eigenvalues of K and A, 

provided that the suffixes are assigned suitably. In passing, we note that the simple 
eigenvalue 0 of K implies that there is a simple eigenvalue r of A - a well-known 
result for a graph of degree r [16,23,53,70-731. Formula (5) now becomes [11,22] 

t(G) = i Il(r - A,), (8) 

where the product is taken over the eigenvalues (A,} ((n - 1) of them) that are not 
equal to r. 

3.3. An adaptation of the results of the preceding section to non-regular graphs 

The addition of loops to a graph produces another of the same complexity. It is 
possible to add loops to a graph in such a way that the modified graph is regular. The 
formulae of the preceding subsection then apply to it; and its complexity, and thus 
also the complexity of the original graph, may be calculated from them. This is part of 
the concept of ‘row-regularisation’, introduced by Waller [70-721. 

Let N be a number whose value will be discussed later. Define 

AP = NI - K. 

If N is an integer not less than the greatest dii, then AP can be interpreted as the 
adjacency matrix of a graph modified - or ‘regularised’, as explained - (N - dii) 
loops having been added to vertex i. The degree of this modified graph is N and the 
formulae of Section 3.2 apply. Waller [70-721 sets N = (n - l), Wilson [73] sets 
N = max& [49]. 
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If we leave the value of N undecided, we can still construct F’(I) = det(AI - A”), 

though this will not, in general, be the characteristic polynomial of the adjacency 
matrix of an (unweighted) graph, merely of the matrix AP. However, 

Pp(A) = det(l1 - AP) = det(l1 - NI + K) 

= ( - l)“det((N - A)1 - K) 

= ( - l)“K(N - 1). 

PP(A) is, therefore, ( - 1)” times the Laplacian characteristic polynomial of the original 
graph, with a change of variable from x to (N - A). There is thus no constraint on the 
value of N -unless a pictorial interpretation in terms of unweighted graphs is desired 
for an essentially algebraic manoeuvre. 

4. Methods applicable to planar graphs only 

Planar graphs (only) have the general property that the complexity of a graph is 
equal to the complexity of its dual [6]. Accordingly, any general method can be 
applied to the dual, with advantage if it is smaller (and, perhaps, regular). This was an 
idea developed by one of the present authors and Gutman and Essam [27]. 

In formulating and applying their theorem, Gutman et al. [27] considered a judi- 
ciously chosen cofactor of the Laplacian matrix appropriate to the complete (‘geomet- 
ric’) dual of G - a cofactor which is, in effect, the determinant of a matrix that, itself, is 
a modification of the Laplacian matrix describing a graph called the ‘inner dual’ of G. 
This inner dual is obtained from the complete (‘geometric’) dual by deleting the 
so-called ‘infinite-face’ vertex [27], and all the edges incident upon it. The spanning- 
tree counting-theorem of Gutman et al. [27] then states that 

t(G) = det(B* - A*), 

where A* is an adjacency matrix of the inner dual and B* is a diagonal matrix with 
elements bl,bz, . . . , b,,, where bi is the number of edges in the boundary of the face of 
G that is in l-l correspondence with the vertex labelled i in the inner dual (which, in 
total, has n* vertices). This method, though frequently offering a major short-cut [27], 
does, however, apply only to planar graphs [27,61,39,40] - which category does, of 
course, include the molecular graph of, for example, Buckminsterfullerene (I) and, 
indeed, such graphs of all the fullerenes. CsO (I) is undoubtedly geometrically non- 
planar, but, since its vertices are disposed over the surface of a sphere, its molecular 
graph is, in the graph-theoretical sense of the word, planar [61,9]. Some of the present 
authors have already applied the theorem of Gutman et al. [27] to CeO (I) [9], while 
John and Sachs have developed an algorithmic version of it [35,36], which has also 
subsequently been used to confirm the previously established [9] spanning-tree count 

of C60 (I) c341. 
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5. Methods for graphs with much symmetry 

In two papers of comprehensive scope, Davidson [ 191 and Byers Brown [lo] have 

used group-theoretical methods to determine the characteristic polynomials of sym- 

metrical graphs. Not surprisingly, these methods show to best advantage when there 

is much symmetry. With remarkable anticipation, Davidson [ 191 crowned his exposi- 

tion - published in 1981, four years before the announcement of C&‘s diagnosis [47], 

and aptly described by Byers Brown [lo] as a ‘touv de force’ - with a calculation of 

the eigenvalues of the graph representing Buckminsterfullerene! Other approaches 

capitalising on symmetry (including one [31] that has been applied [20] to C&) have 

used procedures that decompose a larger (‘composite’ [18]) graph into smaller 

component-subgraphs [31,55,38,28,18,20]. 

