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Abstract

We consider a number of combinatorial problems in which rational generating functions may be obtained,
whose denominators have factors with certain singularities. Specifically, there exist points near which one
of the factors is asymptotic to a nondegenerate quadratic. We compute the asymptotics of the coefficients
of such a generating function. The computation requires some topological deformations as well as Fourier–
Laplace transforms of generalized functions. We apply the results of the theory to specific combinatorial
problems, such as Aztec diamond tilings, cube groves, and multi-set permutations.
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1. Introduction

1.1. Background and motivation

Problems in combinatorial enumeration and discrete probability can often be attacked by
means of generating functions. If one is lucky enough to obtain a closed form generating func-
tion, then the asymptotic enumeration formula, or probabilistic limit theorem is often not far
behind. Recently, several problems have arisen to which can be associated very nice generating
functions, in fact rational functions of several variables, but for which asymptotic estimates have
not followed (although formulae were found in some cases by other means). These problems
include random tilings (the so-called Aztec and Diabolo tilings) and other statistical mechanical
ensembles (cube groves) as well as some enumerative and graph theoretic problems discussed
later in the paper.
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A series of recent papers [35,36,6] provides a method for asymptotic evaluation of the coef-
ficients of multivariate generating functions. To describe the scope of this previous work, we set
up some notation that will be in force for the rest of this article. Throughout, we will assume that
the generating function converges in a domain defining there a quasirational function

F(Z) = P(Z)

Q(Z)s
∏k

j=1 Hj(Z)nj
=
∑

r

arZr (1.1)

with polynomial P , Q, affine-linear Hj ’s, integer nj ’s and real s. (Here the quantities in boldface
are vectors of dimension d and the notation Zr is used to denote

∏d
j=1 Z

rj
j .) In dimension three

and below, we use X, Y , Z to denote Z1, Z2 and Z3 respectively. We let V := {Z: Q(Z) =
0} ⊆ C

d denote the pole variety of F , that is, the complex algebraic variety where Q vanishes
(Q will always be a polynomial). Analytic methods for recovering asymptotics of ar from F

always begin with the multivariate Cauchy integral formula

ar = 1

(2πi)d

∫
T

Z−rF
dZ
Z

. (1.2)

Here T is a d-torus, i.e. the product of circles about the origin in each coordinate axis (impor-
tantly, choice of a torus affects the corresponding Laurent expansion (1.1)). The pole set V is of
central importance because the contour T may be deformed without affecting the integral as long
as one avoids places where the integrand is singular.

When V is smooth or has singularities of self-intersection type (where locally V is the union
of smooth divisors), a substantial amount is known. The case where V is smooth is analyzed
in [35]; the existence under further hypotheses of a local central limit theorem dates back at least
as far as [8]. The more general case where the singular points of V are all unions of smooth
components with normal intersections is analyzed using explicit changes of variables in [36] and
by multivariate residues in [6], the pre-cursor to which is [9]. Applications in which V satisfies
these conditions are abundant, and a number of examples are worked in [37]. For bivariate gen-
erating functions, all rational generating functions we have seen fall within this class. Other local
geometries are possible, namely those of irreducible monomial curve, e.g., Xp − Yq = 0, but, as
will become clear, they cannot contribute to the asymptotic expansions, being non-hyperbolic.

In dimension three and above, there are many further possibilities. The simplest case not
handled by previous techniques is that of isolated quadratic singularity. The purpose of this paper
is to address this type of generating function. All the examples in Section 4 are of this type. In
fact, all the rational 3-variable generating functions we know of, that are not one of the types
previous analyzed, have isolated, usually quadratic, singularities. The simplest case is when the
denominator is irreducible and its variety has a single, isolated quadratic singularity; a concrete
example in dimension d = 3 is the cube grove creation generating function, whose denominator
Q = 1 + XYZ − (X + Y + Z + XY + YZ + ZX)/3 has the zero set illustrated in Fig. 1.

The main results of this paper, Theorems 3.7 and 3.9 below, are asymptotic formulae for the
coefficients of a generating function having a divisor with this geometry. In addition to one or
more isolated quadratic singularities, our most general results allow Q to be taken to an arbitrary
real power and we allow the possibility of other smooth divisors passing through the singularities
of Q. These generalizations complicate the exposition somewhat but are necessary to handle
some of the motivating examples.
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Fig. 1. An isolated quadratic singularity.

As a preview of the behavior of the coefficients, consider the case d = 3 and F =
1/Q illustrated in Fig. 1. The leading homogeneous term of Q in the variables (x, y, z) =
(logX, logY, logZ) is xy + xz + yz. The outward normal cone (dual cone) at this point is
the cone N∗ on which Q∗ � 0, where Q∗(r, s, t) = (r + s + t)2 − 2(r2 + s2 + t2) is the dual
quadratic to Q (see Section 2.6 for definitions). The asymptotics for ar in this example are given
by Corollary 3.8 for r in the interior of N∗ and by an easier result (Proposition 2.23) when r /∈ N∗:

ar ∼
{

CQ∗(r)−1/2 if r is in the interior of N∗,
exponentially small if r /∈ N∗.

The behavior of ar near ∂N∗ is more complicated and is not dealt with in this paper. The gen-
erating function 1/Q is the creation rate generating function for cube groves, discussed in
Section 4.2. The edge placement generating function for cube groves (edge placement proba-
bilities have more direct interpretations than do creation rates) has an extra factor of (1 − Z) in
the denominator. Theorem 3.9 gives the asymptotics in this case, for r interior to N∗, as

ar ∼ C arctan θ(r)

where θ is a homogeneous degree 0 function of r which can be expressed in terms of dual
quadratic form Q∗. Homogeneity of θ implies that there is a limit theorem aλr → θ(r̂) as λ → ∞,
where r̂ := r/|r| is the unit vector in the direction r.

A total of five motivating applications will be discussed in detail in Section 4. All of these may
be seen to have factors with isolated quadratic singularities. There are known trivariate rational
generating functions with isolated singularities that are not quadratic. For example, the diabolo
or fortress tiling ensemble has an isolated quartic singularity [16]. Some of our results apply to
this case, but a detailed analysis will be left for another paper. The last example goes slightly
beyond what we do in this paper, but we include it because the analysis follows largely the same
methods.
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Aztec diamond placement probability generating function [30]

F(X,Y,Z) = Z/2

(1 − YZ)(1 − Z
2 (X + X−1 + Y + Y−1) + Z2)

. (1.3)

Cube groves edge probability generating function [38]

F(X,Y,Z) = 2Z2

3(1 − Z)(1 + XYZ − 1
3 (X + Y + Z + XY + XZ + YZ))

. (1.4)

Quantum random walk space–time probability generating function [1,7]

F(X,Y,Z) = XZ − (1 + XY)Z2 + YZ3

(1 − Z2)(1 − (X + X−1 + Y + Y−1)Z/2 + Z2)
. (1.5)

Friedrichs–Lewy–Szegö graph polynomial [41]

F(X,Y,Z) = [(1 − X)(1 − Y) + (1 − X)(1 − Z) + (1 − Y)(1 − Z)
]−β

. (1.6)

Multi-set permutation generating function [22]

G(X,Y,Z) = 1

1 − X − Y − Z + 4XYZ
. (1.7)

1.2. Methods and organization

Our methods of analysis owe a great debt to two bodies of existing theory. Our approach to
harmonic analysis of cones is fashioned after the work of [5]. We not only quote their results on
generalized Fourier transforms, which date back somewhat farther to computations of [40] and
generalized function theory as described in [20], but we also employ their results on hyperbolic
polynomials to produce homotopies of various contours. Secondly, our understanding of the
existence of these homotopies has been greatly informed by Morse theoretic results of [23]. We
do not quote these results directly because our setting does not satisfy all their hypotheses, but the
idea to piece together deformations local to strata is really the central idea behind stratified Morse
theory as explained in [23]; see also the discussion of stratified critical points in Section 2.5.

An outline our methods is as follows. The chain of integration in the multivariate Cauchy
integral (1.2) is a d-dimensional torus T embedded in the complex torus (C∗)d , where C

∗ :=
C−{0}. Changing variables by Zj = exp(zj ), the chain of integration becomes a chain C , the set
of points with a fixed real part. Under this change of variables, the Cauchy integral (1.2) becomes∫

C

exp(−r · z)f (z) dz (1.8)

where f := F ◦ exp. Letting z := x + iy, Morse theoretic considerations tell us we can deform
the chain of integration so that it is supported by the region where e−r·x is small (for large |r|)
except near certain critical points. To elaborate, we can accomplish most of the deformation by
moving x. The allowable region for such deformations of x is a component of the complement
to amoeba of F (see Section 2.1 for definitions). Heuristically, we move x to the support point
xmin on the boundary of this region for a hyperplane orthogonal to r (see Sections 2.5 and those
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Fig. 2. The localizing chain, in logarithmic and original coordinates.

preceding for details). Unfortunately, when xmin is on the boundary, (1.8) fails to be integrable.
Ignoring this, however, and continuing with the heuristic, we let q := Q◦ exp and hj := Hj ◦ exp
and we denote the leading homogeneous parts of q and hj by q̃ and h̃j respectively. We then
express f near xmin as a series in negative powers of q̃ and h̃j (this is carried out in Section 2.7).
Integrating term by term, each integral has the form∫

C

exp(−r · z)
zm

q̃(z)s h̃(z)n
dz

where h̃n :=∏k
j=1 h

nj

j . Replacing z by iz, we recognize the Fourier transform of a product of
a monomial with inverse powers of quadratics and linear functions. The Fourier transform of
an inverse quadratic is the dual quadratic and the Fourier transform of a linear function is the
Heaviside function. The Fourier transform of a product is a convolution. These facts tell us what
result to expect.

Much of what has been described thus far is based on known methods and results, most of
which are collected in the preliminary Section 2. The bulk of the work, however, is in making
rigorous these identities which involve Fourier integrals that do not converge, taken over regions
which are not obviously deformations of each other (the part above where we said, “ignoring
this, . . .”). For this purpose, some carefully chosen deformations are constructed, based largely
on deformations found in Sections 5 and 6 of [5]. Specifically, we use results on hyperbolic poly-
nomials (see Section 2.3 for definitions) established in [5] and elsewhere, to construct certain
vector fields on C

d . These vector fields, based on the construction of [5, Section 5] and de-
scribed in our Section 5.1, then allow us to construct deformations in Section 5.2, which satisfy
several properties. First, they enact what Morse theory has guaranteed: they push the chain of
integration to where the integrand of (1.8) is very small, except near critical points, as in Fig. 2.
Secondly, they do this without intersecting V , thereby allowing the integral to remain the same.
This localizes the integral to the critical points, and allows us to concentrate on one critical point
at a time. The resulting chain of integration is depicted in Fig. 2.

Thirdly, they allow us to “straighten out” the chain of integration. Fig. 3 shows that the chains
in Fig. 2, as well as the original chain, are homotopic near the critical point to a (slightly per-
turbed) conical chain.
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Fig. 3. The projective chain.

Combined with the series expansion by homogeneous functions, this reduces all necessary
integrals to a small class of Fourier-type integrals. Many of these are evaluated as generalized
functions in [5,40,20] and elsewhere. In Sections 6.2 and 6.3 we summarize the relevant facts
about generalized functions. The above deformations allow us to show, in Sections 6.4–6.6, that
these generalized functions, defined as integrals over the straight contour on the left of Fig. 3,
do approximate the integrals we are interested in, which we must evaluate over the chains shown
on the right of Fig. 2 and on Fig. 3 in order for the localizations to remain valid. Not all of
the computations we need are available in the literature. In Section 6.6 we use a construction
from [5], the Leray cycle, along with a residue computation, to reduce the Fourier transform
of 1/(q̃ · h̃) to an explicitly computable one-dimensional integral. It is this computation that is
responsible for the explicit asymptotic formula for placement probabilities in the Aztec Diamond
and Cube Grove problems.

To summarize, the organization of the rest of the paper is as follows. Section 2 defines some
notation in use throughout the paper, and collects preliminary results on amoebas, convex duals,
hyperbolicity, and expansions by powers of homogeneous polynomials. Section 3 states the main
results. Section 4 has five subsections, each discussing one of the five examples. The next two
sections are concerned with the proofs of the main results. Section 5 constructs homotopies
that shift contours of integration, while Section 6 evaluates several classes of integrals via the
theory of generalized Fourier transforms. Finally, Section 7 concludes with a discussion of open
problems and further research directions.

1.3. Comparison with other techniques

One might ask, in a paper of this length, whether this is the best way to obtain these results. To
answer this, we briefly review comparable published results and a relevant unpublished failure.
The Arctic Circle Theorem for tilings of the Aztec diamond was proved in [14] in two steps. First
formulae for the coefficients of the simpler creation rate generating function (1 − (X + X−1 +
Y + Y−1)Z/2 + Z2)−1 were derived via a relation to Krawtchouk polynomials. Secondly, these
were summed by means of contour integrals. The computation was quite specialized, and did not
generalize even to the nearly formally equivalent case of cube groves. In fact, for the cube grove
model, up to now only the easy half of the Arctic Circle Theorem was proved (exponential decay
outside of the circle).
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The present paper takes the view that the work is justifiable if we can then crank out results
with relatively little effort. The continuous setting clarifies matters considerably. Our fundamen-
tal result, Theorem 3.7 below, is that the asymptotics of a generating functions with irreducible
quadratic denominator, such as in (1.6), are its Fourier transform, which is the dual quadratic.
This is the continuous analogue of the Krawtchouk polynomials that appear when the computa-
tions are done in the discrete setting. Multiplying the denominator by 1/h where h is smooth,
corresponds to convolving the Fourier transform with a Heaviside function; this is the analogue
of summing and is made rigorous in Theorem 3.9. These two facts (Fourier transform of a cone
is the dual cone, and Fourier transform of 1/(Qh) is the integral of the Fourier transform of 1/Q)
are well known, which makes the resulting computation predictable although a number of details
need to be addressed.

As far as we know, the Aztec diamond result is the only one of the five results in Section 4 that
was previously known; all five examples are easily handled once the machine is built. A sixth
example, the fortress tiling ensemble, can be analyzed by our methods but explicit formulae in
this case require further computations along the lines of Section 6.6. The limit theorem is known
in this case, the result of a variational equation which is established and explicitly solved in the
beautiful paper [32].

It should be emphasized that evaluating the integral (1.8) involves interplay between the form
and the chain, and this interplay which is primarily responsible for failure of several earlier at-
tempts to analyze the asymptotics of the integral. To be sure, resolution of singularities provides
one with an efficient toolbox for reducing the integrand to a monomial form; see for instance [2,
Chapter 7] or [29]; the resolution is in principle effective [10] and the algorithm given in [43] suf-
fices in most cases. However, it then becomes difficult to control the chain of integration. A few
years ago, the second author in collaboration with H. Cohn attempted to resolve the singularity
and compute the integral. The resolution was indeed computable. Unfortunately, as will be true
in all such cases, the phase function becomes quite degenerate, being constant along the excep-
tional divisor of the resolution. The resulting integral was beyond Cohn and Pemantle’s ability
to evaluate.

Another important aspect of the problem that is difficult to control using resolution of sin-
gularities is the real structure. Consequences of this include hyperbolicity of the tangent cones
to the pole variety at critical points (see Section 2.4). As we will see, this hyperbolicity plays a
critical role in the constructions of the deformations of the integration chains.

2. Notation and preliminaries

Several notions arising repeatedly in this paper are the logarithmic change of variables, duality
between r and z, and the leading homogeneous part of a function. We employ some meta-notation
designed for ease of keeping track of these. We use upper case letters for variables and functions
in the complex torus (C∗)d , and lower case letters in the logarithmic coordinates. We will never
use the notations without defining them, but knowing that, for example, F ◦ exp will always
be denoted f and z will always be log Z, should help the reader quickly recognize the setting.
We will always use x and y for the real and imaginary parts of the vector z ∈ C

d . Boldface is
reserved for vectors. The leading homogeneous part of a function is denoted with a bar. Rather
than considering the index r of ar to be an element of Z

d , we consider it to be an element of a
space (Rd)∗ that is dual to the domain C

d in which z lives, with respect to the pairing r · z (the
space (Rd)∗ is a subset of the full dual space (Cd)∗ but all our dual vectors will be real). Many
functions of r use in what follows are homogeneous degree 0; letting r̂ denote the unit vector
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r/|r| we will often write these as functions of r̂. The logarithm and exponential functions are
extended to act coordinatewise on vectors. Thus

exp(z1, . . . , zd) := (exp(z1), . . . , exp(zd)
);

log(Z1, . . . ,Zd) := (log(Z1), . . . , log(Zd)
)
.

We also employ the slightly clunky notation

ReLog Z := (log |Z1|, . . . , log |Zd |)= Re{log Z}

for the coordinatewise log-modulus map, having found that the notations in use in [21] do not
allow for quick visual distinction between log and ReLog.

Our chief concern is with generating functions that are ordinary power series, convergent on
the unit polydisk, and whose denominator is the product of smooth and quadratically singu-
lar factors that intersect the closed but not the open unit polydisk. It costs little, however, and
there is some benefit to work in the greater generality of Laurent series representing functions
with polynomial denominators. Indeed, Laurent series arise naturally in the examples (though
these Laurent series have exponents in proper cones, and may therefore be reduced by log-affine
changes of coordinates to Taylor series).

Definition 2.1 (Homogeneous part). For analytic germ f : (Cd, z) → C at a point z ∈ C
d , we let

deg(f, z) denote the degree of vanishing of f at z. This is zero if f (z) 	= 0 and in general is the
greatest integer n such that f (z + w) = O(|w|n) as w → 0. Also, deg(f, z) is the least degree
of any monomial in the ordinary power series expansion of f (z + ·) around 0. We let hom(f, z)
denote the sum of all monomials of minimal degree in the power series for f (z + ·) and we call
this the homogeneous part of f at z. Thus

f (z + w) = hom(f, z)(w) + O
(|w|deg(f,z)+1)

for small |w|. When z = 0, we may omit z from the notation: thus, hom(f ) := hom(f,0).

A number of connections between zeros of a Laurent polynomial F , the Laurent series for
1/F , the Newton polytope for F and certain dual cones to this polygon were worked out in the
1990’s by Gelfand, Kapranov and Zelevinsky. We summarize some relevant results from [21,
Chapter 6].

2.1. The log map and amoebas

Let F be a Laurent polynomial in d variables. Let (C∗)d ⊆ C
d denote the d-tuples of non-

vanishing complex numbers and let VF denote the zero set of F in (C∗)d . Following [21] we
define the amoeba of F to be the image under ReLog of the zero set of F :

amoeba(F ) := {ReLog z: z ∈ VF ∩ (C∗)d}⊆ R
d .

The simplest example is the amoeba of a linear function, such as F = 2 − X − Y , shown in
Fig. 4(a). The amoeba of a product is the union of amoebas, as shown in Fig. 4(b).
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Fig. 4. Two amoebae.

The rational function 1/F has, in general, a number of Laurent series expansions, each con-
vergent on a different subset of C

d . Combining Corollary 1.6 in Chapter 6 of [21] with Cauchy’s
integral theorem, we have the following result.

