
Discrete Mathematics 281 (2004) 137–148
www.elsevier.com/locate/disc

Maximum sizes of graphs with given
domination parameters

Peter Dankelmanna , Gayla S. Domkeb , Wayne Goddardc;1 ,
Paul Groblerd , Johannes H. Hattinghb , Henda C. Swarta

aSchool of Mathematical Sciences, University of Natal, Durban, South Africa
bDepartment of Mathematics and Statistics, Georgia State University, USA

cDepartment of Computer Science, University of Natal, Durban, South Africa
dDepartment of Applied Mathematics, Stellenbosch University, South Africa

Received 28 January 2002; received in revised form 1 July 2003; accepted 16 July 2003

Abstract

We 2nd the maximum number of edges for a graph of given order and value of parameter for
several domination parameters. In particular, we consider the total domination and independent
domination numbers.
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1. Introduction

A set S of vertices is a dominating set of a graph G if every vertex not in S is
adjacent to a vertex in S; it is a total dominating set if every vertex is adjacent to a
vertex in S (so that a total dominating set exists only for graphs without isolates). A
set is an independent dominating set if it is both dominating and independent (no edge
joins two members). The domination number �(G), total domination number �t(G), and
independent domination number i(G), are the minimum cardinalities of a dominating,
total dominating, and independent dominating set of G, respectively. For much about
these, consult Ref : [6].
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Vizing [10] determined the maximum number of edges in a graph with a given
domination number. For a graph with order n and domination number k, he showed
that the maximum size is �(n−k+2)(n−k)=2� provided k¿ 2. However, we are more
interested in what the extremal graphs look like. So we state his result as follows. By
an edge cover we mean a set of edges such that every vertex is incident with at least
one of the edges.

Theorem 1 (Vizing [10]). Consider graphs of order n with domination number k¿ 2.
Then the maximum size is uniquely attained by the graph constructed as follows: take
the complete graph on n− k+2 vertices and remove a minimum edge cover and then
add k − 2 isolated vertices.

A rendition of the proof is given in [6]. Other people have generalised the result,
see for example [5,7–9]. If we restrict our consideration to bipartite graphs, then the
following can be read out of results from Ferneyhough et al. [4]. By the almost balanced
complete bipartite graph on n vertices we mean K(�n=2�; �n=2�).

Theorem 2 (Ferneyhough et al. [4]). Consider bipartite graphs of order n with dom-
ination number k¿ 2. Then the maximum size is attained by the graph constructed
as follows: take an almost balanced complete bipartite graph on n − k + 2 vertices
and add k − 2 isolated vertices.

Here, we consider the problem of the maximum size for the independent and total
domination numbers, both for general graphs and when restricted to bipartite graphs.
The question for other domination parameters was looked at in [1,3,9], inter alia.

What we 2nd most interesting is the behaviour of the extremal graphs (that is,
those with the maximum number of edges). For example, consider graphs with total
domination number k where k is even. Then, we show that an extremal graph is the
complete graph together with some isolated edges. On the other hand, if one restricts
consideration to only the bipartite graphs, then an extremal graph is a balanced complete
bipartite graph with an edge cover removed, together with some isolated edges. In
contrast, for ordinary domination the edge cover is removed in the extremal graph for
general graphs.

We need the following notation. For a graph G, the set of vertices is V and
the set of edges is E. We use N (v) for the neighbourhood of a vertex v; N [v] for
{v} ∪ N (v); N (S) for the neighbourhood

⋃
v∈S N (v) of a set S; and for a set X of

vertices NX (v) = N (v) ∩ X . The maximum degree is denoted by I. Further, q(G) is
the number of edges in G, and q(A; B) is the number of edges with one end in A and
one end in B.

2. Total domination

We will need the following bound of Cockayne et al. [2] on the total domination
number:
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Proposition 3 (Cockayne et al. [2]). For a connected graph G without isolated ver-
tices of order n¿ 3 it holds that �t(G)6 2n=3.