Our treatment (which we developed before these earlier papers came to our 

attention) is mathematically much more elementary and does not rely on the avail- 

ability of character tables or on the use of any other aspects of formal group-theory 

[19, lo], nor does it make explicit appeal to any graph-splitting algorithms [31,55,38, 

28,181. The underlying ideas are closer to Davidson’s [19] than to those contained in 

the other papers we have mentioned that make use of symmetry [31,55,38,28,18, 

10,201. 

In this section, we therefore describe in some detail how to use the symmetry of 

a graph to find the characteristic polynomial of its adjacency matrix as the product of 

factors of relatively low degree. The complexity of the graphs that are considered here, 

which are all regular, may be calculated as in Section 3.2. For graphs that are not 

regular a modification leading to the Laplacian characteristic polynomial is available; 

it is briefly described at the end of this section. Alternatively, one of the ‘regularisation’ 

procedures of Section 3.3 can be employed as a first step. One feature of the approach 

is that no special software is needed. In fact, only a hand-held calculator (albeit 

programmable) was used to obtain the results for the four graphs ((I)-(IV) of Fig. 1) 

considered in this paper. The factors of the characteristic polynomial so obtained are 

intrinsically related to (one aspect of) the graph’s symmetry, and so they may perhaps 

be of independent interest; the eigenvectors are also available, as a by-product. This 

method for calculating eigenvalues was, in essence, used in our recent study of 

hexagonal species embedded on a torus [39]. The general isomorphism between 

determinants and graphs (weighted, directed and looped) should be borne in mind in 

this approach because some quantities or expressions that arise as determinants can 

conveniently be evaluated by the Sachsian method [64,25,1,63]. 

Suppose that T is an automorphism of the graph which expresses one of its 

symmetries, i.e., which leaves connections between the vertices invariant. It is possible 

to select a basis for the eigenvectors of the graph so that each vector in it is invariant, 

up to multiplication by a non-zero constant, under T. Consider a particular vertex, 

say I/,, and apply T repeatedly. The vertex will pass through a succession of positions, 

1/i, V2, , V, _ 1, till V, coincides with V, If T k is not the identity, further applications 

of T, up to its period, will repeat this cycle; it is clear that k must be a factor, proper or 
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not, of the period of T. If the elements aO, al, . . . , ak _ 1 of an eigenvector selected as 
above correspond to the vertices V,, V,, . . . , vk _ 1, then they must take the form 

ai = a~,$, (i = O,l, ... ,k - 1) 

for some a (possibly zero), with wA one of the kth roots of 1, real or complex. If these 
elements do not constitute the whole eigenvector we select a new vertex and perform 
a similar tour. Eventually, the eigenvector (v, say) will be expressed in the form 

v = (a,ao,, a&, . . . ,a&-‘, b, bug, . . . ,c,coc, . . . )‘. 

By allowing the various roots of 1 to assume all their possible values (in general, 
subject to certain conditions of consistency, described later), we construct the form of 
all the eigenvectors of the basis and from that proceed to the determination of the 
characteristic polynomial of the graph. 

By way of illustration, let us apply what has been sketched out so far to the graph of 
CT0 (III). The automorphism T chosen may be described as rotation through 72” 
( = 274.5) about a ‘North-South’ axis, followed by a reflection in the plane of the 
‘Equator’ - see structure (III), of Fig. 1, which shows the molecule metrically. It is 
clear that its period is 10. Sixty of the 70 vertices are arranged in six sets of 10, the 
remaining 10 in two sets of five. The Schlegel diagram shown in Fig. 2 indicates the 70 
elements of an eigenvector alongside the corresponding vertices, by use of an ab- 
breviated version of the notation described above. oA, c&, wc, mD, wE, and oF are all 
equal to w, a 10th root of 1; op and WQ are both equal to R, a 5th root of 1. 