Proposition 2.2. The connected components of Rd \ amoeba(F ) are convex open sets. The com-
ponents are in bijective correspondence with Laurent series expansions for 1/F as follows. Given
a Laurent series expansion of 1/F , its open domain of convergence is precisely ReLog−1 B where
B is a component of R

d \ amoeba(F ). Conversely, given such a component B , a Laurent series
1/F =∑arZr convergent on B may be computed by the formula

ar = 1

(2πi)d

∫
T

Z−r−1 1

F(Z)
dZ

where T is the torus ReLog−1(x) for any x ∈ B . Changing variables to Z = exp(z) and dZ =
Zdz gives

ar = 1

(2πi)d

∫
x+iTR

e−r·z 1

f (z)
dz (2.1)

where f = F ◦ exp and TR is the torus Rd/(2πZ)d . �
2.2. Dual cones, tangent cones and normal cones

Let (Rd)∗ denote the dual space to R
d and for y ∈ R

d and r ∈ (Rd)∗, use the notation r · y
to denote the pairing. Let L be any convex open cone in R

d . The (closed) convex dual cone
L∗ ⊆ (Rd)∗ is defined to be the set of vectors v ∈ (Rd)∗ such that v · x � 0 for all x ∈ L. Familiar
properties of the dual cone are
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L ⊆ M ⇒ L∗ ⊇ M∗; (2.2)

(L ∩ M)∗ = hull
(
L∗ ∪ M∗). (2.3)

Suppose x is a point on the boundary of a convex set C. Then the intersection of all halfspaces that
contain C and have x on their boundary is a closed convex affine cone with vertex x (a translation
by x of a closed convex cone in R

d ) that contains C. Translating by −x and taking the interior
gives the (open) tangent cone to C at x, denoted by tanx(C). An alternative definition is

tanx(C) = {v: x + εv ∈ C for all sufficiently small ε > 0}
(where B is the unit ball). The (closed) normal cone to C at x, denoted N∗

x(C), is the convex dual
cone to the negative of the tangent cone:

N∗
x(C) = (− tanx(C)

)∗
.

Equivalently, it corresponds to the set of linear functionals on C that are maximized at x, or to
the set of outward normals to support hyperplanes to C at x.

Definition 2.3 (Proper dual direction). Given a convex set C, say that r is a proper direction for
C if the maximum of r · x on L is achieved at a unique xmin ∈ C. We call xmin the dual point
for r. The set of directions r for which r ·x is bounded on C but r is not proper has measure zero.

The term tangent cone has a different meaning in algebraic contexts, which we will require as
well. (The term normal cone has an algebraic meaning as well, which we will not need.) To avoid
confusion, we define the algebraic tangent cone of f at x to be Vhom(f,z). An equivalent but more
geometric definition is that the algebraic tangent cone is the union of lines through x that are the
limits of secant lines through x; thus for a unit vector u, the line x + tu is in the algebraic tangent
cone if there are xn ∈ Vf distinct from but converging to x for which (xn − x)/‖xn − x‖ → ±u.
This equivalence and more is contained in the following results. We let S1 denote the unit sphere
{(z1, . . . , zd): |z1|2 + · · · + |zd |2 = 1} and let Sr := rS1 denote the sphere of radius r .

Lemma 2.4 (Algebraic tangent cone is the limiting secant cone). Let q be a polynomial vanishing
to degree m � 1 at the origin and let q̃ := hom(q) be its homogeneous part; in particular,

q(z) = q̃(z) + R(z)

where q̃ is a nonzero homogeneous polynomial of degree m and R(z) = O(|z|m+1). Let qε denote
the polynomial

qε(z) := ε−mq(εz) = q̃(z) + Rε(z)

where Rε(z) = ε−mR(εz) → 0 as ε → 0. Let Vε := Vqε ∩ S1 denote the intersection of {qε = 0}
with the unit sphere. Then Vε converges in the Hausdorff metric as ε → 0 to Vq̃ ∩ S1.

Proof. On any compact set, in particular S1, Rε → 0 uniformly. If z(n) → z and z(n) ∈ V1/n then
for each n, ∣∣q̃(z(n)

)∣∣= ∣∣q1/n

(
z(n)

)+ R1/n

(
z(n)

)∣∣= ∣∣R1/n

(
z(n)

)∣∣→ 0.
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Hence q̃(z) = 0 by continuity of q̃ and we see that any limit point of Vε as ε → 0 is in Vq̃ ∩ S1.
Conversely, fix a unit vector z ∈ Vq̃ . The homogeneous polynomial q̃ is not identically zero,
therefore there is a projective line through z along which q̃ has a zero of finite order at z. Back in
affine space, there is a complex curve γ in the unit sphere along which q̃ is holomorphic with a
zero of some finite order k at z. As ε → 0, the holomorphic function Rε goes to zero uniformly
in a neighborhood of z in γ ; hence there are k zeros of qε converging to z as ε → 0, and therefore
z is a limit point of Vε as ε → 0. �
2.3. Hyperbolicity for homogeneous polynomials

The notion of hyperbolic polynomials arose first in [19] in connection with solutions to wave-
like partial differential equations. The same property turns out to be very important as well for
convex programming, cf. [26] from which much of the next several paragraphs is drawn.

Let f be a complex polynomial in d variables and f (D) denote the corresponding linear
partial differential operator with constant coefficients, obtained by replacing each xj by ∂/∂xj .
For example, if f is the standard Lorentzian quadratic S(x) := x2

1 −∑d
j=2 x2

j then S(D) is the

wave operator (∂/∂x1)
2 −∑d

j=2(∂/∂xj )
2. Gårding’s object was to determine when the equation

f (D)u = g (2.4)

with g supported on a halfspace has a solution supported in the same halfspace. The wave op-
erator has this property, and in fact there is a unique such solution for any such g. It turns out
that the class of f such that (2.4) always has a solution supported on the halfspace is precisely
characterized by the property of being hyperbolic, as defined by Gårding. In this case, it was later
shown [27, Theorem 12.4.2] that the solution is in fact unique. The theory of hyperbolic polyno-
mials serves in the present paper to prove the existence of deformations of chains of integration
past points of the pole manifold at which the pole polynomial is locally hyperbolic.

We begin with hyperbolicity for homogeneous polynomials, which is a simpler and better
developed theory. We use A rather than f for a homogeneous polynomial.

Definition 2.5 (Hyperbolicity). Say that a homogeneous complex polynomial A of degree m � 1
is hyperbolic in direction v ∈ Rd if A(v) 	= 0 and the polynomial A(x + tv) has only real roots
when x is real. In other words, every line in real space parallel to v intersects VA exactly m times
(counting multiplicities).

While seemingly weaker, the requirement of avoiding purely imaginary roots is in fact easily
seen to be equivalent.

Proposition 2.6. Hyperbolicity of the homogeneous polynomial A in the direction v is equivalent
to the condition that A(v + iy) 	= 0 for all y ∈ R

d .

Proof. Because A is homogeneous, when λ 	= 0, we have A(λz) = 0 if and only if A(z) = 0.
With λ = i · s, a purely imaginary number not equal to zero, we see that A(v + iy) 	= 0 for
all y ∈ R

d is equivalent to A(y + isv) 	= 0 for all y ∈ R
d and all nonzero real s. This becomes

A(y + tu + isu) 	= 0 for all y ∈ R
d and real s 	= 0; writing z = t + is, this is equivalent to

A(y + zu) 	= 0 when z is not real, which is the definition of hyperbolicity. �
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The further properties we need are well known and are proved, among other places, in [26,
Theorem 3.1].

Proposition 2.7. The set of v for which A is hyperbolic in direction v is an open set whose com-
ponents are convex cones. Denote by Kv(A) the connected component of this cone that contains
a given v. Some multiple of A is positive on Kv(A) and vanishing on ∂Kv(A), and for x ∈ Kv(A),
the roots of A(x + tv) will all be negative. �

Semi-continuity properties for cones of hyperbolicity play a large role in the construction
of deformations. A lower semi-continuous function f satisfies f (x) � lim infy→x f (y). The
property is important in elementary analysis because a lower semi-continuous function on a
compact set achieves its infimum; generalizing to set-valued functions, the conclusion is roughly
that the empty set is not a limit value and therefore that a continuous section can be defined.
In this section, we develop semi-continuity properties for cones of hyperbolicity (a topic that
occupies many pages of [5]).

The following proposition and definition define a family of cones {KA,B(x)}x∈Rd which will
be used to prove two critical semi-continuity results for cones of hyperbolicity for log-Laurent
polynomials (Theorem 2.14 below).

Proposition 2.8 (First semi-continuity result). Let A be any hyperbolic homogeneous polyno-
mial, and let m be its degree. Fix x with A(x) = 0 and let Ã := hom(A,x) denote the leading
homogeneous part of A at x. If A is hyperbolic in direction u then Ã is also hyperbolic in
direction u. Consequently, if B is any cone of hyperbolicity for A then there is some cone of
hyperbolicity for Ã containing B .

Proof. This follows from the conclusion (3.45) of [5, Lemma 3.42]. Because the development
there is long and complicated, we give here a short, self-contained proof, provided by J. Borcea
(personal communication). If P is a polynomial whose degree at zero is k, we may recover its
leading homogeneous part hom(P ) by

hom(P )(y) = lim
λ→∞λkP

(
λ−1y

)
.

The limit is uniform as y varies over compact sets. Indeed, monomials of degree k are invari-
ant under the scaling on the right-hand side, while monomials of degree k + j scale by λ−j ,
uniformly over compact sets.

Apply this with P(·) = A(x + ·) and y + tu in place of y to see that for fixed x, y and u,

Ã(y + tu) = lim
λ→∞λkA

(
x + λ−1(y + tu)

)
uniformly as t varies over compact sub-intervals of R. Because A is hyperbolic in direction u,
for any fixed λ, all the zeros of this polynomial in t are real. Hurwitz’s theorem on the continuity
of zeros [15, Corollary 2.6] says that a limit, uniformly on bounded intervals, of polynomials
having all real zeros will either have all real zeros or vanish identically. The limit Ã(y + tu) has
degree k � 1; it does not vanish identically and therefore it has all real zeros. This shows Ã to be
hyperbolic in direction u. �
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Definition 2.9 (Family of cones in the homogeneous case). Let A be a hyperbolic homogeneous
polynomial and let B be a cone of hyperbolicity for A. If A(x) = 0, define

KA,B(x)

to be the cone of hyperbolicity of hom(A,x) containing B , whose existence we have just proved.
If A(x) 	= 0 we define KA,B(x) to be all of R

d .

As an example of a hyperbolic polynomial, let S = x2
1 − x2

2 − · · · − x2
d be the standard

Lorentzian quadratic. Then Ke1(S) is the Lorentz cone {x: x1 �
√

x2
2 + · · · + x2

d}. Any quadratic
of Lorentzian signature is obtained from this one by a real linear transformation; we see there-
fore that for any Lorentzian quadratic, the boundary of the cone of hyperbolicity is the algebraic
tangent cone.

The class of hyperbolic polynomials in a given direction v is closed under products, and
Kv(AA′) = Kv(A)∩ Kv(A′). The class contains all linear polynomials not annihilating v and all
real quadratic polynomials p of Lorentzian signature for which p(v) > 0 (v is time-like).

2.4. Hyperbolicity and semi-continuity for log-Laurent polynomials on the amoeba boundary

For a function that is not locally homogeneous, there are two natural generalizations of the
definition of hyperbolicity. Both are equivalent to the notion of hyperbolicity already defined, in
the case of a homogeneous polynomial. Useful features of the two definitions are revealed in the
subsequent two propositions.

Definition 2.10. Let f : Cd → C vanish at z and be holomorphic in a neighborhood of z. We say
that f is strongly hyperbolic at z in direction of the unit vector v̂ if there is an ε > 0 such that
f (z + tv′ + iu) 	= 0 for all real t ∈ (0, ε), all v′ with |v′ − v̂| < ε, and all u ∈ R

d of magnitude
at most ε. In this case we may say that f is strongly hyperbolic at z in direction v̂ with radius ε.
Say that f is weakly hyperbolic in direction v if for every M > 0, there is an ε > 0 such that
f (z+ tv+ iu) 	= 0 for all real 0 < t |v| < ε, and for all u ∈ R

d of magnitude at most ε additionally
satisfying |u|/(t |v|) � M .

Proposition 2.11. Let A = hom(f, z). Then A is hyperbolic in direction u if and only if f is
weakly hyperbolic in direction u at z.

Proof. The homogeneous polynomial A fails to be hyperbolic at in direction u if and only if there
is some real y such that A(u + iy) = 0. By Lemma 2.4, this happens if and only if f (z + wn) = 0
for some sequence {wn} converging to 0 with wn/|wn| converging to (u + iy)/|u + iy|. This is
equivalent to failure of weak hyperbolicity of f at z in direction u. �
Remark. It is immediate from the definition that strong hyperbolicity is a neighborhood prop-
erty: if f is strongly hyperbolic at x + iy in direction v̂ with radius ε, then for |y′ − y| < ε and
|v̂′ − v̂| < ε, f is strongly hyperbolic at x + iy′ in direction v̂′ with direction ε − max{|y′ − y|,
|v′ − v̂|}. Weak hyperbolicity of f at z in direction v extends to a neighborhood of v by Proposi-
tions 2.7 and 2.11. Extending weak hyperbolicity to neighboring z is much trickier.
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Proposition 2.12. Let F be a Laurent polynomial in d variables. Suppose that B is a com-
ponent of amoeba(F ) and x ∈ ∂B , so that f := F ◦ exp vanishes at some point x + iy. Let
f := hom(f,x + iy) denote the leading homogeneous part of f (x + iy + ·). Then f is strongly
hyperbolic at x + iy, some complex scalar multiple of f is real and hyperbolic, and some cone
of hyperbolicity Ku(f ) contains tanx(B).

Proof. Strong hyperbolicity of f in any direction u ∈ tanx(B) follows from the definition of
the amoeba. Strong hyperbolicity is stronger than weak hyperbolicity, hence hyperbolicity of
f in direction u follows from Proposition 2.11. The vector u ∈ tanx(B) is arbitrary, whence
Ku(f ) ⊇ tanx(B). To see that some multiple of f is real, let u be any real vector in tanx(B), let
m denote the degree of f , and let γ denote the coefficient of the zm term of A(f u + y). Then γ

is the degree m coefficient of f (zu), hence is nonzero and does not depend on y. For any fixed y,
the fact that f (zu + y) has all real roots implies that the monic polynomial γ −1f (zu + y) has all
real coefficients. �
Definition 2.13 (Hyperbolicity and normal cones at a point of Vf ). Let F be a Laurent poly-
nomial, B a component of R

d \ amoeba(F ), and Z = exp(x + iy) ∈ Vf with x ∈ ∂B . We let
f := F ◦ exp and let

Kf,B(Z) := Ku(hom(f,x + iy)
)

(2.5)

denote the (open) cone of hyperbolicity of f := hom(f,x + iy) that contains B , whose existence
is guaranteed by Proposition 2.12. Although it is a slight abuse of notation, we also write

Kf,B(y) := Kf,B(Z)

when Z = exp(x + iy) and the specification of x is clearly understood. We also define the normal
cone

N∗(Z) := (N∗)f,B
(Z) = (Kf,B(Z)

)∗
. (2.6)

We see immediately from Proposition 2.12 that

Kf,B(Z) ⊇ tanx(B) (2.7)

and hence

N∗(Z) ⊆ N∗
x(B).

In order to produce deformations, we will need to know that the cones Kf,B(Z) vary semi-
continuously as Z varies over the torus exp(x+ iRd). We have seen already that all of these cones
contain tanx(B). What is needed, therefore, is an argument showing that Kf,B(Z′) contains any
u ∈ Kf,B(Z) when Z′ is sufficiently close to Z and u /∈ tanx(B). In fact, not every polynomial
admits a semi-continuous choice of tangent subcone; a counterexample is xy + z3. However,
in the case where x ∈ ∂B , we are able to use strong hyperbolicity in directions v ∈ tanx(B) to
prove semi-continuity even outside of tanx(B). The main result of this section is exactly such an
analogue of Proposition 2.8:
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Theorem 2.14. Suppose that an analytic function f is strongly hyperbolic in direction v at the
point z = x + iy. Let f := hom(f , z). Let u ∈ Kv(f ) be any point in the cone of hyperbolicity of
f containing v. Then f is strongly hyperbolic in direction αv + (1 − α)u for every 0 � α � 1.

Corollary 2.15.

(i) If B is a component of amoeba(F )c and x ∈ ∂B , then Kf,B(Z) is semi-continuous in Z as y
varies with Z = exp(x + iy), meaning that Kf,B(Z) ⊆ lim infZ′ Kf,B(Z′).

(ii) If A is a homogeneous polynomial and B is a cone of hyperbolicity for A, then KA,B(y) is
semi-continuous in y.

Proof. Pick any v ∈ tanx(B). The function f is strongly hyperbolic in direction v, hence by
Theorem 2.14, it is strongly hyperbolic at x + iy in every direction u ∈ Kv(f ). Because strong
hyperbolicity is a neighborhood property, it follows that for every y′ in some neighborhood of y,
some cone of hyperbolicity of f contains Kv(f ). All these cones contain v, hence these are
the cones Kf,B(Z′) (with Z′ := exp(x + iy′)), and hence all these cones contain Kf,B(Z). The
proof in the homogeneous case is analogous, again because each Ã := hom(A,y) is strongly
hyperbolic in direction v for any v ∈ B . �
Proof of Theorem 2.14. The proof is based on a technique of Gårding [19, Theorem H 5.4.4]
that is used in the proof of [5, Lemma 3.22]. Let f be strongly hyperbolic at x + iy in direction
v with radius ε and choose any u ∈ Kv(f ). For the remainder of this argument, we assume that
y′ and v̂′ satisfy ∣∣y′ − y

∣∣, ∣∣v̂′ − v̂
∣∣< ε

2
;

a consequence is that f is strongly hyperbolic in direction v̂′ at x + iy′ with radius ε/2. For any
b ∈ R

d , if s is purely imaginary with |s||b| < ε/2, then the imaginary vector sb + i(y′ − y) will
have magnitude less than ε. By hypothesis, when 0 < t < ε, the function

s �→ f
(
x + iy′ + sb + t v̂′) (2.8)

will therefore be nonzero.
As the complex argument s tends to zero, there is an expansion

f
(
x + iy + s

(
αv̂′ + (1 − α)u

))= smf
(
αv̂′ + (1 − α)u

)+ sm+1B(α, s)

where B is analytic. The homogeneous function f does not vanish on the convex hull of u and
the (ε/2)-ball about v̂, hence |f (αv̂′ + (1 − α)u)| is uniformly bounded away from zero for
α ∈ [0,1] and |v̂′ − v̂| � ε/2. It follows that for a sufficiently small δ (which we take also to be
less than ε), the function

s �→ f
(
x + iy′ + s

(
αv̂′ + (1 − α)u

)+ t v̂′)
has exactly m roots bounded in absolute value by δ, as long as |y′ − y| and t are both bounded in
magnitude by δ. Once 2δ|αv̂′ + (1 − α)u| < ε for all 0 � α � 1, then, taking b = αv̂′ + (1 − α)u
in (2.8), we see that these m roots cannot be purely imaginary, and their real parts must therefore
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Fig. 5. The zero set of the function L1L2 := (3 − X − 2Y )(3 − 2X − Y ).

retain the same sign as α, β and y′ vary. When α = 1, these are the m roots in s of f (x +
iy′ + (s + t)v̂′), so the real parts are t less than the real parts of the roots of f (x + iy′ + sv̂′)
which are all negative by strong hyperbolicity of f at x + iy′ in direction v̂′. We conclude that
for all positive real s in the interval 0 < s < δ, the function f (x + iy′ + s(αv̂′ + (1 − α)u))

does not vanish, finishing the proof of strong hyperbolicity with neighborhood size δ, for any
α ∈ [0,1]. �
Corollary 2.16. Let F be a Laurent polynomial and f := F ◦ exp. Let x ∈ ∂B for some compo-
nent B of amoeba(F )c . Let θ be a continuous unit section of Kf,B(exp(x + i·)). In other words,
θ : (R/(2πZ))d → Sd−1 is continuous and θ(y) ∈ Kf,B(exp(x + iy)) for each y. Then there is
some ε0 > 0 such that for all 0 < ε < ε0, f (x + iy + εθ(y)) 	= 0.