For 16 k6 n de2ne q(n; k) as follows:

q(n; k) :=




(
n− k + 2

2

)
+
k
2
− 1 if k is even;

(
n− k + 1

2

)
+
k
2

+
1
2

if k is odd:

We will need the following properties of q(n; k):

Lemma 4. (a) If 16 a6 c and 16 b6d then q(c + d; a + b)¿ q(c; a) + q(d; b),
unless a= c and a is odd, or b= d and b is odd.

(b) If 26 k6 n− 1 then q(n− 1; k)¡q(n; k)¡q(n; k − 1).
(c) If 16 k6 n and 06 ‘6 k − 1 then q(n− ‘; k − ‘)6 q(n; k − 1).
(d) If 36 k6 n− 2 and k is odd then q(n− 1; k) + n− k = q(n; k) = q(k − 1; k −

2) + (n− k)(n− k + 1)=2.

Proof. Arithmetic.

Theorem 5. Let G be a graph (without isolates) with order n and with total domi-
nation number k¿ 2. Then q(G)6 q(n; k), and this bound is sharp.

Proof. Suppose the bound is false for some n and k. Then let G be a counter-example
with minimum order.

Then G is connected, since by part (a) of the above lemma q(n; k)¿ q(m; i)+q(n−
m; k−i). (Note that a graph of odd order cannot have total domination number equal to
its order.) In particular, I¿ 2. The bound is clearly true for k = 2 (as q(n; 2) =

( n
2

)
).

So k¿ 3. By Proposition 3, k6 2n=3.
Let u be a vertex of maximum degree I in G. Let A = {v1; v2; : : : ; vI} be the set

of neighbours of u and let B= V − (A ∪ {u}). Since k¿ 3, B is nonempty.

Claim 1. |NB(vi)|6 n− I − k + 1 for all i∈{1; : : : ;I}.

Let Si = {u; vi}∪ (B−NB(vi)). If the graph G[Si] induced by Si contains no isolated
vertex, then Si is a total dominating set of G. If G[Si] contains isolated vertices, these
vertices must be in B; replacement of each such vertex by a neighbour in A ∪ NB(vi)
yields a total dominating set of G with at most |Si| vertices. That is, �t(G)6 |Si|.
Hence

k6 |Si| = n− I + 1 − |NB(vi)|;
which proves the claim.

Claim 2. I6 n− k.
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By the above claim, n−I− k + 1¿ 0, so I6 n− k + 1. Assume I = n− k + 1.
Then |NB(vi)| = 0 for all i∈{1; : : : ;I}. So there is no edge between A and B, which
contradicts the fact that G is connected.

Claim 3. q(G[B])6 q(n− I − 1; k − 2).

Let IB be the set of isolates in G[B] with |IB| = l, and let S be a minimum total
dominating set of G[B− IB]. If l= 0, then T1 = S ∪{u; v1} is a total dominating set of
G, and so |T1|¿ k. Then �t(G[B])¿ k− 2 and by the above lemma, q(G[B])6 q(n−
I − 1; k − 2).

If l¿ 1, then choose vertex vi that has a neighbour in IB, say x, and let T2 = S ∪
(IB−{x})∪{u; vi}. The set T2 dominates G. If any vertex w in G[T2] is isolated, then
it is a vertex of IB, and one can replace w in T2 by a neighbour in A. Thus, T2 can
be modi2ed without increasing its cardinality to be a total dominating set of G, and
so |T2|¿ k. Then �t(G[B− IB])¿ k − 1 − l.

Hence, since |B| = n− I − 1, and by the above lemma,

q(G[B]) = q(G[B− IB])6 q(n− I − 1 − l; k − 1 − l)
6 q(n− I − 1; k − 2): (1)

It can be checked that the inequality still holds for k = 3 if we extend the de2nition
of q(n; k) to allow k = 1.

We now use Claim 1 to bound the number of edges in G.