Now we return to the general case. The eigenvalue 1 belonging to the eigenvector 
v obeys Av = Av, where A is the (n x n) adjacency matrix of the graph. Of the n scalar 
equations so represented, k will take the form 

laoi = c ho.&, (i=O,l, . . . . k-l), 

Fig. 2. A CT0 eigenvector. To identify any element, refer to the small diagram for its ‘type’ (a, b, ,1; p, q) 

and to the numbers for its suffix (or, equivalently, for the power of o or of a). The numbers in the pentagons 

apply to a, b, , f and those in the hexagons apply to p and 4. 
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where the sum is taken over the vertices connected to Vi. If all the oH are equal to wA, 

then these k equations are not independent, each being simply a multiple of that 

corresponding to i = 0. If the w’s are not all equal, the equations will not be consistent 

unless certain relations hold good: these are the conditions of consistency mentioned 

earlier. When they are satisfied, the k equations are again simply multiples of the i = 0 

one. Continuing in this way, we reduce the original y1 equations to just one for each 

subset of vertices related by T. We now exclude zero vectors in the usual way by 

requiring det (AI - M) to be 0, where M is the matrix of the residual set of equations, 

just described, and I is the appropriate unit matrix. If we do not solve for i but instead 

evaluate the determinant in terms of it (Sachs’ method [64,25,1,63] is convenient for 

this in the C,,, case) we obtain one factor of the characteristic polynomial from each 

new permitted combination of the various 0’s. The complete characteristic poly- 

nomial is thus built up in factor form. 

Apply the foregoing to the graph of Co, referring to Fig. 2 as required. Four 

equations contain only w (and not p, q or Q) and so are part of the reduced set as they 

stand. They are 

Au =(w” +&)a + b 

Lb = a + c +d 
ic = b + 04d + e 

id = b + w6c +f 

The remaining four are typified by 

ILe = 

/If = 

$I = 

i,q = 

C +f+p 
d + e fq 

(1 + 05) e + Q4q 

(1 + w’) f + Qp 

and all the equations of this type are mutually consistent if and only if (o - Q)p = 0. 

(w - s2)q = 0, (w - Q)(l + w’)e = 0, (w - Q)(l + 05)f= 0. If w = R, then each 

must have one of the values cos (qt) + i sin(Ft) for t = 0, 1,2,3,4. Since the matrix 

M is (8 x 8), this supplies 5 x 8 = 40 of the 70 degrees of the characteristic polynomial. 

If p = 0, q = 0, then either e = 0, f = 0 or (1 + 05) = 0. The former leads to 

u = b = c = d = 0 and so is not admissible. The latter requires o = cos($ + qr) + 

i sin(g + Fr) for t = 0, 1,2,3,4. The matrix M is now only (6 x 6) and so 5 x 6 = 30 of 

the 70 degrees, all that remain, are supplied. 

The two determinants det(A - M) are conveniently evaluated by drawing up the 

related looped and weighted directed graphs and using Sachs’ method [64,25,1,63]. 

The factors of degree 8 are 

/Is - ki’ - 12A6 + 10kA5 + (k’ - 3k + 41)A4 + (3k2 - 26k - 2)A3 

- (6k’ - 12k + 44)A2 - (5k2 - 19k - 2);1 - (2k3 - 7k2 + 5k - lo), 

where k = 2cos(Ft) for t = 0,1,2,3,4. 
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When t = 0, the expression can be written as 

(2 - 3)(1 + 1)@2 - 2)@2 - 2/2 - 1)(/P + 21 - 2), 

showing the factor (1 - 3) which must be identified to calculate the complexity by the 
formula 

1 P(l) 
70 (A - 3) ( )I 1=3’ 

where P(i) is, in this case, the characteristic polynomial of the molecular graph of CT0 
(III). 

The factors of degree 6 are 

A6 + kAs - 714 - 5ki3 + (k’ + k + 10)12 + (k2 + 5k - 2);1- (k2 + 3k + 2), 

where k = 2cos($ +yt) for t = 0,1,2,3,4. 

The numerical stage of the calculation is made more convenient by the observation 
that all the factors must take the form (U + v$), where ZJ and o are rational numbers 
and the surds (if u # 0) must appear in conjugate pairs. Those occurring in the factors 

of degree 8 are 1125 + 323$, those in the factors of degree 6 are 325 f 7Ofi. 
The complexities of the three other graphs among those considered (structures 

(I)-(IV) shown in Fig. 1) were also calculated by this method. The reader may find that 
picking labour-saving automorphisms has some interest. 