Proof. For each y, let ε(y) be a radius of strong hyperbolicity for f at x + iy in direction
θ(y). Choosing a neighborhood N (y) such that |θ(y′) − θ(y)| < ε(y)/2 when y′ ∈ N (y), we
see that ε(y)/2 is a radius of strong hyperbolicity for f at x + iy′ for any y′ ∈ N (y). Covering
the compact set (R/(2πZ))d with finitely many neighborhoods N (y(1)), . . . , N (y(n)), we may
choose ε0 = minn ε(y(n)). �
Examples and counterexamples

It is important to understand how semi-continuity may fall short of continuity. This is illus-
trated in the following examples. To avoid misleading you with the pictures, we note that all of
the upcoming figures show complex lines in C

2, but that for obvious dimensional reasons, only
the intersection with the R × R subspace is shown.

Example 2.17 (Cones drop down on a substratum). (See Fig. 5.) Let F = L1L2 = (3 − X −
2Y)(3 − 2X − Y). This differs from Fig. 6 in that now l2 also passes through (1,1). However,
since L2 in this example is the inversion of L2 in Example 2.19, the amoeba is the same as in
Example 2.19. We will see that the cone K(Z) drops discontinuously as Z → (1,1), in contrast
to Example 2.19. The subset of VF lying in ReLog−1(B) is the union of two rays {(Y − 1) =
−(X−1)/2: X � 0}∪{(Y −1) = −2(X−1): X � 0} with the common endpoint (1,1). For any
point Z in this set other than (1,1), the cone K(Z) is equal to tanlog Z B which is a halfspace. For
Z = (1,1), the cone K(Z) is still equal to tanlog Z(B), but now this is a proper cone bounded by
rays with slope −1/2 and −2. This cone is the intersection of the two halfspaces that are possible
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Fig. 6. The zero set of (3 − X − 2Y )(3 + 2X + Y ) from Example 2.19 and the OPS component.

values of the cone at nearby points, thus K(1,1) is equal to the lim inf of K(Z) for nearby Z, but
there is a discontinuity at (1,1).

Compare this to Example 2.19. Here, VF ∩ReLog−1(B) is the union of two rays with different
endpoints (1,1) and (−1,−1) and K(Z) is continuous, being constant on each ray and equal to
a different halfspace on each ray.

The containment tanx(B) ⊆ Kf,B(Z) for Z = exp(x + iy) ∈ Vf may be strict. We will see
later that this causes a headache, so we formulate a property allowing us to bypass this trouble in
some cases.

Definition 2.18. Say that x is a well-covered point of ∂B if Kf,B(Z) = tanx(B) for some Z =
exp(x + iy).

We now give two examples of points that are not well covered.

Example 2.19 (Two lines with ghost intersection). Let F = L1L2 = (3 − X − 2Y)(3 + 2X + Y).
The variety VF is shown on the left of Fig. 6. Its amoeba is identical to the amoeba on the right
of Fig. 4. Indeed, it is the union of amoeba(3 − X − 2Y) and amoeba(3 + 2X + Y), the latter
of which is identical to amoeba(3 − 2X − Y) because the amoeba of F(−X,−Y) is the same as
the amoeba of F(X,Y ). The component B of R

d \ amoeba(F ) containing the negative quadrant
corresponds to the ordinary power series. An enlargement of this component is shown on the
right of Fig. 6. For x 	= (0,0) ∈ ∂B , the only point Z = exp(x + iy) of Vf is the real point
Z = ± exp(x), the positive point being chosen for the part of ∂B in the second quadrant and
the negative point for the part of ∂B in the fourth quadrant. In either case, K(Z) is equal to the
halfspace tanx(B).
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On the other hand, when x = (0,0), the linearization of f at x is just �1�2 := (X + 2Y) ×
(2X + Y). The zero set of which contains the two rays forming the boundary of

tanx(B) = {(u, v) ∈ R
2: 2u + v < 0 and u + 2v < 0

}
.

There are two points Z ∈ VF in ReLog−1(0,0), namely (1,1) and (−1,−1). The first is in VL1

and the second is in VL2 . The cone K(1,1) is the halfspace {(u, v) ∈ R
2: u + 2v < 0}, while the

cone K(−1,−1) is the halfspace {(u, v) ∈ R
2: 2u + v < 0}. Both of these cones strictly contain

the cone tanx(B). The term “ghost intersection” refers to the fact that the two curves ReLog VL1

and ReLog VL2 intersect at (0,0) but the lines VL1 and VL2 have different imaginary parts and
have no intersection on the unit torus (though they do intersect at (−3,3)).

Next we include an example which is the closest we can get in two dimensions to the amoeba
of a quadratic point (which can occur only in dimensions three and higher).

Example 2.20 (Critical set has large intersection with a torus). Let F = 1 − √
1/2(1 − X)Y −

XY 2 be the denominator for the generating function for a one-dimensional Hadamard quantum
random walk (see [12]). The component B of R

d \ amoeba(F ) corresponding to the ordinary
power series is that component of the complement of the shaded region in Fig. 7 which contains
the negative quadrant. To illuminate this example a little more, observe that as we go around the
boundary of the amoeba, starting at the origin and leaving to the northwest, the dual cone is a
single projective direction λ ∈ RP

1 at every point other than the origin. Parametrizing RP
1 by

λ = y/x, we see λ decreasing from c := (1 − √
1/2)/2 to zero as the tentacle goes to infinity,

then from 0 to −∞ coming back down the other side of tentacle and from +∞ to 1 going up and
out the northwest tentacle, and so forth. For each point of ∂(amoeba(F )) other than the origin,
there is a unique x ∈ R

2 and y ∈ T 2 with f (x + iy) = 0; the cone K(exp(x + iy)) is equal to the
halfspace tanx(B).

On the other hand, when x = (0,0), the cone tanx(B) is bounded by the two rays λ = c and
λ = 1 − c. This is noted in Fig. 7 by the arrow matching the interval [c,1 − c] to the single
point at the origin. It is easy to check that if (X,Y ) ∈ VF then |X| = 1 if and only if |Y | = 1.
Thus the intersection of VF with the unit torus is the smooth topological circle parametrized by
{(φ(eiy), eiy): y ∈ R/(2πZ)}.

As (x, y) varies over this curve, the cone K(eix, eiy) remains a halfspace, the slope of whose
normal varies smoothly between (1 + √

1/2)/2 and (1 − √
1/2)/2 and back. All of these cones

strictly contain tanx(B). Thus the cone tanx(B) is the intersection of the cones {K(Z): Z ∈
VF ∩ T 2} but these all strictly contain tanx(B).

2.5. Critical points

It is time to give further examination to the role of xmin. The modulus of the term Z−r in the
Cauchy integral is constant over tori, and among all tori in ReLog−1(B) the infimum of |Z−r|
occurs on the torus ReLog−1(xmin). This already indicates that this torus is a good choice, but
we may get some more intuition from Morse theory. The space V is a Whitney stratified space:
a disjoint union of smooth real manifolds, called strata, that fit together nicely. The axioms for
this may be found in Section 1.2 of part I of [23], along with some consequences. We will use
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Fig. 7. The amoeba for F = 1 − (1 − X)Y/
√

2 − XY 2.

Morse theory only as a guide, quoting precisely one well-known result, namely local product
structure:

A point p in a k-dimensional stratum S of a stratified space V has
a neighborhood in which V is homeomorphic to some product S ×X.

(2.9)

This is needed only for the proof of second part of Proposition 2.22 below, which in turn is used
only for classifying critical points when computing examples. According to [23], a proof may
be found in mimeographed notes of Mather from 1970; it is based on Thom’s Isotopy Lemma
which takes up fifty pages of the same mimeographed notes.

A point Z ∈ V is a critical point for the smooth function h if dh|S vanishes at Z, where S is
the stratum containing Z. Goresky and MacPherson show that in fact such points are the only
possible topological obstacles to lowering the value of h. Taking h = −r̂ · ReLog Z, we see that
(i) if there is no critical point in ReLog−1(xmin) then this torus is in fact not the best chain of
integration, and (ii) if there is a critical point in this torus then we may use this fact to help us
compute xmin. Because we do not give a rigorous development of stratified Morse theory here,
we give a definition of the critical set in terms of cones of hyperbolicity, then indicate the relation
to Morse theory.

Definition 2.21 (Minimal critical points in direction r). Fix a Laurent polynomial F in d vari-
ables and a component B of R

d \ amoeba(F ). For a proper direction r, let xmin(r̂) denote the
unique point on ∂B maximizing r̂ · x and let V1 = V1(r̂) = V1(xmin) denote the intersection of
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V with ReLog−1(xmin). Recall the notation N∗(Z) for the dual cone to the cone Kf,B(Z) and
define the set of minimal critical points by

crit(r) := {Z ∈ V1(r): r ∈ N∗(Z)
}
.

A logarithmic version of crit is

W(r) := {y ∈ TR: exp(xmin + iy) ∈ crit(r)
}
.

The term “minimal” refers to the fact that ReLog Z ∈ ∂B and follows the terminology of
[35,36].

Proposition 2.22. Fix a Laurent polynomial F in d variables, let f := F ◦ exp, and let B be a
component of R

d \ amoeba(F ). If Z ∈ V1(r) is not in crit(r) then there is some v ∈ Kf,B(Z) with
r̂ · v = 1. Conversely, if Z ∈ crit(r) then Z is a critical point for the function φ := r̂ · log Z on the
stratified space V .

Proof. If Z /∈ crit(r) then by definition of the dual cone, the maximum of r̂ · x on tanx(B) is
strictly positive. Letting v′ denote a vector in tanx(B) for which r · x > 0, we may take v to be
the appropriate multiple of v′.

For the converse, suppose that Z is not a critical point of the function φ on V . Then z := log Z
is not a critical point for f := F ◦ exp on log V ; denoting d(φ ◦ exp) by r, we see, by definition
of criticality in the stratified sense, that r|S is not identically zero, where S is the stratum of log V
in which z lies.

We claim that the linear space Tz(S) is what [5] call a lineality for the function f := hom(f, z),
meaning that f (w+w′) = f (w) for any w′ ∈ Tz(S) and any w ∈ C

d . To see this, for any w ∈ C
d ,

let w = w‖ + w⊥ denote the decomposition into an element w‖ ∈ Tz(S) and an element in the
complementary space Tz(S)⊥. Write f as a power series

∑
crwr‖ in w‖ with coefficients that are

power series in w⊥. The coefficients cr(0) vanish for |r| < m := deg(f, z). By (2.9), the degree
of vanishing of f at any point of S is the same, hence cr(w⊥) vanish identically for r < m. This
implies that the only degree m terms in the power series for f near z are those of degree m in w‖,
which implies that f (w) depends only on w‖, proving the claim.

By Proposition 2.12 we know that f is hyperbolic. By [5, Lemma 3.52], the real part of the
linear space Tz(S) is in the edge of Kf,B(Z), is invariant under translation by vectors in Tz(S)

meaning that such translations map Kf,B(Z) into itself. Any real hyperplane not containing the
edge of a cone intersects the interior of the cone. Applying this to the real hyperplane {x: r ·x = 0}
(recall by assumption of noncriticality that this hyperplane does not contain Tz(S)), we conclude
that there is some point p ∈ Kf,B(Z) with r · p = 0. This implies Z /∈ crit(r). �

Showing that crit(r) is contained in the set of critical points of the logarithmic gradient enables
us to use algebraic computational methods, cf. the Aztec Diamond computations in Section 4.1.
Some of this algebraic apparatus is detailed further in [36,6]; for the present purpose, the fol-
lowing observations will suffice. When Z is a smooth point of VF , the homogeneous part f of
f := F ◦ exp is a linear map vanishing on the tangent space to f at log Z. Hence the cone of
hyperbolicity of f is an open halfspace, and the dual is the normal vector to this halfspace, which
is the logarithmic normal to VF at Z. (Thus in some sense, the dual cone N∗ is a set-valued gen-
eralization of the logarithmic gradient map.) To compute the smooth points of crit(r), we observe



3148 Y. Baryshnikov, R. Pemantle / Advances in Mathematics 228 (2011) 3127–3206
that the gradient of r · log Z is (r1/Z1), . . . , (rd/Zd). Thus, for Z to be a smooth critical point,
on the divisor {Hj = 0} we must have

Hj = 0;(
Z1

∂Hj

∂Z1
, . . . ,Zd

∂Hj

∂Zd

)
‖ r. (2.10)

Similarly, for a stratum which is the transverse intersection of k smooth divisors {Hj : 1 � j � k}
with logarithmic normals ∇logHj , the equations for critical points in direction r are H1 = · · · =
Hk = 0 and

r ∈ 〈∇logH1, . . . ,∇logHk〉, (2.11)

the linear span of the k logarithmic gradients. Generically, this defines a zero-dimensional variety,
meaning that the number of solutions is finite and nonzero.

For functions f and g, define the notation

f = oexp(g) ⇔ ∣∣f (x)
∣∣� e−βxg(x)

for some β > 0 and all sufficiently large x.

Proposition 2.23. Let F be a Laurent polynomial and
∑

r arZr be a Laurent series for 1/F ,
convergent on a domain ReLog−1(B) where B is a component of amoeba(F ). Let −B∗ denote
the negative convex dual of the set B .

(i) If r /∈ −B∗ then ar = O(e−β|r|) for any β .
(ii) If x ∈ B then ar = oexp(e

−r·x) for all r.
(iii) If x ∈ ∂B but the dot product with r is not maximized over B at x, then ar = oexp(e

−r·x).
(iv) If r is proper and crit(r) is empty, then ar = oexp(e

−r·x).

Proof. The first three statements follow directly from the integral formula (2.1) by taking x · r
to +∞ in (i) and taking x′ · r > x + r in (ii) and (iii). The fourth conclusion is an immediate
consequence of something we will prove in Section 5: under the hypotheses, the contour of
integration in (2.1) may be deformed so that Re{−r · y} < −r · x for every y on the contour. �
2.6. Quadratic forms and their duals

Let S denote the standard Lorentzian quadratic x2
1 − x2

2 − · · · − x2
d . Any real quadratic form

A with signature (1, d) may be written as S ◦ M−1 for some invertible linear map M . We now
define the dual quadratic form A∗ in two ways. The classical definition is that A∗(r) is the
reciprocal of the unique critical value of A on the set r(1) := {x: r · x = 1}. It is easy to compute
the dual S∗ to S. The point x is critical for S|r(1) if and only if ∇S‖r, that is, if and only if
x‖(r1,−r2, . . . ,−rd). Thus the unique critical point of S|r(1) is (r1,−r2, . . . ,−rd)/(r2

1 − r2
2 −

· · · − r2
d ) and the reciprocal of S there is S∗(r) := r2

1 − r2
2 − · · · − r2

d . In other words, S∗ in
the dual basis {r1, . . . , rd} looks exactly like S in the original basis {x1, . . . , xd}. For the second
definition, note any real quadratic form A with signature (1, d) may be written as S ◦ M−1 for
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some invertible real linear map M . Let M∗ denote the adjoint to M , that is, 〈M∗r,x〉 = 〈r,Mx〉;
in our coordinates, this is just the transpose. We see from the diagram below that Mx is a critical
point for A|r(1) if and only if x is a critical point for S|(S∗r)∗ , leading to the alternative definition
A∗(r) = S∗(M∗r).

For computation, it is helpful to compute the matrix for the quadratic form A∗. We have

A(x) = S
(
M−1x

)= xT
(
M−1)T DM−1x

where D is the diagonal matrix with entries (1,−1, . . . ,−1). Thus the matrix for A is
(M−1)T DM−1. On the other hand, since A∗(r) = S∗(MT r) = rMDMT rT , we see that the
matrix for A∗ is MDMT . In other words, the matrices for the quadratic forms A and A∗ are
inverse to each other.

Our definition of the dual quadratic is coordinate free in the following sense. Let A = S ◦M−1

be as above, and let v = (v1, . . . , vd) denote coordinates in which A is represented by the standard
form; in other words, v = M−1x and

A = S
(
M−1(x)

)= v2
1 − v2

2 − · · · − v2
d .

Suppose that an element L ∈ (Rd)∗ is represented by (�1, . . . , �d) in v-coordinates, that is,
L maps

∑
ajvj to

∑
aj�j . Then Lx = (�1, . . . , �d)M−1x, that is, L is represented by the row

vector (�1, . . . , �d)M−1 with respect to the x-basis. Computing in the x-basis, using this row
vector for L and the representation MDMT for A computed above, we have

A∗(L,L) = (�1, . . . , �d)M−1(MDMT
)(

M−1)T (�1, . . . , �d)T

= (�1, . . . , �d)D(�1, . . . , �d)T .

In the v-coordinates, A = S and A∗ = S∗, whence A∗(L,L) = �2
1 − �2

2 − · · · − �2
d and we see

that dualization indeed commutes with linear coordinate changes.
Dual quadratics are important because they and their partial derivatives appear in the asymp-

totic formulae for ar given in Theorems 3.7, 3.9 and 6.9. In order to interpret such asymptotic
estimates and series, it is good to know the size of A∗ and its partial derivatives. It is easy to see
that if F is homogeneous of degree n then ∂F/∂rj is homogeneous of degree n − 1. It follows
that for any multi-index m ∈ (Z+)d , the m-partial derivative of (A∗)α is homogeneous of degree
2α − |m| and hence that (

∂

∂r

)m[
S∗(r)α

]= O
(|r|2α−|m|). (2.12)

The upper estimate is sharp, in the sense that the left-hand side is Θ(|r|2α−|m|) except on a subset
of positive co-dimension where the m-partial derivative may vanish.

2.7. Linearizations

The Fourier integral in (2.1) turns out to be much easier to evaluate if the function f in the
denominator is replaced by its leading homogeneous part. Unfortunately, if q is a polynomial
with homogeneous part q̃ , then the fact that q − q̃ is of smaller order at the origin than q̃ does
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not imply that q ∼ q̃ , which would be necessary for a straightforward estimate of q−1 by q̃−1.
However, on any cone where q̃ does not vanish, we do have such an estimate, and in fact a
complete asymptotic expansion of q−s in decreasing powers of q̃ .

Lemma 2.24 (Expansion in decreasing powers of one function). Suppose that q(x) = q̃(x) +
R(x), where q̃ is homogeneous of degree h, and R is analytic in a neighborhood of the origin
with R(x) = O(|x|h+1). Let K be any closed cone on which q̃ does not vanish. Then on some
neighborhood of the origin in K , q does not vanish and there is an expansion

q(x)−s =
∞∑

n=0

q̃(x)−s−n

[ ∑
|m|�n(h+1)

c(m, n)xm
]
. (2.13)

Furthermore,

q(x)−s −
∑

|m|−hn<N

c(m, n)xmq̃(x)−s−n = O
(|x|−hs+N

)
(2.14)

on K as x → 0. An expansion of the same type is possible for p(x)q(x)−s whenever p is analytic
in a neighborhood of the origin.

Proof. Let R(x) =∑
|m|�h+1 b(m)xm be a power series for R absolutely convergent in some

ball Bε centered at the origin. Let

M := sup|x|∈Bε

∑ |b(m)||x|m
inf|x|∈∂Bε∩K q̃(x)

.