2q(G) = deg(u) +
I∑
i=1

deg(vi) + q(A; B) + 2q(G[B])

6 (I2 + I) +
I∑
i=1

|NB(vi)| + 2q(G[B])

6I2 + I + I(n− I − k + 1) + 2q(G[B])

= I(n− k + 2) + 2q(G[B]): (2)

Inequality (2) and Claim 3 together yield

2q(G)6I(n− k + 2) + 2q(n− I − 1; k − 2): (3)

Assume now that k is even. The right-hand side in inequality (3) is a parabola as
a function of I, and since the second derivative is positive, it is maximised at an
extremum viz., I = 2 or I = n − k. Some arithmetic shows that this extremum is
2q(n; k) (the value for I = 2), unless k¿ n− 1, which is impossible. Hence we have
a contradiction.

So k is odd.
Suppose 2rst that I6 n − k − 1. Again the right-hand side of inequality (3) is

maximised at extremum of I = n− k − 1 or I = 2. Arithmetic shows these have the
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same value, viz. 2q(n; k) + 2. That is,

2q(G)6 2q(n; k) + 2:

Since G is a counter-example, q(G)¿q(n; k). Thus the above inequality holds with
equality.

Therefore, inequality (3) and so inequality (2) holds with equality, which implies in
turn that Claim 1 holds with equality. That is, |NB(vi)| = n − I − k + 1 for all i. In
particular, this is true for i=1. Hence, by the proof of Claim 1, the number of vertices
needed to dominate the set B1 = B − NB(v1) equals |B1|. Hence G[B1] contains no
vertex of degree greater than 1 and no vertex in NB(v1) has more than one neighbour
in B1. In particular, q(G[B1])6 |B1|=2 and q(B1; NB(v1))6 |NB(v1)|. Therefore,

2q(G[B])6 (|B1| + 2|NB(v1)|) + 2

(
|NB(v1)|

2

)

= k − 2 + (n− I − k + 1)(n− I − k + 2):

In conjunction with inequality (2), we obtain

2q(G)6I(n− k + 2) + k − 2 + (n− I − k + 1)(n− I − k + 2): (4)

The right-hand side of inequality (4) is maximised if I = n− k − 1 or I = 2. Some
arithmetic shows that these give the same value viz. 2q(n; k) + 1. Thus

2q(G)6 2q(n; k) + 1:

This implies that q(G)6 q(n; k) by integrality, a contradiction.
Therefore, I = n− k.

Claim 4. If there is a pair of vertices x and y such that (N (x)−{y}) ⊆ (N (y)−{x}),
then G − y has isolated vertices.

Suppose there exists such a pair and G − y has no isolates. Then G − y has a
total dominating set and any total dominating set of G − y is one for G also. So
�t(G − y)¿ �t(G). Thus, by Claim 2 and the above lemma,

q(G) = q(G − y) + deg(y)6 q(n− 1; k) + n− k = q(n; k);

a contradiction.

Claim 5. G − u has no isolates.

Suppose v1 is isolated in G − u; that is, deg(v1) = 1. If we return to the derivation
of inequality (2), it follows that now 2q(G)6 (n− k)(n− k + 1) + 1 + 2q(G[B]), and
so by the above lemma

2q(G)6 (n− k)(n− k + 1) + 1 + 2q(k − 1; k − 2) = 2q(n; k) + 1;

a contradiction, since q(n; k) is integral.

So G − u has no isolates. This means by Claim 4 that the neighbourhood of any vi
cannot be contained in A. Combined with Claim 1, it follows that every vertex in A
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has exactly one neighbour in B. In particular,

q(A; B) = |A| = I: (5)

A vertex in B cannot be adjacent only to vertices of A, since then its neighbourhood
would be a subset of N (u), contradicting Claims 4 and 5. So every vertex of B has a
neighbour in B. That is, G[B] has no isolates. Note that |B| = k − 1.