To adapt the method to graphs that are not regular we may proceed as described till 
the stage of evaluating the determinants by Sachs’ method [64,25,1,63] is reached. 
From (12 - M) we now construct (Ix - D + M) where D is the diagonal matrix 
showing the original degrees of the vertices concerned (as defined in Section 2). This is 
done by modifying the weights of the loops and changing the signs of the edge- 
weightings. We can now find the characteristic polynomial of the Laplacian matrix of 
the graph (or just the term in x) and thence the complexity as the absolute value of the 
coefficient of x divided by the number of vertices (as per Eqs. (2) and (3) in Section 3). 
This adaptation is useful when the smaller but non-regular dual of a planar graph is 
used to calculate its complexity - i.e., when the method of this section is combined 
with the key idea of Gutman et al. [27] (Section 4). For example, for Buckminsterful- 
lerene (I), the calculations involve only graphs with 3 or 4 vertices, and, for Ar- 
chimedene (IV), only graphs of 6 or 7 vertices. 

6. Calculations 

In calculating the complexities of the representative fullerenes (I)-(IV), we have 
used the following methods of computation. 

Method A. This is based on the ideas of Section 3 (Eq. (6)). The required character- 
istic polynomials of the appropriate adjacency matrices were obtained by (i) taking the 
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available [4,5,48] four-decimal-place eigenvalues and finding the polynomials 

(irreducible over the integers) of which they are the approximate zeros, and (ii) using 

these to reconstitute the characteristic polynomial, P(i,), of the graph in question, 

factorised over the integers. Attention paid to the multiplicities of the various zeros 

greatly facilitates this reconstitution. It should be noted that some care was needed 

over this: the published values of Balasubramanian and Liu [4,5] contained errors 

[.52,3] but Liu’s thesis [48] - kindly supplied to us by Professor Balasubramanian 

[3] -- reports more-accurate data. The polynomials deduced by this process (conve- 

niently presented for computation of (P(2)/(3. - 3))lAT3), are the following. 

C,,(I) Buckminsterfullerene: 

(n - 3)(1” + 2)4(1” - 1)9@’ + 33, + 1)3(22 + i - 4)4 

(i2 + I. - 1)‘(i2 - I. - 3)5(i4 - 3JW3 - 2A2 + 7i, + 1)3. 

C,,(H) (‘hand’ form): 

(2 - 3)/2’O(i, + 2)“(1”2 - i - 1)4(i”2 - i, - 3)4 

(A2 - i, - 4)5 (A” - 2ib3 - 53.’ + 6A + 4)j. 

C,,, (IV) (‘Archimedene): 

(;b - 3)(,? + 3)(i - 1)6 (1. + l)“(n” - 4A3 + i2 + 6i + 1)3 

(3.4 + 4A3 + j-2 - 6/2 + 1)3(;.4 - 6Ju2 + 22 + 2)“(i4 - 6A2 - 2/l + 2)4 

(AS + 3jt4 - 3A3 - 1U2 - 1 + 3)‘(1.” - 3i4 - 3iL3 f 11i2 - /z - 3)5. 

It may be noted that C120 (IV) has a bipartite molecular graph - this is what in 

chemical jargon is called an ‘alternant hydrocarbon’ [53] - since it has no odd- 

membered fundamental circuits (in chemical terminology: it has no odd-membered 

rings). Since, in addition, the graph of C120 has an even number of vertices, the 

characteristic polynomial of the adjacency matrix of (IV) is an even function [53], as 

found when, in the above, factors of like multiplicity are combined together. Thus, the 

characteristic polynomial of C 120 (IV) just stated may also be written: 

(i2 - 9)(A2 - 1)6(>“8 - 14R6 + 51J4 - 34jt2 + 1)3 

(jW8 - 12Jh + 40A4 - 28Eti2 + 4)4(j.‘o - 15ib8 + 73i6 - 133i4 + 67Jb2 - 9)‘. 

Method B. This was the device of Gutman et al. [27], described in Section 4, 

applicable because the fullerenes do have planar molecular graphs. Modular arithme- 

tic was invoked in order precisely to evaluate the resulting 21-digit complexity on 

a personal computer and without special software ~ as described by Brown et al. in 

[9]. This method was used only for CsO (Buckminsterfullerene) (I). 