Then by homogeneity,

∑
m

|b(m)xm|
|q̃(x)| � 1/2

on the ε/(2M)-ball. The binomial expansion (1 + u)−s =∑
n�0

(−s
n

)
un converges for |u| < 1

and in particular for |U | = 1/2. Therefore, plugging in
∑

m b(m)xm/q̃(x) in for u yields a series(
1 + R(x)

q̃(x)

)−s

=
∑
n�0

(−s

n

)(∑
m

b(m)
xm

q̃(x)

)n

that converges on Bε/(2M) ∩ K . Multiply through by q̃−s to get (2.13). Convergence on any
neighborhood of the origin implies the estimate (2.14). �
3. Results

3.1. Cone-point hypotheses and preliminary results

We are interested in the asymptotics of the power series coefficients ar of a rational generating
function F0, in cases where there is a cone singularity and previous known results do not apply.
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Among the properties of F0 discussed in Section 2 there are a number of hypotheses and notations
that will arise repeatedly. So as to be able to refer to these en masse, we state them here.

Hypotheses 3.1 (Quadratic point hypotheses).

1. Let F be the product P0F
s1
1 · · ·F sη

p of an analytic function P0 with nonzero real powers
of Laurent polynomials Fj with no common factor. Assume without loss of generality that
sj /∈ Z

+ (since otherwise we may absorb F
sj
j into P0).

2. Let B be a component of the complement of amoeba(
∏η

j=1 Fj ) so that F has a Laurent
series expansion on B .

3. Let r be a dual vector in the dual cone −B∗ and assume r is proper with −r · x minimized
at xmin.

4. Assume that W(r) is finite and nonempty. Let w ∈ TR be an element of W(r) and denote

z := xmin + iw, Z := exp(z).

The remaining assumptions enforce a particular set of degrees for the denominator, namely
a real power of a quadratic together with positive integer powers of smooth divisors.

5. With Z fixed, we let P be the product of P0 with all Fj such that Fj (Z) 	= 0 and collect
terms, writing

F = P

Qs
∏k

j=1 H
nj

j

.

Denote q := Q ◦ exp, hj := Hj ◦ exp, p := P ◦ exp, and denote the homogeneous parts of q

and hj by q̃ := hom(q, z) and h̃j := hom(hj , z).
6. Assume that q̃ is an irreducible quadratic with signature (1,−1, . . . ,−1) and let M be a

linear map such that q̃ = S ◦M−1. We allow s = 0, in which case there is no quadratic factor
vanishing at z.

7. Assume that h̃j are linear and that nj are positive integers.

Remark. We lose little generality in assuming W(r) is nonempty in clause 4 above, for the
following reason. If W(r) is empty, then part (iv) of Proposition 2.23 guarantees that |ar| is less
than x−r by a factor that grows exponentially with |r|.

In the Aztec and cube grove examples, at the point Z of interest, s = 1, k = 1, n1 = 1, in other
words, the denominator of F is a product of (the first power of) a quadratic and a smooth factor.
In the QRW example, η = 2 but k = 1 (at each of the two quadratic points, only one of the other
factors vanishes). There are contributions at the quadratic points (where s = k = n1 = 1) but
they turn out to be dominated by the contributions at smooth points (s = 0). In the superballot
example, η = 2 with F1 = 1 − 4xz, F2 = 1 − x − y − z + 4xyz, s1 = −1/2 and s2 = −1. At
the quadratic point, Z = (1/2,1/2,1/2), F2 is quadratic, s = 1, and n1 = 1/2. In the graph
polynomial example, η = 1 and s = β .

We extend the expansion in Lemma 2.24 to the generality of the quadratic point hypotheses
as follows.
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Lemma 3.2 (General quadratic point expansion). Assume the quadratic point hypotheses. Let K

be any closed cone on which q̃
∏k

j=1 h̃j is non-vanishing. Then there is some neighborhood of 0
in K such that for all N � 1 the following estimate holds uniformly:

f (xmin + iw + y) =
∑

m,�,n: |m|−2�−kn<N

c(m, �, n)ymq̃(y)−s−�
k∏

j=1

h̃j (y)−nj −n

+ O
(|y|2�+|n|+N

)
. (3.1)

The sum is finite because c(|m|, �, n) vanishes unless |m| � 3� + (k + 1)n.

Proof. Apply Lemma 2.24 once with q(x + ·) in place of q , for the given value of s, and once
with

∏k
j=1 h

nj

j (x + ·) in place of q , setting s = 1. This yields two convergent power series.
Multiply the two series together and multiply as well by the power series for p(x + ·). �

The results in this paper can be summarized as follows. First, ar is well approximated by a
sum of contributions indexed by W(r), these contributions being integrals localized near points
xmin + iw, for w ∈ W(r). Secondly, depending on the geometry at xmin + iw, this contribution
is well approximated by a certain explicit function of r. The result giving the decomposition as
a sum is stated as Theorem 3.3 below, with the remaining theorems in this section giving the
contributions in various special cases. It should be noted that Theorem 3.3 is like a trade for the
proverbial “player to be named later”, in that it allows us to state a complete set of results even
though the meaning will not be clear until the other results have been stated.

Theorem 3.3 (Localization). Assume the quadratic point hypotheses and notations. Then there
is a conical neighborhood N of r in (Rd)∗ and there are chains {C(w): w ∈ W(r0)} defined in
the text surrounding Theorem 5.4 in Section 5 below, such that

ar =
∑

w∈W(r0)

contrib(w) + oexp
(
x−r

min

)
. (3.2)

The estimate is uniform when |r| → ∞ while remaining within N . The summand is defined by

contrib(w) :=
(

1

2πi

)d ∫
C(w)

e−r·z p(z)

q(z)s
∏k

j=1 hj (z)nj
dz. (3.3)

Proof. This is an immediate consequence of Corollary 5.5 below. �
3.2. Asymptotic contributions from quadratic points

Next, we identify the contributions contrib(w). In the case where w is a smooth point (s = 0,
k = 1, n1 = 1), these are already known. A formula involving the Hessian determinant for a
parametrization of the singular variety V of F was given in [35, Theorem 3.5], which was then
given in more canonical terms in [7].
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Theorem 3.4. (See [35,7].) Assume the quadratic point hypotheses and suppose that s = 0, k = 1
and n1 = 1, so Z is a simple pole for F . Let

∇log := ∇f (z) =
(

x1
∂f

∂x1
, . . . , xd

∂f

∂xd

)
denote the gradient of H := H1 in logarithmic coordinates and let κ = κ(z) denote the (possibly
complex) Gaussian curvature of Vf at z. Suppose that κ 	= 0. Letting | · | denote the Euclidean
norm, we have:

contrib(w) ∼ (2π |r|)(1−d)/2 p(z)√
κ(z)|∇log|z−r.

The estimate holds uniformly over a sufficiently small neighborhood of r such that: (i) the
quadratic point hypotheses are satisfied, (ii) κ 	= 0, and (iii) the point Z = Z(r) varies smoothly.
The square root should be taken as the product of the principal square roots of the eigenvalues
of the Gauss map. �

In the case where w is on the transverse intersection of smooth (local) divisors, formulae are
also already known. There are a number of special cases, depending on the dimension of the
space, the dimension of the intersection, and the number of intersecting divisors. We will not
need these results in this paper (we need only the upper bound in Lemma 5.9) but statements
may be found in [36, Theorems 3.1, 3.3, 3.6, 3.9, 3.11] and in [6]. The novel results in this
paper concern the case at a quadratic point, that is, where s 	= 0. Let N∗

x(B) denote the dual to the
tangent cone tanx(B). The cone N∗

x(B) will have nonempty interior. By contrast, in Example 2.19
the cone tanx(B) is always a halfspace and N∗

x(B) is always a single ray.

Definition 3.5 (Obstruction). Assume the quadratic point hypotheses and notations. Say that r
is non-obstructed if r is in the interior of N∗

x(B) and if for any x in the boundary of the cone of
hyperbolicity of q̃ , the cone Kq̃,B(x) contains a vector v with r · v > 0.

This condition is not transparent, so we pause to discuss it. First, note that the non-obstruction
condition will turn out to be satisfied for all r in the interior of N∗

x(B) when k = 0 (locally, the
denominator of F is an irreducible quadratic). To see this, recall from Proposition 2.7 that the
cone of hyperbolicity of q̃ is a component of its cone of positivity. At any point v on the boundary
of this cone, other than the origin, q̃ is smooth and hence hom(q̃,v) is linear, vanishing on the
tangent plane at v to {q̃ = 0}. The normals to these planes are precisely the extreme points of the
cone N∗

x(B). Therefore, for any r in the interior of N∗
x(B), r is not perpendicular to the tangent

plane at to {q̃ = 0} at any point v 	= 0, which implies that r is non-obstructed. An example where
there are obstructed directions interior to N∗

x is as follows.

Example 3.6 (Obstruction). Suppose the denominator of F is H := H1H2H3 := (1 − X)(1 −
Y)(1 −XY). Then h̃ := Cxy(x + y). The cone tan(0,0)(B) is the negative orthant. The dual cone
N∗

x(B) is the positive orthant. The vector r = (1,1) lies in the interior of the dual cone. Let
x = (t,−t) for some t 	= 0. Then Kq̃,B(x) is the halfspace {(x, y): x + y < 0} and −r · (x, y) is
minimized at zero on this cone.



3154 Y. Baryshnikov, R. Pemantle / Advances in Mathematics 228 (2011) 3127–3206
Secondly, we see that the condition of non-obstruction is not merely technical, but is necessary
for the conclusions we wish to draw. To elaborate, we would like our asymptotics to be uniform
as r varies over the interior of N∗

x(B). Unfortunately, this is not always possible. In the previous
example, if F = 1/H = 1/[(1 − X)(1 − Y)(1 − XY)], then ar = min{r1, r2}. Analytic expres-
sions for ar will not be uniform as r approaches the diagonal. This is in fact because movement
of the contour of integration in (2.1) will be obstructed, requiring different deformations for r in
the positive quadrant on different sides of the diagonal.

Theorem 3.7 (Quadratic, no other factors). Assume the quadratic point Hypotheses 3.1, and
suppose that k = 0, in other words, F = P/Qs with no further factors in the denominator and
s 	= 0,−1,−2, . . . . Let c(m, n) be the coefficient of xmq̃(x)−1−n in the expansion (2.13). Let K∗
be any compact subcone of the interior of N∗. Then, uniformly over r ∈ K∗, when the Gamma
functions in the denominator are finite, there is an expansion

contrib(w)

∼ |M|
22s−1πd/2−1�(s)�(s + 1 − d/2)

Z−r
∑
n

∑
|m|�3n

c(m, n)(−1)|m| ∂m

∂rm

(
q̃∗(r)s+n−d/2).

(3.4)

The series is asymptotic in the following sense. For any N , restricting the series to terms with
|m| − 2n < N yields an approximation whose remainder term is O(|r|2s−d−N), all of whose
terms are generically of order |r|2s−d−N+1. If P(Z) 	= 0 then

contrib(w) ∼ P(Z)|M|
22s−1πd/2−1�(s)�(s + 1 − d/2)

Z−r[q̃∗(r)s−d/2]. (3.5)

When s + 1 − d/2 is a nonpositive integer, and thus the denominator of (3.4) is infinite, the
conclusion should be understood to say that

contrib(w) = o
(∣∣Z−r∣∣|r|−N

)
for all N > 0.

Remark. Comparing to Eq. (2.12), we see that the remainder terms are no larger than the first
omitted term of (2.12). For a true asymptotic expansion, this should be smaller than the last term
that was not omitted, but in general there may be directions r in which (∂m/∂rm)q̃∗(r)s−d/2

is of smaller order than |r|2s−d−|m|. This may occur after the first term in the expansion (3.4),
though not in the leading term (3.5). Also, by Theorem 3.3, we may be adding up several of these
formulae, thereby obtaining some cancellation. For example in the case of the Aztec diamond,
ar = 0 when

∑
rj is odd. This manifests itself in the symmetry F(Z) = F(−Z), and in two

quadratic points at (1,1,1) and (−1,−1,−1). Contributions from the two quadratic points will
sum or cancel according to the parity of r.

As a corollary, for ease of application, we state the asymptotics in the three variable case for a
single power of Q in the denominator. Theorem 3.7 is proved in Section 6.4, while Corollary 3.8
follows immediately.
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Corollary 3.8. Assume the quadratic point hypotheses with d = 3, k = 0 and s = 1. Let c(m, n)

be the coefficients in the expansion (2.13). Let K∗ be any compact subcone of the interior of N∗,
the dual cone to tanx(B). Then, uniformly over r ∈ K∗, there is an expansion

contrib(w) ∼ |M|
2π

Z−r
∞∑

n=0

∑
|m|=n

c(m, n)
∂m

∂rm

[
q̃∗(r)−1/2]. (3.6)

Here, asymptotic development means that if one stops at the term n = N − 1, the remainder term
will be O(|r|−1−N), while the last term of the summation will be of order |r|−N . In particular, if
P(Z) 	= 0 then

contrib(w) ∼ P(Z)|M|
2π

Z−r[q̃∗(r)−1/2] (3.7)

uniformly on K∗. �
Remark. Again, the leading term estimate (3.7) is a true asymptotic estimate, while the right-
hand side of (3.6) may vanish for certain m and r.

3.3. The special case of a cone and a plane

Our last main result addresses the simplest case where the are both a quadratic and a linear
factor. The case of a quadratic along with multiple linear factors is also interesting. We address
this in Section 6.5. Because there are a great number of subcases and we have no motivating
examples, we do not state here any theorems about that case, and instead describe in Section 6.5
a number of results that pertain to this case. In the case of a single factor of each type, in three
variables, significant simplification of the general computation is possible. The remaining results
concern this special case.

Assume the cone-point hypotheses with d = 3, s = 1 and k = 1. Because k = 1, we drop the
subscript and denote H := H1. We assume also that the linear factor � := h̃1 of the homogeneous
part of (QH) ◦ exp shares two real, distinct projective zeros with the quadratic factor q̃ , and
we denote these by α1 and α2. The given component B on which the Laurent series

∑
r arZr

converges is the intersection B1 ∩ B2 of a component of amoeba(Q)c and amoeba(H)c . By
hyperbolicity, we know that the quadratic q̃ is a scalar multiple of a real hyperbolic quadratic;
multiplying by −1 if necessary, we may assume the signature to be (1,2); in particular, we may
write

q̃(λv + w) = λ2 − |w|2

for some v ∈ tanx(B1) and all w ∈ tanx(B1)
⊥. The set B1 is a cone over an ellipse E and its dual

−B∗
1 is a component of positivity of the cone q̃∗ = 0. The linear function h̃ may be viewed as

a point of (R3)∗. Fig. 8 shows a plot of q̃∗ = 0 and of the point h̃ in (R3)∗. Also shown is the
line of points r for which q̃∗(r, h̃) = 0. These shapes in the projective (r|s|t)-space (RP

2)∗ are
shown via their slices at t = 1.

The assumption that α1, α2 are real implies that the point h̃ lies outside B∗
1 . The normal cone

N∗
x(B) is the convex hull of the normal cone B∗

1 of Q and the normal cone {h̃} of H . This
teardrop-shaped is the entire shape shown in Fig. 8. The tangent lines to B∗ from h̃ intersect B∗
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Fig. 8. The cone N∗ depicted by its slice at t = 1.

in two projective points, namely those r for which q̃∗(r, h̃) = q̃∗(r, r) = 0. The non-obstructed
set is a disjoint union B∗

1 ∪ E, where the cone E is the non-convex region N∗
x(B) \ B∗

1 . Observe
that the dotted arc in Fig. 8 is obstructed and thus is in neither B∗

1 nor E, these being the two
components of the non-obstructed set.

To state the final theorem, we must define one more quantity. If A is a homogeneous quadratic
and L is a linear function, define a quantity Res(2) as follows. Let θ denote the form (z dx dy −
y dzdx + x dy dz)/(A ·L). The second iterated residue of θ is a 0-form, defined on the two lines
α1, α2 where A = L = 0. Because θ is homogeneous of degree zero, its second residue has a
common value at any affine point in the line αj . We let Res(2) = Res(2)

A,L(αj ) denote this value.

In coordinates, we have a number of formulae for Res(2), one being

Res(2)(α) = z

∂A
∂x

∂L
∂y

− ∂A
∂y

∂L
∂x

∣∣∣∣
(x,y,z)∈α

. (3.8)

Theorem 3.9 (Quadratic and one smooth factor). Assume the quadratic point hypotheses with
d = 3, s = 1 and k = 1 and let � denote the linear factor, h̃1 at the point z. Assume p(z) 	= 0
and assume that the two projective solutions α1, α2 to � = q̃ = 0 are real and distinct, so that the
non-obstructed set N∗ is the union of an elliptic cone B∗

1 and a non-convex cone E as described
above.

Let q̃∗ denote the dual to the quadratic q̃ . Let arctan denote the branch of the arctangent
mapping (0,∞) to (0,π/2), while mapping (−∞,0) to (π/2,π) rather than to (−π/2,0). Then

contrib(w) = Z−rP(Z)

[
Res(2)

π
arctan

(√
q̃∗(r, r)

√−q̃∗(�, �)
q̃∗(r, �)

)
+ R

]
(3.9)

where the remainder term satisfies R = O(|r|−1) uniformly as r ranges over compact subcones
of B∗

1 . On the other hand, we have the estimate

contribw = Res(2)P (Z)Z−r + R

where R = O(|r|−1) uniformly as r ranges over compact subcones of E.

4. Five motivating applications

One feature is common to all but one of our applications, namely that 0 is on the bound-
ary of the amoeba of the denominator of the generating function. In this case, by part (iii) of
Proposition 2.23, the coefficients ar decay exponentially as |r| → ∞ in directions r̂ for which
supy∈tan0(B) r̂ · y > 0, in other words for r /∈ N∗, the dual cone to tan0(B). In such a case, the only
significant (not exponentially decaying) asymptotics are in directions in the dual cone (tan0(B))∗.
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Fig. 9. The Aztec diamond of order 4, tiled by dominoes.

We therefore restrict our attention in every case but the superballot example to r ∈ (tan0(B))∗,
and consequently, to xmin = 0.

4.1. Tilings of the Aztec diamond

The model
The Aztec diamond of order t is a union of lattice squares in Z

2. Its boundary is the polygon
whose vertices are the pairs (±r,±s) with r, s � 1 and r + s = t or t + 1. Thus the order 1 Aztec
diamond consists of the four squares adjacent to the origin and the order 2 diamond consists of
these together with the square centered at (3/2,1/2) and its seven images under the symmetries
of the lattice rooted at the origin. This was defined in [17], where questions were considered
regarding the statistical ensemble of domino tilings of the Aztec diamonds. A domino tiling of
a union of lattice squares is a representation of the region as the union of 1 × 2 or 2 × 1 lattice
rectangles with disjoint interiors. Fig. 9 shows an example of a domino tiling of an order 4 Aztec
diamond. The set of domino tilings of the order n Aztec diamond has cardinality 2(n

2) [17]. Let μn

be the uniform measure on this set, that is, the probability measure giving each tiling a probability
of 2−(n

2). Limit theorems for characteristics of μn have been proved, the most notable of which
is the Arctic Circle Theorem which states that outside a (1 + ε) enlargement of the inscribed
circle the orientations of the dominoes are converging in probability to a deterministic brick
wall pattern, while inside a (1 − ε) reduction of the inscribed circle the measure has positive
entropy [30]. A new proof and a distributional limit at rescaled locations inside the circle were
given in [14, Theorem 1].