We claim that �t(G[B])¿ |B|−1. For otherwise, one can add u and v1 to a minimum
total dominating set of G[B] to obtain a total dominating set of G of cardinality at
most k − 1, a contradiction. By Proposition 3, this means that at most one component
of G[B] is not K2, and if so, that component must have three vertices. But since |B|
is even, G[B] is the union of K2’s. In particular, q(G[B]) = |B|=2.

Suppose vertex x1 ∈B is an end-vertex in G. Then let x2 be its neighbour in B.
Since G is connected, x2 is adjacent to a vertex of A, say v1. Since G − v1 has no
isolates, this contradicts Claim 4 with x = x1 and y = v1. Thus, every vertex in B has
a neighbour in A.

Recall that every vertex in A has a unique neighbour in B. Let x1 and x2 be any two
vertices of A with diMerent neighbours in B. Extend to a set S by choosing for each
remaining vertex of B any neighbour in A. So |S|=n−I−1. Since |S|¡k, the set S
is not a total dominating set of G. Thus, there is a vertex w not totally dominated by
S (that is, w 
∈ N (S)); necessarily w∈A. If x1 and x2 are adjacent then w is distinct
from them.

If we now consider the complement graph, this means that either x1 and x2 are
adjacent in the complement, or they have a common neighbour w∈A in the comple-
ment. That is, x1 and x2 are connected in NG[A]. Since this holds true for any pair with
diMerent neighbours in B, it follows that NG[A] is connected. Thus there are at least
|A| − 1 edges missing from G[A]. Hence,

q(G[A])6

(
I

2

)
− (I − 1): (6)

From inequalities (1), (5) and (6), and the value of I, it follows that

q(G)6 deg u+ q(G[A]) + q(A; B) + q(G[B])

6I +

(
I

2

)
− (I − 1) + I + (k − 1)=2

= q(n; k);

as some arithmetic shows. But this is a contradiction.
In order to see that the bound is sharp, consider the graph G(n; k) de2ned as follows.

If k is even, let G(n; k) be the union of Kn−k+2 and (k − 2)=2 copies of K2. If k is
odd, let G(n; k) be the graph obtained from G(n− 2; k − 1) by subdividing one edge
of the component isomorphic to Kn−k+1 twice. In both cases, the graph G(n; k) has
order n, total domination number k and size q(n; k).
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3. Total domination number in bipartite graphs

We are only able to establish a sharp result for k even.
For 16 k6 n de2ne

r(n; k) := ((n− k)(n− k + 6) + 2k)=4:

Theorem 6. Let G be a bipartite graph with order n and total domination number k.
Then q(G)6 r(n; k), and this bound is sharp for k¿ 4 and even.

Proof. The proof is by induction on k. It is easily checked that any bipartite graph
has at most r(n; 2) edges. So the bound is true for k = 2 (even if not sharp).

So, let G be a bipartite graph with �t(G) = k¿ 3. We may assume that G is con-
nected, since some arithmetic shows that r(n; k)¿ r(m; i) + r(n− m; k − i).

Assume G has bipartition V1; V2. Choose u∈V1 and v∈V2 such that uv∈E and
deg u + deg v is as large as possible. Say deg u = d1, deg v = d2 with d1¿d2. Since
G is connected and a star has total domination number 2, d2¿ 2.

Let A = N (v) − {u}, B = N (u) − {v}, C = V1 − N (v) and D = V2 − N (u). Let
%= |C ∪D|= n−d1 −d2. Pick vertices x∈A and y∈B such that |NC(y)| and |ND(x)|
are as large as possible. Then let C∗ = NC(y) and D∗ = ND(x).