Method C. This again exploits the theorem of Gutman et al. [27] (Section 4), but 

the exact complexities were evaluated directly on a NeXT workstation, by means of 

versions 2.0, 2.1 and 2.2 of the software Mathematics [74]. 
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Method D. Like Method B, this procedure was applied only to CeO (Buckminster- 
fullerene) (I). It consists of using the algorithmic version of the Gutman-Mallion- 
Essam approach [27], devised by John and Sachs [35,36]. For CeO (Buckminsterful- 
lerene) (I), this algorithm reduces the size of the determinant to be evaluated from 
(31 x 31) to (11 x 11) - as fully described in [34]. 

Method E. This is the scheme described in Section 5, appropriate for highly 
symmetric graphs. All four species (I)-(IV) of Fig. 1 were treated by this method. 

7. Results 

(a) CsO (I) Buckminsterfullerene: Methods A-E all confirm the complexity as 

375 291 866 372 898 816 000, 

or, as a product of powers of prime numbers, 

225 x 34 x 53 x llS x 193 ( % 3.75 x 102O). 

This value, computed by Methods B and D, has been reported previously, in Refs [9] 
and [34], respectively. Trinajstic and co-workers have also recently confirmed it, on 
two occasions [57,69], by Method A - they used Eq. (5). It should be noted that 
although the complexity of CeO (I) expressed as powers of prime numbers given in [34] 
agrees with the above, there is a mis-print in the 21-digit number claimed in [34] to be 
its equivalent; the 12th figure of this integer should be ‘2’ (as here, and as in [9, 57, 
69]), rather than the ‘3’ unintentionally alleged in [34]. 

(b) CsO (II) (‘ha&form). Methods A, C and E give the complexity as 

4 982 259 375 000 000 000, 

which is equal to 

2’ x 313 x 514 ( z 4.98 x 10”). 

(c) C,,(ZZZ). By Methods C and E, we obtain for the complexity 

1 136 544 737 068 261 950 000 000, 

which is 

i.e., approximately 1.14 x 1024. 

(d) C12,, (Zlr) (‘Archimedene’). Methods A, C and E give the complexity as 

21 789 262 703 685 125 511 464 767 107 171 876 864 000, 
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which, as a product of powers of prime numbers, is 

231x315x53x74x175x234x1813 

or, approximately, 2.18 x 104’. 

8. Conclusions and assessment 

The several methods discussed have their own respective benefits and snags. 

Method A is very convenient if, as in the case of (I), (II) and (IV), characteristic 

polynomials or eigenvalues of K or A are easily obtainable. Procedures based directly 

on the Matrix Tree Theorem (Section 2 - Eq. (1)) generally require appropriate 

software and suitable machines for the input and evaluation of determinants that are 

not only large in dimension - at least (59 x 59), for application of the Matrix Tree 

Theorem to either Ceo structure ~ but are also large in value (ca. 3.75 x 10” for Ceo 

(I)). The latter problem may be overcome by taking advantage of modular arithmetic, 

as in Method B, a generally applicable method, if the calculations involve only 

integers; knowledge of an upper bound for the result is, however, a prerequisite. The 

difficulties caused by the large dimensions of the determinants under study may partly 

be obviated for planar graphs (as in Methods B, C and D) by capitalising on the 

theorem of Gutman et al. ([27], Section 4) which makes use of the inner dual ~ but all 

the disadvantages already stated still apply if the dual itself is also large. (For C,,, 

(IV), use of the inner dual would lead to the evaluation of a (61 x 61) determinant 

instead of a (119 x 119) one.) Method D [34] can further reduce the determinant size 

~ e.g., for C,, (I) from (31 x 31) by Methods B and C down to (11 x 11) [34] 

- although the algorithm involved does require some considerable practice and skill 

for its successful application (see, for example, Ref. [34]). 

The approach that we found suitable for those not having access to special software 

and/or large computers, and one of only two methods among Methods A-E that we 

have tested on each of the species (I)-(IV), is Method E. It must, however, be 

emphasised that a great deal of symmetry is necessary if the reduction in determinant 

size is to be of value. Although (or, maybe, because) it has the rustic attraction of 

being, in favourable cases, a ‘pencil-and-paper’ scheme, Method E - at least in our 

hands - tended to attract careless errors when a Sachsian evaluation [64,25,1,63] 

was involved. Checking is therefore essential. 
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