Via an algorithm called domino shuffling [39], the following generating function was found.
Color the square centered at (r − 1

2 , s − 1
2 ) in the Aztec diamond of order t black if r + s + t

is odd and white if r + s + t is even. A domino is said to be northgoing if its white square is
the (0,1)-translate of its black square. For r + s + t odd, let p(r, s, t) denote the probability
that the domino covering the square centered at (r − 1

2 , s − 1
2 ) is northgoing. The generating

function (1.3), which we recall here, known in the 1990’s to users of the Domino Forum and is
proved, for example, in [16]:

F :=
∑

p(r, s, t)XrY sZt = Z/2

(1 − YZ)[1 − (X + X−1 + Y + Y−1)Z/2 + Z2] . (1.3)

The sum is taken over t � 1 and −t < r, s � t with |r − 1
2 | + |s − 1

2 | � t and r + s + t − 1 ≡ 0
modulo 2. The first results on these probabilities were derived using bijections and other algebraic
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Fig. 10. The disk B∗
2 and the point h̃; the region U is the interior of the convex hull of B∗

2 ∪ h̃, minus the boundary of B∗
2 .

combinatorial methods [17]. We will show that Theorem 3.9 implies the following asymptotic
formula for arst .

Theorem 4.1. (See [14, Theorem 1].) Let r̂ := r/t , ŝ := s/t . Let U be the union of the two sets
{r̂2 + ŝ2 < 1/2} and {r̂2 + ŝ2 > 1/2} ∩ {0 < ŝ < 1 − |r̂|} (see Fig. 10). Then

arst ∼ 1

π
arctan

(√
1 − 2r̂2 − 2ŝ2

1 − 2ŝ

)
(4.1)

when r + s + t is odd and zero when r + s + t is even. Here, the arctangent is taken to lie in [0,π]
so that it varies continuously as ŝ increases through 1/2. The asymptotic is uniform as t → ∞
as long as (r̂, ŝ) remains in a compact subset of U .

The amoeba and normal cone
We apply the results of Section 3. An outline is as follows. After verifying the quadratic point

hypotheses, the localization Theorem 3.3 computes ar asymptotically as a finite sum∑
w∈W(r)

contrib(w).

The point (0,0,0) is on the boundary of the component B and is in fact a quadratic point. We
will compute its normal cone N∗ which is the teardrop-shaped region shown in Fig. 8. Outside
of N∗, the probabilities decay exponentially. When r ∈ ∂N∗ we cannot say anything, but for r
interior to N∗ we will obtain, via Theorem 3.9, a 2-periodic contribution at the critical points
±(1,1,1). The leading term asymptotics (4.1) will follow once we show all other contributions
to be negligible.

Corresponding to the notation in the quadratic point hypotheses, we write F = P/(QH)

where Q := 1− (X+X−1 +Y +Y−1)Z/2+Z2, H := 1−YZ and P := Z/2. Using a computer
algebra system to compute a Gröbner basis for {Q,QX,QY ,QZ}, we find that VQ is singular
precisely at Z = ±(1,1,1). Letting q := Q◦exp and q̃ := hom(q,0), we find at the point (1,1,1)

that q̃(x, y, z) = z2 − 1
2x2 − 1

2y2; the computations for the point (−1,−1,−1) are analogous and
are done at the end of the discussion. We see that near (1,1,1), Q is an irreducible quadratic,
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while h̃ is linear, with linearization h̃(x, y, z) = y + z. To specify B , observe that the compo-
nents of amoeba(f )c are intersections of complements of amoeba(Q) with components of the
complement of amoeba(H). A glance at the series

∑
p(r, s, t)XrY sZt shows that the series is

convergent for any fixed X and Y as long as Z is sufficiently small. Hence the component B of
the complement of amoeba(QH) corresponding to this series is the one containing (0,0,−λ)

for sufficiently large λ. The amoeba of 1 − YZ is just the line y = −z in log space, and the com-
ponent of amoeba(H) containing the ray (0,0,−λ) is the halfspace B1 := {y + z < 0}. Turning
to Q, we recall from [21, Chapter 6] that the components of the complement of the amoeba(Q)

correspond to vertices of the Newton polytope P(Q). The Newton polytope is an octahedron
with vertices (±1,0,1), (0,±1,1) and (0,0,1 ± 1). There is one vertex, namely (0,0,0), for
which (0,0,−λ) is in the interior of the normal cone. Let B2 be the component of amoeba(Q)c

containing a translate of this cone. Let B = B1 ∩ B2. This completes (1)–(2) of the quadratic
point hypotheses.

As discussed at the beginning of Section 4, in the case where 0 ∈ ∂B , we will be chiefly inter-
ested in asymptotics in directions r for which r · x � 0 for x ∈ B . Let us verify that 0 ∈ ∂B . Let
Z = UXY . Observe that if X,Y,U < 1 then the series (1.3) is absolutely convergent. Sending
U,X,Y to 1 sends (X,Y,Z) to (1,1,1) which is therefore on the boundary of the domain of
convergence of (1.3); hence 0 = log(1,1,1) is on the boundary of amoeba(QH). We now com-
pute N∗ := −(Kq̃·h̃,B)∗. This was done in general in Section 3.3, so to complete the description,
we need merely to identify the dual quadratic q̃∗ and the dual projective point h̃. The quadratic q̃

is already diagonal: q̃ = z2 − (x2 + y2)/2; hence q̃∗ = (1/2)t2 − r2 − s2. Letting (r̂, ŝ, t̂ ) be the
unit vector r/|r|, we obtain the plot in Fig. 10. The projective point h̃ is the point (0|1|1), which
in the t = 1 slice is given by (0,1); this is outside the dual cone B∗

1 , reflecting the fact that q̃ and
h̃ have two common real solutions.

Classifying critical points
When r is in the interior of N∗, xmin = 0 and r is obstructed only when r ∈ ∂B∗

2 . To finish
verifying quadratic point hypotheses (4)–(5), we need to identify W(r) and check that it is finite.
As noted before, it will turn out that

∑
w∈W(r) contrib(w) is dominated by the contributions from

w = 0 and w = (π,π,π). We may therefore identify the remaining critical points somewhat less
explicitly.

Finding the critical points requires an explicit stratification of VF . The collection of strata:

V1 := {(1,1,1), (−1,−1,−1)
}
,

V2 := VQ ∩ VH \ V1,

V3 := VH \ (V1 ∪ V2),

V4 := VQ \ (V1 ∪ V2)

defines the coarsest Whitney stratification of VF . The points of V1 are isolated (quadratic) sin-
gularities of VQ, while the remaining strata are VQ, VH and their intersection, which may
be parametrized by {(z±1, z−1, z): z ∈ C

∗}. By definition, any function is critical on a zero-
dimensional stratum, whence both points of V1 are critical for all r ∈ N∗. Below, we will show
that in fact contrib(w) = Θ(1) for exp(iw) ∈ V1. When r is in the interior of N∗, we will show
that the remaining critical points break down as follows:
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V2: No critical points,

V3: No critical points,

V4: Finitely many critical points. (4.2)

By Theorem 3.4, the critical points in V4, which are smooth, each contribute o(1) to the asymp-
totics, so we will be done once we evaluate the contributions from ±(1,1,1) and prove (4.2).

Turning to the issue of counting critical points, we begin with the easiest stratum V3. Recall
from (2.10) that on the smooth stratum VH , the point Z is critical if and only if ∇logZ is paral-
lel to r. The logarithmic gradient of H the constant vector (0,1,1), which is on the boundary
of N∗, whence V3 contains no critical points interior to N∗. To compute critical points on V2,
we evaluate ∇logQ(z±1, z−1, z) and find that independent of z, we always obtain the projective
point (∓ 1

2 , 1
2 ,1). This shows that VQ intersects VH transversely, and by (2.11), that V2 produces

critical points only when r is in the union of two projective lines, one joining (0,1) to ( 1
2 , 1

2 ) and
the other joining (0,1) to (−1/2,1/2). This union does not intersect the interior of N∗.

To solve for critical points in V4, fix r = (r, s, t) and solve Eqs. (2.10): Q = 0, tXQX −
rZQZ = 0 and tYQY − sZQZ = 0. Multiplying each of these by 2xy clears denominators and
allows us to use a computer algebra system to compute a Gröbner basis for the solution. With
lexicographic term order plex(x, y, z), the almost-elimination polynomial for z is yz(1 + z)2 ×
(1 − z)2 times a quadratic polynomial in r, s, t and z2:(

r4 − 2r2s2 − 2t2r2 + s4 − 2t2s2 + t4)+ (−2s4 + 4r2s2 − 2r4 − 4t2s2 − 4t2r2 + 2t4)z2

+ (r4 − 2r2s2 − 2t2r2 + s4 − 2t2s2 + t4)z4.

It is easy to check that for every r, s, t , this polynomial is not identically zero, hence there are
only finitely many solutions. The basis contains a polynomial in y and z (over C(r, s, t)) that is
linear and non-constant in y, implying that for each z there is at most one y. The same is true for
x if we use the term order plex(y, x, z). It follows that there are finitely many critical points in
V4 for each r. Summing up, have verified (4)–(5) of the quadratic point hypotheses for r interior
to N∗.

Computing the estimate
The computations for w = (π,π,π) (hence Z = (−1,−1,−1)) are almost identical to those

for w = 0 and Z = (1,1,1). We do the latter computation and indicate changes needed to do the
former. We observe also that Q and H are invariant under (X,Y,Z) �→ (−X,−Y,−Z), while
the numerator, Z/2, is odd; this corresponds to the parity constraint of p(r, s, t) vanishing when
r + s + t is even.

The quadratic point hypotheses have now been spelled out and verified. Let w := 0 and Z :=
(1,1,1). To check that we are in the case covered by Theorem 3.9, we need to check that the two
projective solutions to q̃ = h̃ = 0 are real and distinct. This is easy: plugging in y = −z, we get
z2 − 1

2z2 − 1
2x2 = 0 which has the two real solutions y = −z = ±x.

The quantity q̃∗(r, r) is the quadratic that is positive on the interior of the disk, reaching a
maximum of 1 at (0,0,1) and vanishing on the boundary of the disk. In coordinates, it is given
by

q̃∗(r, r) = t2 − 2s2 − 2r2.
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Fig. 11. Asymptotics for northgoing probabilities in the Aztec Diamond.

The quantity q̃∗(r, h̃) is equal to t − 2s. This vanishes on the line shown in Fig. 8. The branch
of the arctangent chosen in the conclusion of Theorem 3.9 varies continuously through π/2
as q̃∗(−r, h̃) varies through zero and the argument of the arctangent passes through ±∞. The
arctangent goes to zero where q̃∗(r, r) = 0 and q̃∗(r, h̃) > 0 (the part of the boundary of the
disk to the left of the vertical line) and to π where q̃∗(r, r) = 0 and q̃∗(r, h̃) < 0 (the part of
the boundary of the disk to the right of the line). The residue Res(2) is immediately computed
from (3.8) and is equal to 1. Finally, we have P(z) = 1/2 and q̃∗(h̃, h̃) = −1. Thus, as r varies
over the interior of the projective disk B∗

2 we have

contrib(0) ∼ 1

2π
arctan

(√
q̃∗(r, r)

q̃∗(r, h̃)

)
= 1

2π
arctan

(√
t2 − 2r2 − 2s2

t − 2s

)
.

The computation for w = (π,π,π) is entirely analogous, leading to the same contribution but
with an extra sign factor of (−1)i+j+n+1. We have already shown that all other contributions are
of order O(|r|−1). Therefore, we may sum these results to finish the proof of Theorem 4.1. A plot
of this function is shown in Fig. 11; see [14, Fig. 2] for a contour plot of the same function. �
4.2. Cube groves

The model
After [13,38], we define a collection of lattice subgraphs known as cube groves. Let Ln be the

triangular lattice of order n � 0, by which we mean the set of all triples of nonnegative integers
(r, s, t) ∈ (Z+)3 such that r + s + t = n with edges between nearest neighbors (thus the degree
of an interior vertex is 6). We depict this in the plane as a triangle with n + 1 vertices in the top
(zeroth) row, and so on down to 1 vertex in the nth row.

The cube groves of order n are a subset Cn of the subgraphs of Ln. The set Cn has a de-
scription where one begins with the unique cube grove of order zero, then produces sequentially
groves of orders 1,2, . . . , n, each produced from the previous by a “shuffle” which injects some
information in a manner similar to the domino shuffling used by [14] in studying and enumerating
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Fig. 12. An order 4 cube grove, shuffled to become an order 5 grove.

domino tilings of the Aztec diamond. The set Cn has other, static definitions in terms of graphs
that look like stacks of cubes and in terms of graphical realization of certain terms of generating
functions (see [38]), but here we will take the shuffling procedure to define the set Cn of order n

cube groves.
Define C0 to be the singleton whose element is the one-point graph. If T is a downward-

pointing triangular face of Ln, let T ′ be the rotation of T by 180◦ about its center. The union of
the vertices of the triangles T ′ is a translation of the graph Ln+1, provided that one adds in the
three corner vertices of Ln+1. The edge sets of the triangles T ′ are disjoint and their union is the
edge set of Ln+1, provided that one adds in the six edges adjacent to corner vertices.

Given a cube grove G ∈ Ln and a downward-pointing triangular face T of Ln, let G(T ) be
the collection of graphs on T ′ that have: no edges if G has two edges in T ; one edge if G has one
edge e ∈ T , in which case the edge of T ′ must be the edge of T ′ parallel to e; two edges if G has
no edges in T , in which case any two of the three edges of T ′ will do. Let C(G) be the direct sum
of G(T ) as T varies over downward-pointing triangular faces of Ln. That is, choose an element
of G(T ) for each T and take the union of these. Fig. 12 shows an order 4 grove, G and one of
the 27 elements of C(G). Finally, let Cn+1 be the (disjoint) union of the collections C(G) as G

runs over Ln.
Looking at a picture of a uniformly chosen random cube grove of order 100, one sees re-

gions of order and disorder similar to those of the Aztec Diamond (see Fig. 13). Let pn(i, j)

be the probability that the horizontal edge with barycentric coordinates (i, j, n − i − j) is
present in a uniformly chosen cube grove of order n. The creation rates En(i, j) may be
defined in terms of the shuffling procedure but in this case they satisfy the simple relation
En−1(i, j) = 3

2 (pn(i, j) − pn−1(i, j)) [38, Theorem 2]. We recall here the explicit generating
function (1.4), which is derived in [38, Section 2.2]:

F(X,Y,Z) = 2Z2

(1 − Z)(3 + 3XYZ − (X + Y + Z + XY + XZ + YZ))
:= 2Z2

HQ
.

It is quick to verify that longer factor, Q, in the denominator has a quadratic cone singularity and
that F therefore is singular on the union of a quadratic cone with a smooth surface. The real part
of this is pictured in Fig. 14. Application of Theorem 3.9 will yield the following result.

Theorem 4.2. The quantity pt (r, s), which is the coefficient arst of XrY sZt in (1.4), is given
asymptotically by

1
arctan

(√
2(rs + rt + st) − (r2 + s2 + t2)

)
(4.3)
π r + s − t



Y. Baryshnikov, R. Pemantle / Advances in Mathematics 228 (2011) 3127–3206 3163
Fig. 13. A random cube grove of size 100.

Fig. 14. The pole variety of the cube grove generating function.

where the arctangent is taken in (0,π) so that as we cross the line t = r + s the arctangent varies
continuously across π/2.

The amoeba and the normal cone
All multi-indices in the generating function are nonnegative, so it is an ordinary generating

function and B will be the component of amoeba(F )c containing the negative orthant. Again,
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Fig. 15. The dual cone in symmetrized coordinates.

we are chiefly interested in directions r for which xmin(r) = 0, these being the directions of
non-exponential decay. The polynomial Q has a single quadratic point at (1,1,1). To com-
pute tanxmin(B), we intersect B1 := {(x, y, z): z < 0} with the cone B2 of hyperbolicity of Q

at (1,1,1). Changing to exponential coordinates via q := Q ◦ exp and computing the leading
homogeneous term gives

q(x, y, z) = q̃(x, y, z) + O
(|z|3) where q̃(x, y, z) := 2xy + 2xz + 2yz.

It follows that B2 is the cone containing the negative orthant and bounded by {q̃ = 0}. The dual
quadratic is represented by the matrix

[0 1 1
1 0 1
1 1 0

]−1

= 1

2

[−1 1 1
1 −1 1
1 1 −1

]
,

hence

q̃∗(r, s, t) = rs + rt + st − 1

2

(
r2 + s2 + t2).

The dual cone −B∗
1 is the subcone of the positive orthant bounded by q̃∗ = 0. Again, the point h̃,

which is equal to (0,0,1) in the (r, s, t)-coordinates, lies outside this cone, and again the so-
lutions to q̃ = h̃ = 0 are the solutions to z = 0 = xy which are two distinct projective points,
namely the x-axis and the y-axis. We could again depict this by the slice through t = 1, view-
ing B∗

2 as the interior of a parabola in the first quadrant, opening in the northeast direction and
tangent to the axes at (1,0) and (0,1), with h̃ at (0,0). It is easier to see what is going on if
we change coordinates to u := (1,1,1)/

√
3, letting U⊥ denote the complementary space. For

r = (r · u)u + r⊥ with r⊥ ∈ U⊥, we then have |r|2 = (r · u)2 + |r⊥|2, whence

∣∣r⊥∣∣2 = r2 + s2 + t2 − 1

3
(r + s + t)2 = 1

3

(
r2 + s2 + t2)− 2

3
q̃∗(r, s, t).

Thus q̃∗(r, s, t) = 0 when |r|2 = 3|r⊥|2, or equivalently, |r · u|2 = 2|r⊥|2. Viewing projective
space via the slice r · u = 1, we see that q̃∗ vanishes on the circle centered at the origin of
radius

√
1/2. The projective point h̃ = (0,0,1) intersects the slice |r ·u| = 1 at (0,0,

√
3), whose

projection to U⊥ has squared norm 2. This is pictured in Fig. 15. In these coordinates, the only
difference between this figure and that for the Aztec Diamond is that the distance from the origin
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to the point h̃ is twice the radius of the circle, rather than
√

2 times the radius, and the tangents
subtend an arc of 120◦ rather than 90◦.

Classifying the critical points
The stratification is similar to that for the Aztec Diamond generating function. There is just

one singular point of Q, namely (1,1,1). This is on VH as well. The surfaces VH and VQ

intersect in the set {x = z = 1} ∪ {y = z = 1}, which is smooth away from (1,1,1), leading to
the following stratification:

V1 := {(1,1,1)},
V2 := VQ ∩ VH \ V1,

V3 := VH \ (V1 ∪ V2),

V4 := VQ \ (V1 ∪ V2).

The logarithmic gradient of H is parallel to (0,0,1), which is not in N∗, so for r ∈ N∗ there are
never any critical points on V3. There are critical points on V4, but we verify as before that there
are only finitely many. They are smooth, so by Theorem 3.4, their contributions are o(1). On V2,
the logarithmic gradient of Q is parallel to either (1,0,1) or (0,1,1). The logarithmic gradient
of H is in the t direction, so the span of the two logarithmic gradients is either the r–t plane or
the s–t plane. Neither of these planes intersects the interior of N∗ (the planes are tangent to N∗
at the projective points (1,0,1) and (0,1,1) respectively). The for r interior to N∗, there are no
contributions from V2; it remains to compute the contribution from V1.

Computing the estimate
Completing the computation as in the Aztec case, we evaluate Res(2) using (3.8) but switching

the roles of x and z because only the z-derivative of h̃ is non-vanishing. This gives Res(2) = 1
2 .

With P = 2Z2, and only one contributing point w = (0,0,0), we have q̃∗(r, h̃) = (r + s − t)/2
and q̃∗(h̃, h̃) = −1/2, whence Theorem 3.9 gives

ar ∼ 1

π
arctan

( √
1
2 q̃∗(r, r)

(r + s − t)/2

)

= 1

π
arctan

(√
2(rs + rt + st) − (r2 + s2 + t2)

r + s − t

)
,

finishing the proof of Theorem 4.2. �
4.3. Two-dimensional quantum random walk

The model
We begin with a brief review on one-dimensional quantum random walk (QRW). In the clas-

sical simple random walk, the law at time n is a probability measure on Z and the evolution op-
erator on this law is (1/2)σ+ + (1/2)σ−, where σ+ is the right-shift operator σ+μ(n) = μ(n−1)

and σ− is the left-shift operator σ−μ(n) = μ(n + 1). In the quantum world, the law at time n is
given by the values of |ψ(n)|2 where the wave function ψ is not a positive unit vector in L1(R)
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but rather a unit vector in L2(C). Evolution operators must be unitary. While the shifts σ± are
unitary, linear combinations of these such as (1/2)σ+ + (1/2)σ− are not.