Now, consider the set S={u; v}∪C∪D. There is a total dominating set of cardinality
(at most) |S|, for if w∈ S is isolated, then one can replace w by a neighbour in A∪B.
It follows that |S|¿ k, and so

%¿ k − 2: (7)

Next, consider the set T={u; v; x; y}∪(C−C∗)∪(D−D∗). There is a total dominating
set of cardinality (at most) |T |, for if w∈T is isolated, then one can replace w by a
neighbour in (C∗ ∪ D∗ ∪ A ∪ B) − {x; y}. It follows that |T |¿ k, and so

|C∗| + |D∗|6 %+ 4 − k: (8)

Let H denote the subgraph induced by the nonisolated vertices of G[C ∪D] and let
L denote the isolates, |L| = l. Let U be a minimum total dominating set of H . For
each vertex of L, pick a neighbour in A ∪ B and let L′ denote the resultant set. Then
U ∪ L′ ∪ {u; v} totally dominates G and thus �t(H) = |U |¿ k − 2 − l. Thus, by the
inductive hypothesis,

q(G[C ∪ D])6 r(%− l; k − 2 − l) = r(%; k − 2) − l=26 r(%; k − 2): (9)

By the choice of u, each vertex in A has degree at most d1. So, the sum of degrees
of the vertices in A ∪ {u} is at most d1d2. The same bound holds for the sum of
degrees of vertices of B ∪ {v}. The sum of degrees of the vertices in C ∪ D is at
most 2q(G[C ∪D]) + q(C; B) + q(D; A). By the choice of x, a vertex in A has at most
|D∗| neighbours in D and so q(D; A)6 (d2−1)|D∗|. Similarly, q(C; B)6 (d1−1)|C∗|.
Thus, using inequality (9),

2q(G)6 2d1d2 + 2r(%; k − 2) + (d1 − 1)|C∗| + (d2 − 1)|D∗|:
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Since d1¿d2 and by inequality (8), this expression is maximised as a function of
|C∗| and |D∗| when |C∗| = %+ 4 − k and |D∗| = 0. Thus,

2q(G)6 2d1d2 + 2r(%; k − 2) + (d1 − 1)(%+ 4 − k): (10)

So,

4q(G)6E := 4d1d2 + (%− k + 2)(%− k + 8) + 2(k − 2)

+ 2(d1 − 1)(%− k + 4):

If one replaces % by n− d1 − d2, one sees that E is a function of d1 and d2.

Claim 6. The expression E(d1; d2) has a maximum of (n− k + 3)2 + 2k − 8 attained
uniquely by d1 = (n− k + 3)=2 and d2 = (n− k + 1)=2.

By calculus and some arithmetic, there is only one point where both partial deriva-
tives are zero. But further calculus shows that this point is a saddle point. So the
function E(d1; d2) achieves a maximum on the boundary of the region.

The region is bounded by the lines L1 :d2 = 0, L2 :d2 = d1 and L3 : % = k − 2.
Some calculations show that the maximum value of E on L1 is achieved uniquely
at d1 = d2 = 0; that is, on its intersection with L2. More calculations show that the
maximum value of E on L2 is achieved uniquely at the point it intersects L3. Finally,
some calculations show that E is maximised on L3 uniquely at d1 = (n− k+3)=2 and
d2 = (n− k + 1)=2. There it has the value E∗ = (n− k + 3)2 + 2k − 8. This proves the
claim.

However, it turns out that this maximum is unattainable in the actual graph. For,
this unique extremum has d1¿d2. Thus attaining E∗ requires, by the optimisation on
|C∗| and |D∗| that produced inequality (10), that |C∗| = % + 4 − k¿ 2 and |D∗| = 0.
It also requires that the sum of degrees of the vertices in A ∪ {u} be d1d2. But these
two facts mean that every vertex in A∪{u} is adjacent to all of B∪{v}; which means
that C∗ = ∅, a contradiction. Hence 4q(G)6E∗ − 1, whence the desired bound.

To show that this bound is best possible, let H (x) denote the balanced or almost
balanced complete bipartite graph on x vertices with a minimum edge cover removed.
Then take H (n− k + 4) ∪ [(k − 4)=2]K2. This has order n, total domination number k
and �r(n; k)� edges.