An idea for constructing a quantum simple random walk, apparently due to [33], is to enlarge
the space to := Z × {U,D}, adding a hidden “spin” variable. To take a step of the random walk,
first the spin is randomized, then all particles with spin up move one step right and all particles
with spin down move one step left. A number of choices are available for the operator that
executes the evolution of spins. One common choice is the Hadamard coin-flip, B := 1√

2

( 1 1
1 −1

)
.

The terminology reflects the fact that the matrix is a multiple of an orthogonal matrix with ±1
entries, these being known as Hadamard matrices. Under this operator, either state (1,0) or (0,1)

becomes an equal mix of U and D states. Let A be the operator which maps state (n,U) to
(n + 1,U) and (n,D) to (n − 1,D). If we begin in state (0,U), then do S := A ◦ B , the particle
is in an equal mix of states (1,U) and (−1,D). If we measure the position, we will have executed
a step of QRW.

The n-step simple random walk is defined to be the operator S n := (AB)n. If the position if
this is measured at time n, the probability of being at position k is |S n(k,U)|2 + |S n(k,D)|2.
Since no measurement is made until time n, the various possible coin-flips and movements in-
terfere, both positively and negatively, and the result is somewhat complicated. The analyses in
[34,1] show that unlike classical simple random walk, QRW spreads out linearly, with location
distributed over the interval [−n/

√
2, n/

√
2]; see also the review article [31].

To define a two-dimensional QRW, we need a four-fold auxiliary state. Denote these four
states by {N,S,E,W }. Any 4 × 4 unitary matrix may be used for the quantum coin-flip. The
Hadamard matrix

U := 1

2

⎛⎜⎝
1 −1 −1 −1

−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞⎟⎠
is known (http://www.santafe.edu/~moore/gallery.html) as the Hadamard quantum coin-flip.
N.B.: This is different from the Hadamard QRW in [25], which also uses a Hadamard matrix,
namely the tensor product of two copies of the one-dimensional Hadamard matrix. A step of the
two-dimensional Hadamard QRW is the product AU where A maps ((r, s),N) to ((r, s +1),N),
and so forth. The following generating function for the probability amplitudes of a QRW in
any dimension with any quantum coin-flip matrix is given in [12, Proposition 3.1]. Let M be
obtained from U by multiplying the first row by XZ, the second by YZ, the third by X−1Z

and the fourth by Y−1Z. We consider the rows and columns of M as indexed by the ordered
quadruple (E,N,W,S). Then an entry of Mt such as (Mt)N,E counts the number of t-step
paths from N to E, weighted by M : the XrY sZt coefficient of this is the wave function at
position ((r, s),N) and time t starting from ((0,0),N). Summing in t shows that the compo-
nents of (I − M)−1 =∑

M(r, s, t)XrY sZt are the generating functions for the wave function
at all positions and times: each M(r, s, t) is a matrix, whose (ξ, η)-entry is the generating func-
tion

∑
r,s,t c(ξ, η; r, s, t)XrY sZt where c(r, s, t) is the probability amplitude, starting from state

((0,0), ξ) at time zero, of being in state ((r, s), η) at time t .
The entries of (I − M)−1 have denominator (1 − Z2)Q where

Q := 1 − 2
X + X−1 + Y + Y−1

Z + Z2.

4
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Fig. 16. Intensity plot of amplitudes at time 200 for a typical quantum walk.

We recognize the same polynomial factor that occurred in the Aztec denominator. We know of
no reason for this coincidence. This particular QRW is somewhat special, both because of the
occurrence of a quadratic point and because the denominator is reducible. The numerators in the
first row are half of the following:

P1 = 2 − (Y + Y−1 + X−1)Z + Z3,

P2 = XZ − (1 + Y−1X
)
Z2 + Y−1Z3,

P3 = XZ − (YX + Y−1X
)
Z2 + XZ3,

P4 = XZ − (1 + XY)Z2 + YZ3.

The chiralities {N,E,S,W } and the location (i, j) are simultaneously measurable, so the prob-
ability of a QRW started at ((0,0),N) to be found at (r, s) at time t is the sum over 1 � k � 4
of |Cr,s,tPk|2, the squared moduli of the probability amplitudes of going from ((0,0),N) to
((r, s), ξ) in time t for ξ ∈ {N,E,S,W }.

Results
A number of different two-dimensional QRW’s are analyzed in [7]. In these examples, the

variety defined by the common denominator det(I −M) of the entries of (I −M)−1 turns out to
be smooth, and amplitudes may be computed from Theorem 3.4. Fig. 16 shows an intensity plot
for a quantum walk whose unitary matrix U was generated at random without any symmetries.
The feasible region, where the probability amplitudes do not decay exponentially, is a well-
defined region of irregular shape. It is the image of the torus under the logarithmic Gauss map.
The region is determined by the denominator det(I − M) of the space–time generating function.

We now restrict our attention to the Hadamard QRW. The methods of [7] did not suffice to
analyze this QRW because of the quadratic point and the fact that the denominator (1 − Z2)Q is
not irreducible. Two of the factors are binomials (1 ± Z) and the third factor, Q, has quadratic
points at ±(1,1,1), each of which is on one of the binomial varieties. The time-200 intensity
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Fig. 17. Two-dimensional Hadamard QRW probability amplitudes at time t = 200.

plot for this QRW is shown in Fig. 17, where the x- and y-axes are rescaled spatial variables
(r/t, s/t), or in other words, velocities. The feasible region is evidently highly symmetric. Within
the feasible region, however, there is asymmetric variation in the intensities. This is due to the
somewhat arbitrary choice of starting and ending states, which produce the numerators P1, P2,
P3 and P4, none of which possesses rotational symmetry in the X–Y plane. The following result
rigorously establishes the picture in Fig. 17.

Theorem 4.3 (Feasible region for the two-dimensional Hadamard QRW). When the velocity
is outside the closed disk of radius

√
1/2 the amplitudes decay exponentially. Inside this disk,

except possibly at the center, the amplitudes do not decay exponentially and are instead Θ(t−1).

Remark. It will turn out that the dominant contribution to the asymptotics of the probability
amplitudes everywhere except possibly at the center and boundary are controlled by smooth
points rather than by the two quadratic points. The reason we include this example in the present
paper is that controlling the estimate at the quadratic points will require the big-O lemma.

The amoeba and the normal cone
Denoting H1 = 1 −Z,H−1 = 1 +Z, we have Fj = Pj/(QH1H−1), which is in the format of

the quadratic point hypotheses with η = 2. The origin is on the boundary of a component B of the
complement of amoeba(QH1H−1) containing the negative z-axis. As before, the cone tan0(B)

is the intersection of components of amoeba(Q)c , amoeba(H1)
c , and amoeba(H−1)

c. The latter
two are just the halfspaces {(x, y, z): z < 0}, which are equal and contain the component B0 :=
{(x, y, z): z < 0, z2 > (x2 + y2)/2}, which we recognize from the Aztec Diamond example.
Therefore, B = B0 and B∗ = {t2 > 2(r2 + s2)} as in Section 4.1. An immediate consequence
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is that the amplitudes decay exponentially for velocities in directions outside the disk of radius√
1/2. This proves the first part of Theorem 4.3.
To understand the amplitudes inside the disk, we will first use the big-O lemma to show that

the contribution from the quadratic points is O(t−2) everywhere except possibly at the center
(zero velocity). We will then deduce from Theorem 3.4 that the contribution from the smooth
points anywhere in the range of the logarithmic Gauss map is Θ(t−1). Finally, we will show that
the range of the logarithmic Gauss map is precisely the disk of radius

√
1/2.

Classification of critical points
The intersection of VQ with VHj

is the set

{
Z = j = X + X−1 + Y + Y−1

4

}
.

The varieties VH1 and VH−1 do not intersect. We therefore stratify by

V1 := {(1,1,1), (−1,−1,−1)
}
,

V2+ := VQ ∩ VH1 \ V1,

V2− := VQ ∩ VH−1 \ V1,

V3+ := VH1 \ (V1 ∪ V2+),

V3− := VH−1 \ (V1 ∪ V2−),

V4 := VQ \ (V1 ∪ V2± ∪ V3±).

Again, we are interested in the region of non-exponential decay, where xmin = 0; checking
where the strata intersect the unit torus, we find that the strata V2± do not intersect the unit
torus. The strata V3± intersect the unit torus on the set {|X| = |Y | = Z = 1}, and the logarithmic
gradient is always in the t direction. The factors H1 and H−1 cause this direction to be obstructed
and we are therefore not able to say anything about asymptotics in the (0,0, t) direction. This
direction corresponds to the bright spot in the middle of the amplitude intensity plot in Fig. 17,
where there appears to be a bound state (probability amplitude for being precisely at the origin
does not decay with time).

Contributions from V1 occur for r interior to N∗. The big-O estimate, Lemma 5.9 below,
allows us to bound the magnitude of these contributions. We first compute the homogeneous
degree of F at the point (1,1,1). The factor 1/Q has degree −2 here, the factor 1/H1 has degree
−1, and the factor 1/H2 has degree zero. The numerators Pj vanish to order two at (1,1,1) for all
1 � j � 4. We therefore have deg(F, (1,1,1)) = deg(f, (0,0,0)) = 2 − 2 − 1 = −2. Applying
the lemma, we find that for the quadratic point w = 0, we have contrib(w) = O(t−2), proving the
second part of Theorem 4.3.

It is shown in [11], that the projective range of the logarithmic Gauss map is the disk of radius√
1/2, but because this is an unpublished Masters thesis, we will give an alternative deriva-

tion. Assuming this for the moment, it is evident that the contribution from the smooth points
is Θ(t−1). If more detail is desired, one can follow Brady [11] to verify periodicity and the
visually obvious Moiré patterns as follows. Brady shows that for each r interior to N∗, there
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are precisely four smooth critical points on the unit torus, a conjugate pair and its negative:
Z(r̂),Z(r̂),−Z(r̂),−Z(r̂). Denoting log Z(r̂) = z = iw, Theorem 3.4 tells us that

contrib(w) ∼ C(r̂)|r|−1 exp(−ir · w)

where the magnitude of C(r̂) is proportional to the −1/2-power of the complex curvature of
log VQ at z. Adding this to the contribution from Z, namely contrib(−w), we obtain a quantity
whose magnitude is 2 cos θ(r) times the magnitude of contrib(w), where θ is the argument of
contrib(w); note that θ differs from r · w by π/4 because the curvature is complex and its −1/2-
power has argument −σπ/4, where σ is the signature of q̃ , which in our case is 1 − 2 = −1;
see [7, Section 2.3] for details on the phase of the curvature. Adding the contribution from the
negatives of these two points kills the terms for which r +s + t is odd and doubles the even terms.
This corresponds to periodicity of the walk. For fixed t , the phase term cos θ(r) varies rapidly
(with period of order 1). Ignoring the Moiré pattern resulting from this term, the probabilities are
of order t−2 (amplitudes are of order t−1) and are spread over the disk r2 + s2 = t2/2, which is
the slice of the normal cone at the fixed value of t . We now finish the proof of Theorem 4.3 by
showing that the range of the logarithmic Gauss map on V4 is the disk of radius

√
1/2.

Proof of the remainder of Theorem 4.3. Let (x, y, z) be a point on V4 ∩ T
3, where T

3 denote
the 3-torus {|x| = |y| = |z| = 1}. The projective logarithmic Gauss map is the map γP that takes
(x, y, z) to the projective point (a|b|c) where (a, b, c) is the gradient of Q ◦ exp at log(x, y, z).
We represent the class (a|b|c) by the normalized vector (a/c, b/c) ∈ R

2. Because the domain is
a subset of T

3 we may use polar coordinates x = exp(iφ), y = exp(iψ), z = exp(iθ). In these
coordinates, V ∩ T

3 is given by

Σ = {2 cos(θ) = cos(φ) + cos(ψ)
}
,

where (φ,ψ, θ) ∈ T
3. The Gauss map takes (φ,ψ, θ) ∈ Σ to −(sin(φ), sin(ψ),−2 sin(θ)) =:

(a, b, c). A simple computation shows that c2/2 = a2 + b2 + (cos(φ) − cos(ψ))2/2, whence
the image of the Gauss map is contained in the two space-like cones {c2/2 � a2 + b2}, and its
projectivization is contained in the disk D := {r2 + s2 � 1/2}.

We first show that the boundary of the disk D belongs to the closure of the range of γP. Near
(φ,ψ, θ) = (0,0,0), the surface Σ is given by

Σ =
{
θ2 − φ2

2
− ψ2

2
+ R3(θ,φ,ψ) = 0

}
,

where R3 denotes the terms of order three and higher in local coordinates. Therefore the pro-
jectivization of Gauss map takes vicinity of the point (0,0,0) to vicinity of the image of the
projectivization of the Gauss map of the conic {θ2 − φ2/2 − ψ2/2 = 0}, which is the boundary
of D.

To prove, finally, that all of the interior of D is in the range of the projectivization of the Gauss
map, we notice that were that not the case, this mapping would have some critical values in the
interior of D. Critical points of the projectivization of the Gauss map correspond to the parabolic
points of Σ (points where at least one of the principal curvatures of the second quadratic form
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of Σ vanishes). To find those, we use the standard trick characterizing the locus of the parabolic
points of the surface given by {f = 0} by the equation〈

df,detH · H−1df
〉
,

where H is the Hessian of f ; df is the gradient (and the matrix detH · H−1 is the adjunct
matrix to H ). In our case, quick computation implies that the parabolic points of Σ lie on the
intersection of Σ with{

cos(φ) cos(ψ) cos(θ)

(
2 sin(θ)2

cos(θ)
− sin(φ)2

cos(φ)
+ sin(ψ)2

cos(ψ)

)
= 0

}
,

which, as again a short computation shows, yields critical values only on the boundary of D.
Hence the interior of D is contained in the range of γP. �
4.4. Friedrichs–Lewy–Szegö graph polynomials

In the study of a discretized time-dependent wave equation in two spatial dimensions,
Friedrichs and Lewy required a nonnegativity result for the coefficients of Q−1 where
Q(X,Y,Z) := (1 − X)(1 − Y) + (1 − X)(1 − Z) + (1 − Y)(1 − Z). To solve this problem,
Szegö [42] showed that the coefficients of Q−β are nonnegative for all β � 1/2. Scott and
Sokal [41] later observed that Q is a special case of a spanning tree polynomial of a graph. They
proved a generalization of Szegö’s result to all series-parallel graphs. Their results are proved via
the stronger property of complete monotonicity and are related to the half-plane property. In or-
der to investigate whether these results might hold for the polynomials of a larger class of graphs,
Scott and Sokal needed a means of checking the asymptotics of the coefficients: asymptotic non-
negativity is a necessary condition for term-by-term nonnegativity. We will apply Theorem 3.7
to obtain:

Theorem 4.4. Fix β > 1/2 and let
∑

r arZr be a Taylor expansion for Q−β . Then

ar ∼ 41−β

√
π�(β)�(β − 1/2)

(
2rs + 2rt + 2st − r2 − s2 − t2)−1/2

as r varies over compact subsets of the cone 2(rs + rt + st) > r2 + s2 + t2.

The simplest nontrivial case in which asymptotics may be worked out is the one above.
Szegö’s 1933 proof of nonnegativity was, according to Scott and Sokal, “surprisingly indirect,
exploiting Sonine-type integrals for products of Bessel functions”. It is evident that asymptotics
in this case may be derived directly from Theorem 3.7. We remark that the connection between
these coefficients and harmonic analysis of symmetric cones is known to Scott and Sokal, who
exploit the connection and cite several results on the subject from the sources [18,28].

Proof of Theorem 4.4. We first check that 0 is on the boundary of the component B of
amoeba(Q)c corresponding to the ordinary power series 1/Q =∑

r arZr. This follows if we
show that Q(X,Y,Z) 	= 0 for X, Y , Z in the open unit disk. To see this, let D1 denote the
open unit disk, let D2 denote the open disk {|z − 1| < 1}, and let D3 denote the halfspace



3172 Y. Baryshnikov, R. Pemantle / Advances in Mathematics 228 (2011) 3127–3206
{z: Re{z} > 1/2}. The set D3 is the image under z �→ 1/z of D2 and D2 = 1 − D1. There-
fore, Q has a zero on the open unit polydisk D3

1 if and only if XY +YZ +ZX has a zero on D3
2 ;

this is equivalent to 1/X + 1/Y + 1/Z having a zero on D3
2 which is equivalent to X + Y + Z

having a zero on D3
3 . This is impossible because D3 is contained in the open right half-plane.

Composing with the exponential, then taking the leading homogeneous part, we obtain

q̃ = hom(Q ◦ exp,0) = xy + xz + yz.

We recognize this as half the quadratic factor in Section 4.2. Therefore q̃∗ is twice what is was
there:

q̃∗(r, s, t) = 2(rs + rt + st) − (r2 + s2 + t2).
Let P(Z) ≡ 1. Recalling that M is chosen so that the matrix for the quadratic form is
(M−1)T DM−1, we see that the determinant of M is det(q)−1/2; plugging in the matrix⎡⎣ 0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

⎤⎦
for q we obtain |M| = 2. Thus, for β > 1/2, Eq. (3.5) gives

ar ∼ 41−β

√
π�(β)�(β − 1/2)

(
2rs + 2rt + 2st − r2 − s2 − t2)−1/2

,

finishing the proof. �
To check this estimate, let r = s = t = 50 and compute

ar ≈ 41−β7500β−3/2

√
π�(β)�(β − 1/2)

≈ 0.000222832 . . .

when β = 3/4. We then use Maple to crank out the true value of a50,50,50 which is a rational
number near 0.000223464, for a relative error of around 1/400.

4.5. Superballot numbers and multi-set permutations

Gessel [22] defines the superballot numbers by

g(n, k, r) := (k + 2r)!(2n + k − 1)!
(k − 1)!r!n!(n + k + r)! .

These are a generalization of the ballot numbers k
2n+k

(2n+k
n

)
(obtained by setting r = 0), which

are in turn a generalization of the Catalan numbers (set k = 1). The Catalan number and the ballot
numbers are integral and have combinatorial interpretations. Gessel shows that the superballot
numbers are integers as well and sets as a goal to find a combinatorial interpretation.
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After re-indexing via B(a, b, c) := g(a, b − a − c, c) for b > a + c, one may extend this
definition to all nonnegative (a, b, c) and obtain a generating function

F(X,Y,Z) =
∑

a,b,c�0

B(a, b, c)XaY bZc = 1 − 2X√
1 − 4XZ

G(X,Y,Z)

where G is the generating function from Eq. (1.7). The coefficients N(a,b, c) of G are of inde-
pendent interest. They satisfy a similar recurrence to the superballot numbers B(a, b, c) but with
different boundary conditions. The numbers {N(a,b, c)} were shown in [3] to have nonnegative
coefficients. They count a difference of cardinalities of multi-set permutations [4]. Gessel goes
on to find several more identities involving these numbers and their generating functions, but no
asymptotics are derived. We will use Corollary 3.8 to obtain the following asymptotic estimate.

Theorem 4.5. The numbers N(a,b, c) are estimated asymptotically by

N(a,b, c) ∼ 2a+b+c 4

2π

(
2ab + 2ac + 2bc − a2 − b2 − c2)−1/2

uniformly on compact subcones of N∗ = {(a, b, c): 2(ab + ac + bc) > a2 + b2 + c2}.