Conjecture 7. Consider bipartite graphs with order n and total domination number k
for k¿ 3 odd. Then the maximum size is �s(n; k)� where

s(n; k) := ((n− k)(n− k + 4) + 2k − 2)=4:

The conjectured extremal graph is G(n−k+3)∪[(k−3)=2]K2 where G(x) denotes the
complete bipartite graph K(�x=2 − 1�; �x=2 + 1�) with a maximum matching removed.

It is not hard to show that the conjecture is true for k = 3. For, one cannot have
in each partite set a vertex adjacent to all of the other partite set, since then the
total domination number is 2. So the number of edges missing (from the graph being
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complete bipartite) is at least the cardinality of the smaller partite set. But if the two
sets are equal and a matching is missing, the graph has total domination number 4.

4. Independent domination number

Since i(G) is at most the order minus the maximum degree, it is easy to show that
if n is a multiple of k then the complete multipartite graphs with k vertices in each
partite set are extremal graphs. The next theorem extends this to the case where n is
not a multiple of k.

For 16 k6 n de2ne t(n; k) by

t(n; k) :=

(
n

2

)
− 1

2
n(k − 1) − 1

2
r(k − r);

where n= sk + r and 06 r ¡k.

Theorem 8. Let G be a graph with order n and independent domination number k.
Then q(G)6 t(n; k) and this bound is sharp.

Proof. In a graph G with i(G) = k, every vertex is in a (maximal) independent set of
cardinality at least k. We show that if every vertex is in an independent set of size k,
then q(G)6 t(n; k). This is a consequence of the following result, which is probably
known, applied to the complement of G.

Lemma 9. Let G be a graph with order n such that every vertex is in a k-clique.
Then the number of edges is at least 1

2n(k − 1) + 1
2 r(k − r), where n = sk + r and

06 r ¡k.

Proof. Without loss of generality, we may assume that G is such a graph of minimum
size. Every vertex in G has degree at least k − 1; let A denote the set of vertices of G
of degree exactly k − 1. Since every vertex of G is in a k-clique, there is a collection
K1; : : : ;Km of distinct k-subsets of V each of which induces a clique in G and whose
union is V . De2ne Ai =A∩Ki with ai = |Ai|. Note that Ai is the set of those vertices
in Ki which are not contained in any other Kj.

Consider any set Ki for i¿ 2. By the minimality of G, Ai is nonempty. Suppose
Ai 
= Ki. Consider the graph G′ formed by replacing Ki by another set K′

i that
contains Ai with K′

i − Ai part of K1. That is, delete the ai(k − ai) edges between Ai
and Ki−Ai, and any edge in G[Ki−Ai] joining two vertices no longer in a common
Kj, and insert the ai(k−ai) edges between Ai and K′

i−Ai. So q(G′)6 q(G). Further,
G′ still has the property that every vertex is in a k-clique.

Hence, if we number the vertices of K1 as v1; : : : ; vk , we may rearrange cliques such
that for every i¿ 2 the clique Ki consists of Ai and the 2rst k − ai vertices of K1.
That is, for every i¿ 2, the set Ki is either disjoint from the others, or it overlaps
the 2rst k − ai vertices of K1 but is otherwise disjoint.

Suppose two sets Ki and Kj with i; j¿ 2 both intersect K1. Consider replacing
Ki and Kj as follows. If ai + aj6 k, then replace both with a single set K′

i which
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consists of Ai ∪ Aj and the 2rst k − ai − aj vertices of K1. If ai + aj ¿k then replace
both with a set K′

i which consists of k vertices of Ai∪Aj and a set K′
j which consists

of the remaining vertices of Ai ∪Aj together with the 2rst 2k − ai− aj vertices of K1.
Some arithmetic shows that this reduces the number of edges, a contradiction. (The
reductions in the number of edges are aiaj and (k − ai)(k − aj), respectively.)