Our motivation for analyzing the numbers {N(a,b, c)} is admittedly “because we can”. The
coefficients of F are of greater interest than the coefficients of G, but the fractional power on the
non-quadratic term takes this problem beyond the main results of this paper. The deformations in
Section 5 still apply, but the further analysis in Section 6.6 via Leray cycles does not work when
this factor is algebraic rather than a simple pole. We therefore do not state detailed asymptotics
for F , reserving this for future work.

Let Q(X,Y,Z) := 2 − X − Y − Z + XYZ, so that 2/Q is the ordinary power series
generating function for 2−a−b−cN(a, b, c). It is easy to check (e.g., via Gröbner bases) that
Q and its gradient vanish simultaneously exactly at the point 1. We have q := Q ◦ exp =
xy + yz + xz + O(|(x, y, z)|)3, whose homogeneous part (at 0) is given by q̃ = xy + yz + xz.
Again,

q̃∗(r, s, t) = 2(rs + rt + st) − (r2 + s2 + t2)
and |M| = 2.

There is a component B of amoeba(Q)c containing a translate of the negative orthant (cor-
responding to the ordinary power series expansion); let us check that 0 ∈ ∂B . Proceeding as
in Section 4.4, it suffices to verify that Q has no zero in the open unit polydisk D1, which is
equivalent to checking that Q(1 + Z) has no zero in −D3

2 where D2 = {z: |z + 1| < 1}. We have

Q(1 + Z) = XYZ + XY + XZ + YZ = XYZ

(
1 + 1

X
+ 1

Y
+ 1

Z

)
,

whence this is further equivalent to 1 + X + Y + Z having no zero in −D3
3 , where −D3 is the

half-plane {z: Re{z} < −1/2}. This is obvious, because the real part of X + Y + Z is bounded
above by −3/2 on D3.
3
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We now apply Corollary 3.8 to obtain the asymptotics of 2−a−b−cN(a, b, c) inside the
cone N∗, these asymptotics being exponentially small outside N∗. Letting P(Z) ≡ 2, we
plug P , |M| and q̃∗ into (3.7) to obtain the leading term asymptotics for the coefficients of
2/Q, which gives the expression in Theorem 4.5 and finishes the proof. As an example, if
a = 1, b = 20, c = 30, then the approximation yields N(a,b, c) ≈ 2.595 × 1016 while the ac-
tual value of N(10,20,30) to three decimal places is 2.547 × 1016. �
5. Homotopy constructions

Recall from the heuristic discussion following (1.8) that moving the chain of integration
in (1.2) to the torus ReLog−1(xmin) is not enough. Our goal in this section is to construct ho-
motopies moving this chain of integration, within the domain of holomorphy of the integrand
(but not within the domain of convergence of the Laurent series) to a different chain on which
the maximum modulus of the integrand is small except in a neighborhood of crit(r). While the
Morse theoretic methods of [23] are in principle constructive, we follow [5], taking advantage of
hyperbolicity in order to produce vector fields along which chains may be shifted.

5.1. Vector fields

Let TR := (R/2πZ)d denote the d-dimensional flat torus. Given a Laurent polynomial F and
a component B of the complement of amoeba(F ), pick a unit vector r̂ in the interior of the
convex dual −B∗. We suppose that r is a proper direction for B . Let

U =
⋃

w∈W(r)

Uw (5.1)

be the disjoint union of neighborhoods of each w ∈ W(r), where W(r) are the logarithmic critical
sets from Definition 2.21.

Lemma 5.1 (Vector field away from the critical set). Let F be a Laurent polynomial with f :=
F ◦ exp, let B be a component of R

d \ amoeba(f ), and let r̂ be a unit vector in the interior
of the convex dual −B∗. Suppose −r̂ · x is minimized at a unique xmin in ∂B and define the
neighborhood U of W(r) as in (5.1). Then there is a smooth vector-valued function ηUc :TR \
U → Rd such that:

(i) ηUc(y) ∈ Kf,B(exp(xmin + iy));
(ii) r̂ · ηUc(y) = 1 for all y ∈ TR \ U .

Proof. First, for each y /∈ U , we will find a neighborhood Ny and a vector vy such that ηUc ≡ vy
fulfills (i)–(ii) on Ny.

Fix y /∈ U . If f (xmin + iy) 	= 0 then choose a neighborhood Ny of y in R
d such that for

v ∈ Ny, the quantity f (xmin + iv) does not vanish. Choose vy with r̂ · vy = 1.
Alternatively, suppose that f (xmin + iy) = 0. By Proposition 2.12, the homogeneous part, call

it Ay, of the function v �→ f (xmin + iy+v) is real and hyperbolic, and by Proposition 2.8, there is
a cone K of hyperbolicity containing tanxmin(B). Also by the first part of Proposition 2.22, there
is some vy ∈ K with r̂ ·vy = 1. By semi-continuity (part (i) of Corollary 2.15), vy ∈ K(exp(xmin +
iu)) for every u in some neighborhood Ny of y.
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The collection {Nw: w /∈ U} covers Uc; shrink it slightly if necessary so that the closure of its
union does not intersect W(r). We may (shrinking some of the ηw slightly if necessary) choose a
finite subcover {Nw: w ∈ Ξ} whose union has closure disjoint from W(r). Choose a partition of
unity {ψw : w ∈ Ξ} subordinate to the subcover. Define

ηUc(y) :=
∑
w∈Ξ

ψw(y)vw(y).

Now (i) is satisfied by convexity and (ii) is satisfied by linearity. �
Corollary 5.2 (Vector field defined everywhere). Under the conditions of Lemma 5.1 there is a
smooth vector field η satisfying

η(y) ∈ Kf,B
(
exp(x + iy)

); (5.2)

r̂ · η(y) = 1 on Uc. (5.3)

Proof. Let ηw :Uw → C
d be any map for which ηw(y) ∈ Kf ,B(exp(x + iy)). To see that we

may choose such a map smoothly, note that the constant map ηw(y) ≡ v is such a map whenever
v ∈ tanx(B). The reason for allowing a general function ηw in place of a constant is that later we
will use (5.4) with functions ηw tailored to more specific needs. The collection {Nw: w ∈ Ξ} ∪
{Uw: w ∈ W(r̂)} covers TR. Choose a partition of unity {ψw} subordinate to this and define

η(y) :=
∑
w∈Ξ

ψw(y)vy(w) +
∑

w∈W(r̂)

ηw(y). (5.4)

This proves the corollary. �
We remark for later use that if r̂ is replaced by a non-unit vector r, then applying the above

constructions to r̂ replaces (5.3) by r · η(y) = |r| on Uc. Next, we give a projective version of
the above construction. We say that a 1-homogeneous function φ is smooth if it is smooth away
from the origin.

Lemma 5.3 (Projective vector field). Let A be a real homogeneous polynomial in d variables of
degree m � 1 and let B be a cone of hyperbolicity for A whose dual −B∗ has nonempty interior.
For each y ∈ R

d , recall the cone KA,B(y) defined in Proposition 2.8. Let r be a non-obstructed
vector in the interior of −B∗. Then there is a 1-homogeneous, smooth vector field η on R

d such
that for all y ∈ R

d and all r′ in a neighborhood of r,

(i) η(y) ∈ KA,B(y);
(ii) r′ · η(y) � |r′||y|.

Proof. This is a homogeneous version of the proof of Lemma 5.1. Assume first that |y| = 1. We
define η locally and then piece these together via a partition of unity. When A(y) 	= 0 we can
find neighborhoods Ny of y and N ∗

y of r such that A vanishes nowhere on Ny and there is a v
for which r′ · v > |r′| on N ∗. By the trivial part of the definition, vy ∈ KA,B(y).
y
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When A(y) = 0, because r is non-obstructed, there is a vector vy ∈ KA,B(y) with r · vy > 0.
By semi-continuity (part (ii) of Corollary 2.15), vy ∈ KA,B(u) for every u in some neighborhood
Ny of y. By continuity, r′ · vy > 0 for every r′ in some neighborhood N ∗

y of r. We may then
replace vy by some positive multiple so that r′ · vy > |r′| for r ∈ N ∗

y .
To define the 1-homogeneous function η, it suffices to define it on the set S1 of vectors y of

norm 1. Cover S1 by finitely many neighborhoods {Nw: w ∈ Ξ} and use a partition of unity
subordinate to the cover to define η via (5.4) on S1. Extending 1-homogeneously via η(λy) :=
λη(y) finishes the construction. �
5.2. Homotopies

Any piecewise differentiable map from a compact manifold to another manifold defines a
chain of integration. Let η be any continuous vector field on TR and fix any ε > 0. Define the
homotopy Φ = Φε,η :TR × [0,1] → Cd by

Φt(y) := iy + x + ε
[
(1 − t)u + tη(y)

]
(5.5)

where u is fixed vector in tanx(B). We specialize now to η given by Corollary 5.2. Setting t = 0
gives a cycle (thinking of the map as a chain of integration) whose range is the torus T :=
x + εu + iTR. Setting t = 1 gives another cycle, which we call C(η), shown to be homotopic to
T in C

d via the homotopy {Φt : 0 � t � 1}.

Theorem 5.4 (The homotopy defined by η avoids Vf ). Let η satisfy (5.2)–(5.3) and define Φt

by (5.5). Then for ε > 0 sufficiently small and all 0 � t � 1, f (Φt (y)) 	= 0.

Proof. For fixed t this follows from Corollary 2.16. To find ε that works for all t simultaneously,
use compactness of the interval in t and continuity of the homotopy. �

Let {Uw: w ∈ W(r)} be disjoint open neighborhoods of the points of W(r) as before, and let
C(w) denote the restriction of C(η) to the closure of Uw. Let C(Uc) denote the restriction of C(η)

to the closure of Uc. The chain C(η) is representable as a sum

C(η) = C
(
Uc
)+ ∑

w∈W(r)

C(w).

An immediate consequence of the previous constructions is:

Corollary 5.5 (Localization of the Cauchy integral). The chain T is homotopic in (C/(2πZ))d \
Vf to a sum of chains

C
(
Uc
)+ ∑

w∈W(r)

C(w)

where C(Uc) and each ∂C(w) are supported on the set of z such that r · Re{z} − r · x � ε|r|.
Consequently, the integral (2.1) decomposes as
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ar =
(

1

2πi

)d ∫
x+εu+iTR

e−r·z 1

f (z)
dz

= R +
∑

w∈W(r)

(
1

2πi

)d ∫
C(w)

e−r·z 1

f (z)
dz

where R = O(e−ε|r|), and Theorem 3.3 follows. �
While the above general construction, e.g., with ηw ≡ u, suffices to localize the Cauchy in-

tegral, explicit computations for a cone and a plane, done in Section 6.6, will require specific
choices of ηw, resulting in specific chains Cδ(w) which we will use in the decomposition from
Corollary 5.5. Say that ηw is projective if ηw(w + ·) is homogeneous of degree 1 and smooth
away from 0. The first of these two results follows immediately from Lemma 5.3.

Theorem 5.6. Let A be a hyperbolic homogeneous polynomial with cone of hyperbolicity B . Let
r in the interior of −B∗ be non-obstructed and let η be the projective vector field of Lemma 5.3.
Let {Φt } be the homotopy on Rd defined by (5.5) with x = 0. Then A(Φt(y)) 	= 0 for all 0 � t � 1
except when t = 1 and y = 0, and r · Φ1(y) � c|y|. Consequently, for u ∈ tanx(B), the chain u +
iRd is homotopic through the complement of VA to the projective chain C := Φ1[Rd ] on which r ·
y grows linearly in |y|. This construction is uniform as r varies over some neighborhood N . �

The projective chain C provides the concept we need, but this idealized chain has two prob-
lems: it is infinite, and it touches VA at the origin. To take care of the second problem, we stop
the homotopy early in a small ball about the origin.

Definition 5.7. Let C(δ)
denote the chain parametrized by TR defined by

y �→ iy + ε
[(

1 − t
(
1 − (δ − |y|)+))u + t

(
1 − (δ − |y|)+)η(y)

]
.

This is obtained by replacing t in the definition of the homotopy (5.5) by t (1 − (δ −|y|)+) where
η = ηw is the projective vector field near w. The definition does not change the homotopy outside
the ball of radius δ, but inside this ball the homotopy stops early, stopping at time 1 − δ at the
origin and interpolating linearly in |y|.

Finally, we glue together pieces looking like C(δ)
near each point w ∈ W to produce the chains

we will use to prove all the remaining results.
Let F be a Laurent polynomial and let B be a component of R

d \ amoeba(F ). Suppose r is
proper with dual point xmin, that W(r) is finite, and that r is non-obstructed. For each w ∈ W(r),
let f w = hom(f,w) and let ηw be the vector field constructed in Lemma 5.3 with f w in place
of A.

We piece these together into one locally projective vector field on the torus via a partition of
unity as before. Let {Uw: w ∈ W(r)} and U be defined as in (5.1) and define η by (5.4). Define
{Φt } = {Φε,δ

t } by (5.5) with t (1 −[δ − d(y))+] replacing t , where d(y) := minw∈W |y − w| is the
minimum distance from y to a point of W. We let C denote the chain Φ1 and for each w we let
Cδ(w) denote the intersection of C with the radius-δ neighborhood of w.
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Theorem 5.8 (Locally projective homotopy). If ε, δ > 0 and the neighborhoods {Uw} are taken
to be sufficiently small, then the homotopy {Φε,δ

t } will avoid Vf . In particular, the chain x+ εu+
iTR is homotopic in the complement of Vf to the chain

Cδ = CUc +
∑
w∈W

Cδ(w)

for which the inequality

r′ · Φ1(y) − r′ · x � c min
w∈W(r)

|y − w| (5.6)

will be satisfied for some c > 0, for every y ∈ TR and every r′ in some neighborhood of r.

Proof. We have constructed deformations using vector fields ηw defined in terms of local ho-
mogenizations f w, so the main content of the proof is to ensure that the homotopy avoids the
actual zero set Vf and not only the homogeneous approximation to it. In any set bounded away
from the critical points, this is automatic. It suffices to consider what happens in a neighborhood
of a critical point z = exp(x + iw). Here, what we want is in fact true in considerable generality:
moving the origin to x + iw, any projective set avoiding Vf w

avoids f in a neighborhood of

the origin. The range of the homotopy Φ
ε,δ
t is a projective set in a neighborhood of the origin,

meaning that it is locally a closed conical set of the form{
λv: v ∈ K, λ ∈ [0, ε]},

where K is a closed subset of the unit sphere. The set Vf w
is also a closed conical set. On the

unit sphere, these two closed sets do not intersect and hence are separated sphere by a positive
distance. When δ is small enough, the normalized points u/|u| for u ∈ Vf are within ε/2 of
the points of Vf w

on the unit sphere when |u| < δ. Thus the homotopy Φ
ε,δ
t avoids Vf , and the

theorem follows. �
5.3. Consequences and an example

As outlined in Section 1.2, the deformations constructed in Theorems 5.4 and 5.8 allow us to
localize and then compute the Cauchy integral. These computations are carried out in the next
section using Fourier apparatus. We record here a preliminary estimate that is useful in a more
general context (see, e.g., [11]). If

F :=
k∏

j=1

Q
sj
j (5.7)

is the product of d-variate polynomials to arbitrary real powers and Z is any complex vector, the
homogeneous degree deg(F,Z) of F at Z is defined by

deg(F,Z) :=
k∑

j=1

sj deg(Qj ,Z)

(it is easy to check that this is independent of the representation of F as such a product).
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Lemma 5.9 (Big-O estimate). Let F =∏k
j=1 Q

sj
j and let H denote the product of all the Qj

for which sj is not a positive integer, so that VH is the singular locus of F . Let f := F ◦ exp
and let {ar} be the coefficients of a Laurent series for F corresponding to the component B

of R
d \ amoeba(H). Fix a proper, non-obstructed direction r in the interior of −B∗ and let

xmin ∈ ∂B be the minimizing point for r. For w ∈ W(r), let Cw denote any of the three chains

C(w), C(δ)
(w) or Cδ(w). Then:

(i) If φ(z) = O(|z|β) and β + d > 0 then

∣∣zr∣∣ ∫
Cw

exp(−r · z)φ(z) dz = O
(|r|−d−β

)
. (5.8)

(ii) Consequently, if deg(f,w)+d > 0, then for any bounded function ψ , the following integral
is absolutely convergent and

∣∣zr∣∣ ∫
Cw

e−r·zψ(z)f (z) dz = O
(|r|−(d+deg(f,w))

)
.

(iii) It follows further that the Taylor coefficients ar of F satisfy ar = O(|z|−r|r|−α) where

α = d + max
w∈W(r)

deg(f,w).

Proof. We prove (i) and (ii) first for Cw = C . The chain C is a cone avoiding the singular locus
of the homogeneous function f except at zero. Everything is homogeneous, so it is just a matter
of keeping track of degrees.

Let S denote the section {z: Re{r̂ · z} = 1} of this cone. We have Cw = [0,∞) × S. Write
f (z) = |z|deg(f,w)F0(z/|z|) for some smooth function F0 on S and decompose dz = td−1 dt ∧dS

for some form dS on S. Let M := ∫
S
|F0(u)|dS(u) and M ′ := sup |ψ |. Integrating first over S

then over [0,∞) gives

∣∣∣∣zr
∫

Cw

e−r·zψ(z)f (z) dz

∣∣∣∣=
∣∣∣∣∣

∞∫
0

tdeg(f,w)td−1 dt e−|r|t
[ ∫

S

ψ(u)F0(u) dS

]∣∣∣∣∣
�

∞∫
0

e−|r|t td+deg(f,w)−1MM ′ dt

which is absolutely convergent and O(|r|−(d+deg(f,w))) as desired.

For sufficiently small δ > 0, the chains C(δ)
are homotopic in the domain of holomorphy of

the integrand, whence the value of the integral is independent of the particular value of δ. As

δ ↓ 0 the integrals over the parts where C(δ) 	= C converge to zero (by the same estimates) while

the integrals over the parts where C(δ) = C converge to the integral over C by the definition of
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the Lebesgue integral. This proves the result for Cw = C(δ)
(w). For Cw = Cδ(w), observe that

difference is the integral over a set where

Re{−r · z} < −r · x − c

for some c = c(δ) > 0. This exponentially small term is smaller than the remainder term in the
conclusion, so the theorem holds for these chains as well.

The third conclusion now follows from localization (Theorem 3.3). �
We close the section with an example of the conclusion of Lemma 5.3 and Theorem 5.8 in

the case of the product of a quadratic cone Q and a linear function H . We give an explicit
construction a vector field η satisfying the conclusion of the lemma; this explicit construction
will be useful in computing an integral in Section 6.6.

We consider the case of F = 1/(QH), where q := Q ◦ exp and h := H ◦ exp are respectively
quadratic and smooth at the origin:

q = q̃ + R1,

h = h̃ + R2

with q̃ homogeneous quadratic, h̃ linear, R1(y) = O(|y|2), and R2(y) = O(|y|3). The signature
of q̃ is assumed to be (1,2) whence the zero set of q̃ in real space is a cone over a circle. Suppose
that the zero sets of q̃ and h̃ intersect transversally in real space. In other words, the plane {h̃ = 0}
intersects the cone {q̃ = 0} in two lines; in projective space, the line {h̃ = 0} intersects the circle
{q̃ = 0} in two points.