Hence, it follows that at most two sets intersect, and the remaining sets are each
disjoint. It follows that the overlap between the two sets that intersect is precisely k−r,
and thus the number of edges in G is at least (s+ 1)

(
k
2

)
−
(
k−r

2

)
.

In order to see that the bound of Theorem 8 is sharp, consider the graph G(n; k)
de2ned as follows. Let n= sk+ r with 06 r ¡k. Start with a complete s-partite graph
with k vertices in each of the 2rst s − 1 partite sets and k + r vertices in the last
partite set. Then in the last partite set, add edges to form a K(r; r). (We might have
s= 1, but the complete 1-partite graph is by de2nition empty.) For example, G(sk; k)
is the complete s-partite graph with k vertices in each partite set. It is easily shown
that G(n; k) has independent domination number k.

We establish the corresponding result for bipartite graphs next. The nonmonotonicity
is perhaps surprising: for 2xed order n, the maximum number of edges decreases from
k = 2 until approximately k = n=2 − √n=2, then increases until k = n=2, and then
decreases again.

Theorem 10. Consider bipartite graphs of order n and independent domination num-
ber k¿ 2. Then the maximum size is attained by

(a) either K(�n=2�; �n=2�) minus k−1 edges incident with one vertex, or K(k; n−k),
if k6 n=2; and

(b) K(n− k; n− k) ∪ (2k − n)K1, otherwise.

Proof. (a) Consider a bipartite graph G of order n and independent domination number
k. If G is complete bipartite, then the independent domination number is the size of
the smaller partite set. So G must be K(k; n−k). Otherwise, there are two nonadjacent
vertices that are in opposite partite sets. At least k − 2 vertices must be not dominated
by that pair, and so at least k−1 edges must be missing from G. It remains to observe
that the possible extremal graph has independent domination number k.

(b) Since either partite set is an independent dominating set in a bipartite graph
without isolated vertices, there must be at least 2k − n isolated vertices.

The extremal graphs are unique.

5. Other parameters: the domination chain

The analogous results for some related parameters are straight-forward. A set S is
irredundant if for every vertex v in S there is a private neighbour pv—a vertex in its
closed neighbourhood which is not dominated by the rest of S.
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The domination chain involves six parameters:

ir(G)6 �(G)6 i(G)6 -(G)6.(G)6 IR(G);

where the lower irredundance number ir(G) is the minimum cardinality of a maximal
irredundant set; the independence number -(G) is the maximum cardinality of an
independent set; the upper domination number .(G) is the maximum cardinality of a
minimal dominating set; and the (upper) irredundance number IR(G) is the maximum
cardinality of an irredundant set. For bipartite graphs the latter three parameters are
equal.

Theorem 11. Consider graphs of order n with value of parameter k¿ 2.
(a) For ir, the maximum size is attained by the graph constructed as follows: take

the complete graph on n − k + 2 vertices, then remove a minimum edge cover and
then add k − 2 isolated vertices.

(b) For -, . and IR, the maximum size is attained by the graph constructed as
follows: take the complete graph and remove the edges of a k-clique.

Proof. (a) Because of Vizing’s result and the domination chain, it suPces to observe
that the extremal graphs for Theorem 1 have �= ir.

(b) An independent set and a minimal dominating set are both irredundant. Every
vertex in an irredundant set of cardinality k is nonadjacent to at least k − 1 vertices.
Hence the upper bound holds for irredundance. To conclude, it suPces to check that
the stated extremal graph has parameters equal to k.

Theorem 12. Consider bipartite graphs of order n with value of parameter k.
(a) For ir, the maximum size is attained by the almost balanced complete bipartite

graph on n− k + 2 vertices together with k − 2 isolated vertices.
(b) For - = . = IR, the value k¿ n=2 and the maximum size is attained by the

complete bipartite graph K(k; n− k).

Proof. (a) By Theorem 2 and the domination chain, it suPces to observe that the
extremal graphs for that theorem have �= ir.

(b) Trivial.
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