The construction of η depends on the choice of the cone of hyperbolicity B of q̃h̃; in the
applications below, this is the component of amoeba(QH)c containing the negative half of the
z-axis. Let us assume in this example that A := q̃h̃ is hyperbolic with respect to −e3. We also
assume without loss of generality that h̃(−e3) > 0. We have seen in several of the examples that
B := B1 ∩ B2 where B1 is a halfspace dual to h̃ and B2 is the projective ellipse defined by q̃ .
The dual cone is the cone over the teardrop pictured in Fig. 8: here the conic is the dual to B1,
and the vertex is the line dual to the hyperplane B2; as usual, the dual to the intersection of the
convex sets is the convex hull of their respective duals.

We will construct the section η guaranteed by Lemma 5.3 for which r · η(y) > 0, along with
a null section η̃ satisfying r · η̃ = 0 that is needed in Section 5.3.

Fix r ∈ N∗. There are two nearly identical cases, depending on whether or not r ∈ B∗
2 . Assume

first that r ∈ B∗
2 . In Fig. 18, height is the linear functional defined by −r, so the plane Xr :=

{r ·x = 0} is drawn as horizontal, with r ·x increasing as one goes downward. This plane intersects
the real cone {q̃ = 0} only at the origin, hence the cone has a positive (lower) and a negative
(upper) half; we have assumed −e3 is in the upper half. The construction of η̃ is automatic if
we mandate that η̃(y) = −e3|y| + λy for some λ. In order to obtain r · η̃(y) = 0, we need to
take

λ = |y|r · e3

r · y
. (5.9)

Wherever r · y 	= 0, this is clearly smooth and 1-homogeneous. Setting aside the points where
r · y = 0, at every other point y where q̃ or h̃ vanishes but not both, the cone KA,B(y) is a
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Fig. 18. The vector field η̃.

halfspace bounded by the tangent plane at y to {A = 0}. This halfspace contains the vector y,
making it obvious that of the two halfspaces bounded by this plane, η̃(y) is in the one contain-
ing −e3, thus is in KA,B(y). When y is in the intersection q̃ = h̃ = 0, again η̃(y) ∈ KA,B(y),
because this cone is the intersection of two halfspaces, each of which we have seen to contain
η̃(y). Finally, to deal with the points where r · y = 0, note that q̃ is non-vanishing (outside of
the origin) on this set. In a neighborhood of the point h̃ = 0, we use a smooth bump function
ψε : R → [0,1] that is one on [−ε, ε] and zero outside [−2ε,2ε]. Letting x be any vector with
x · r = 0 and h̃(x) > 0, we take

η̃(y) := |y|ψε(r · ŷ)x + (1 − ψε)
(−|y|e3 + λy

)
where λ is defined by (5.9). This completes the construction of η̃. When A(y) 	= 0, the cone
KA,B(y) is all of R

d , so verification that η(y) ∈ KA,B(y) is trivial; we conclude that η̃ is a 1-
homogeneous section of KA,B(·) with r · η ≡ 0.

What we have accomplished is to find a single formula for η that works for all strata of
{A = 0}, resorting to partitions of unity, only in one place, away from {q̃ = 0}; this will be useful
in the sequel. For a pictorial description of the construction we have just completed, see Fig. 18.
In the upper half of the cone, η̃ points inside, as does −e3. In the lower half (not shown), both η̃

and −e3 point outside. To obtain the vector field of Lemma 5.3, we set η(y) = η̃(y) + ε|y|e3 for
a sufficiently small ε.

When r is outside the circle, but inside the teardrop, the plane orthogonal to r does intersect
the real cone q̃ = 0. In projective space, the analogue of Fig. 18 is Fig. 19. This case is in some
ways simpler because one may choose a vector v in the cone B2 for which r · v = 0. Because
B2 ⊆ KA,B(y) for every y where q̃ vanishes, setting η(y) ≡ v works everywhere except where h̃

vanishes and KA,B(y) may be smaller. In a neighborhood of this projective line, we may instead
take η̃(y) ≡ −y−ce3 for some c > 0. Piecing these together, projectively, via a partition of unity,
finishes the construction.

Finally, we note that when r is on the dashed boundary in Fig. 8, it is obstructed and the above
construction does not work.
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Fig. 19. When r is outside B∗
2 .

6. Evaluation of integrals

6.1. Reduction to integrals of meromorphic forms over projective cycles

In this section we prove Theorems 3.7 and 3.9. The first step is to show that the linearization
in Lemma 3.2 may be integrated term by term. With Cδ and the local pieces {Cδ(w)} defined as
in Theorem 5.8, we recall from (3.3) the quantity

contrib(w) :=
(

1

2πi

)d ∫
Cδ(w)

e−r·z p(z)

q(z)s
∏k

j=1 hj (z)nj
dz.

The next step is to replace functions in the integrand by an appropriate series of homogeneous
functions. Term-by-term integration follows immediately from the expansion (2.14) and the
big-O estimate (Lemma 5.9).

Lemma 6.1. Let F satisfy the quadratic point hypotheses. Let Cδ(w) be as given in Theorem 5.8.
Let c(m, l, n) be the coefficients of the expansion given in Lemma 3.2 for the function f :=
F ◦ exp at the point xmin + iw. Then for every N � 1 and sufficiently small δ > 0,

Zr

(2πi)d
contrib(w) =

∑
|m|−h�−kn<N

∫
Cδ(w)

c(m, �, n)ymq̃(y)−s−l

k∏
j=1

h̃j (y)nj −n dy

+ O
(|r|2s−d−N

)
. (6.1)

In the case k = 0, this reduces to

Zr

(2πi)d
contrib(w) =

∑
|m|−h�<N

∫
Cδ(w)

c(m, �)ymq̃(y)−s−l dy + O
(|r|2s−d−N

)
. �
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Remark. The result is also true replacing Cδ(w) by the infinite chain C(δ)
(w) defined in Defini-

tion 5.7 with A = f w = hom(f,w), as the integrals over these chains differ by a term exponen-
tially smaller than |Z−r|.

6.2. Generalized functions

The integrands in (6.1) are homogeneous and the chains of integration projective. Many such
integrals are evaluated in [5] but there is a hitch: the integral is evaluated not over Cδ but over iRd .
The latter integral is in general not convergent over iRd for two reasons. First, integrability will
fail near the zeros of q̃ whenever s is large. Secondly, because | exp(r ·x)| = 1 on iRd (as opposed
to the exponential decay on Cw), integrability at infinity will fail whenever |m| � 2s − d . These
problems are solved respectively by moving the contour and by inserting compactly supported
functions inside the integral. The apparatus to do this is the theory of generalized functions
(distributions) and their Fourier transforms, developed in [20] and elsewhere. We summarize the
facts needed from this literature.

We work with two linear spaces that are dual to each other. We call these R
d and R

d∗. We fix
bases dual to each other so that for r ∈ R

d∗ and x ∈ R
d , we have r · x =∑d

j=1 rj xj . While all of
the ensuing constructions could be defined on either space, our purposes require slightly different
constructions the two spaces and we reduce confusion by developing these asymmetrically.

Let C0(R
d∗) denote the space of smooth complex-valued functions on R

d∗ with compact
support. These are called test functions in [20] and the closed support of a test function g is
denote by supp(g). Topologize test functions by convergence of all derivatives; this may be
metrized, for example, by

‖g‖ :=
∑
n

2−n
∑
|k|=n

φ

(
sup

∣∣∣∣ ∂k

∂rk g

∣∣∣∣)

where φ(x) = x/(x +1). The space G∗ of generalized functions (sometimes called distributions)
is defined to be the dual of C0(R

d∗), namely the space of continuous linear functions on C0(R
d∗).

Let loc-int be the space of locally integrable functions on R
d∗, that is, functions g such that

g ∈ L1(BN) for the ball BN of every radius N in R
d∗. There is a natural embedding of loc-int

into G∗ mapping the function f to the linear map g �→ ∫
f (r)g(r) dr. We denote by ιf the image

of f under this identification. Generalized functions in the image of this identification are called
standard functions, but there are many nonstandard functions. One example is the function δr
defined by δr(g) = g(r).

Sometimes a function is not standard but agrees with a standard function on some region. Let
D be an open set in (Rd)∗ and suppose that for any g whose closed support is contained in D,
the value of the generalized function L is given by

∫
D f (r)g(r) dr for some function f ∈ L1(D).

We then say that L is partially identified with f on D.
Differentiation may be defined on G∗ by

∂

∂rj
L := g �→ −L

(
∂

∂rj
g

)
. (6.2)

This commutes with the identification map: integrating by parts,
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(
∂

∂rj
ιf

)
(g) := −ιf

(
∂

∂rj
g

)
:= −

∫
f (r)

∂

∂rj
g(r) dr

=
∫

∂

∂rj
f (r)g(r) dr (6.3)

which is evidently the embedded image of ∂f/∂rj applied to g. An example of this is the gener-
alized function (∂/∂ri)δr which maps g to (∂g/∂rj )(r). A famous result (not needed here) is that
every generalized function is of this form: given L ∈ G∗, there is a continuous f ∈ loc-int and a k
for which L = ∂kf/∂rk. Restricting the integral to D, we see that differentiation also commutes
with partial identification.

On R
d we define a slightly different space of test functions. Denote by CRD(Rd) the space of

rapidly decaying smooth functions, meaning that they are O(|x|−N) at infinity for every N > 0.
Again, topologize by convergence of all derivatives. Let G denote the dual of CRD(Rd). This
space of generalized functions is slightly smaller than the space G∗. Let poly-bd denote the space
of functions f on R

d satisfying |f (x)| � C(1+|x|)N for some C,N > 0. Then the space poly-bd
embeds in G ; again, we denote the image of f under this identification by ιf .

6.3. Inverse Fourier transforms

We now define Fourier transforms and their inverses. Fourier transforms will be defined for
functions on the dual space, while inverse Fourier transforms will be defined for functions on
ordinary space. Fourier transforms will be defined only for nice functions, while inverse Fourier
transforms will be defined for generalized functions.

For g ∈ C0(R
d∗), define the Fourier transform ĝ by

ĝ(x) :=
∫

Rd∗

g(r) exp(−ir · x) dr. (6.4)

Observe that ĝ ∈ CRD(Rd) (this is the Riemann–Lebesgue Lemma). In fact, we may extend ĝ to
a function on all of C

d . This is a holomorphic function and for every integer N > 0 it is shown
in [5, (2.3)] to satisfy an estimate

∣∣ĝ(x + iy)
∣∣� C(N)

(
1 + |x + iy|)−N exp

(
sup

r∈supp(g)

r · y
)
. (6.5)

Let L be a generalized function in G . We define the inverse Fourier transform F −1(L) by

F −1(L)(g) := (2π)−d L(ĝ). (6.6)

This is well defined because we have just seen that ĝ ∈ CRD(Rd) and it is easy to see that it is
continuous and therefore an element of G∗. Suppose that f ∈ L1(Rd). Then
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F −1(ιf )(g) = (2π)−d ιf (ĝ)

= (2π)−d

∫
Rd

f (x)

( ∫
Rd∗

g(r) exp(ir · x) dr
)

dx.

Since |f | and |g| are integrable, we may switch the order of integration to see that F −1(ιf ) is
the generalized function identified with the actual function

(2π)−d

∫
f (x) exp(ir · x) dx.

Although we do not need it here, we remark that F −1 inverts the Fourier transform: let g ∈
C0(R

d∗) so that ĝ ∈ L1(Rd); then the above computation shows that F −1(ĝ) is equal to the
standard function (2π)−d

∫
ĝ(x) exp(ir · x) dx, which is equal to g by the usual theorem on

inverting Fourier transforms.

Boundaries of holomorphic functions
To evaluate the integrals arising in this paper, we must examine generalized functions arising

as limits of holomorphic functions. Let f be holomorphic in a domain R
d + i� where 0 is

contained in the boundary of �. Suppose that f satisfies an estimate∣∣f (x + iy)
∣∣� C|y|−N

(
1 + |x|)N

for some N > 0. The estimate (6.5) shows that the integral∫
Rd+iη

f (x)ĝ(x) dx

exists and is independent of η ∈ �. The same is true for
∫

Rd+iη
f (x)h(x) dx as long as the

estimate (6.5) is satisfied with h in place of ĝ. In particular, this defines a generalized function
in G (see [5, (1.3)–(1.5)] and following). We denote by ι�f the generalized function this defines;
if f has a limit in L1 as η → 0 in � then ι�f is just this standard function. An example is the
function f (x) = A(x)−s for some homogeneous polynomial, A. If � is a cone of hyperbolicity
for A, then f is holomorphic on R

d + i� and blows up no worse than a power of the magnitude
of the imaginary part of the argument. When s is sufficiently large, this is not a standard function.

Two classical and useful results generalize the analogous well-known results for ordinary
Fourier transforms.

Proposition 6.2. Let f be a function satisfying f (x + iy) = O(|y|N) for some N , as above. Let
xm be any monomial and let L be any linear transformation. Then the inverse Fourier transforms
of xmf and f ◦ L−1 are given respectively by

F −1(xmf
)
(r) = i|m| ∂m F −1(f )

∂rm ; (6.7)

F −1(f ◦ L−1)(r) = |L|F −1(f )
(
L∗r

)
. (6.8)
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Proof. Pick any h ∈ C0(R
d∗)((Rd)∗). Integrals in the following calculation will be over R

d + iξ
in the x-domain and over (Rd)∗ in the r-domain. Using the definition of Fourier transform in the
first line, calculus in the second, integration by parts in the third line, Fubini’s Theorem in the
fourth, and integration by parts once more, we see that∫

x

xmf (x)ĥ(x) =
∫
x

∫
r

xmf (x)h(r)eir·x drdx

=
∫
x

∫
r

f (x)h(r)
(

−i
∂

∂r

)m

eir·x drdx

=
∫
x

∫
r

f (x)eir·x
(

i
∂

∂r

)m

h(r) drdx

=
∫
r

f̂ (r)
(

i
∂

∂r

)m

h(r) drdx

=
∫
r

f (r)
(

−i
∂

∂r

)m

ĥ(r) dr.

The left-hand side of this is (2π)d F −1(xmf )(h) while the right-hand side is by definition
(see (6.2)) equal to (2π)dim[(∂/∂r)m F −1(f )](h), thus verifying (6.7).

The second assertion of the theorem is directly verified. Making the coordinate change x = Lx
and using r · Lx = (L∗r) · x recovers (6.8). �

Suppose the function E on R
d∗ is not locally integrable. Then ιE is not a well-defined gen-

eralized function. Nevertheless, ιE is defined as a partial function: if g is a function supported
on a set where E is locally integrable then ιE(g) = ∫

E(r)g(r) dr is perfectly well defined. We
wish to conclude that an actual Fourier integral such as occurs in (6.1) of Lemma 6.1 is equal to
the locally integrable function of r computed by [5] as the generalized Fourier transform of the
integrand in (6.1). We therefore require the following lemma.

Lemma 6.3. Let F satisfy the quadratic point hypotheses and let C(δ)
be as in Definition 5.7 with

A = f w for some w ∈ W. Let

u(x) := xm

q̃s
∏k

j=1 h̃
nj

j

be any of the terms in the series expansion f at x+ iw as in Lemma 3.2. Suppose that the inverse
Fourier transform F −1(u), defined relative to the domain −iu+R

d , is given by a partial function
ιF −1(u) on the set of non-obstructed dual vectors in the dual cone, N∗ to tanx(B). Let

ψ(r) := (2π)−d

∫
−iC(δ)

e−ir·yu(y) dy,

E(r) := ιF −1(u)(−r).
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Then

ψ(r) = E(r) (6.9)

for any non-obstructed r in the dual cone N∗.

Proof. This is a matter of moving −iC(δ)
to −iu + R

d while introducing appropriate smoothing
functions to maintain integrability. We fix a neighborhood N of r of non-obstructed dual vectors
in N∗, as in the conclusion of Theorem 5.6, whose closure is in the interior of −B∗. We then see
that ∣∣e−ir·y∣∣→ 0 (6.10)

exponentially fast in |y| as y → ∞ in −iC(δ)
, uniformly as r varies over N . It follows that if

g : (Rd)∗ → C is smooth and supported on some compact subset of N , then∣∣ĝ(y)
∣∣� c‖g‖ exp

(−c′|y|) (6.11)

as y varies over C(δ)
, where ‖g‖ := ∫ |g| and c and c′ are positive constants not depending on g.

Now fix r ∈ N and let gn be a sequence of smooth functions supported on N and converging
to δr. Note that the estimate (6.11) holds for the function g = δr as well as for all gn, where in
this case ĝ(x) = e−ir·x.

To establish (6.9), fix an ε > 0. Non-vanishing of q̃ and each h̃j on −iC(δ)
, together

with (6.11), implies that we may pick a compact set K such that∫
−iC(δ)\K

∣∣ĝn(y)u(y)
∣∣dy � ε

4
(6.12)

for all n, and also for δr in place of gn. The sequence ĝn converges to exp(ir ·y) uniformly on K ,
hence we may choose N0 large enough so that for n � N0,∣∣∣∣ ∫

K

u(y)
∣∣exp(ir · y) − ĝn(y)

∣∣dy

∣∣∣∣� ε

4
. (6.13)

Increasing N0 if necessary, we may also ensure that∣∣∣∣E(r) −
∫

E
(
r′)gn

(
r′)dr′

∣∣∣∣� ε

4
(6.14)

for all n � N0. We may now conclude that n � N0 implies∣∣∣∣ψ(r) − (2π)−d

∫
(δ)

ĝn(y)u(y) dy

∣∣∣∣� 3

4
ε. (6.15)
−iC
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Indeed, the two terms we have subtracted are integrals over −iC(δ)
of two integrands; denoting

the integrands by β and β ′, we break −iC(δ)
into K ∪ Kc and use the triangle inequality, viz.,

∣∣∣∣ ∫ β −
∫

β ′
∣∣∣∣� ∫

K

∣∣β − β ′∣∣+ ∫
Kc

|β| +
∫
Kc

∣∣β ′∣∣
and (2π)−d < 1 to obtain (6.15).

The homotopy −iΦt in Theorem 5.6 moves −iC(δ)
to −iu + R

d while avoiding the singular-
ities of u (by homogeneity, term is singular at y if and only if it is singular at iy). We have seen
in (6.5) that ĝn is rapidly decreasing on the image of this homotopy. Truncating at the bound-
ary of a large ball and sending this to infinity shows that the integral in (6.15) is unaffected by
applying the homotopy. Hence,

(2π)−d

∫
−iC(δ)

ĝn(y)u(y) dy = (2π)−d

∫
−iu+Rd

ĝn(y)u(y) dy =
∫

E
(
r′)gn

(
r′)dr′

by the definition of the inverse Fourier transform. This identity allows us to apply the triangle
inequality to (6.14) and (6.15), yielding

∣∣ψ(r) − E(r)
∣∣� ε.

Since ε > 0 was arbitrary, this proves the lemma. �
6.4. Proof of Theorem 3.7

We begin with a result from [5], evaluating the Fourier transform of S−s where S is the stan-
dard Lorentzian quadratic x2

1 − x2
2 − · · · − x2

d . For this special case, we let � := {x: x1 < 0 and
S(x) > 0} be the cone of hyperbolicity containing the negative x1-axis, we choose an element
η = −e1 of �, and we let N∗ := {r: r1 > 0 and r2

1 −∑d
k=2 r2

k > 0} be the dual cone to �. In
the case where s is not an integer, we also need notation to specify what is meant by S(x)−s . To
specify a branch of this is the same as specifying a branch of the argument function ArgS(x). On
any simply connected domain where S 	= 0, this may be accomplished by specifying ArgS(x)

at any point in the domain. Therefore, we write S(x)−s |Arg(S(η))=θ to denote such a specifica-
tion.

Theorem 6.4. (See [5, Eq. (4.20)].) Let S(x) := x2
1 − x2

2 − · · · − x2
d , so that S∗(r) = r2

1 − r2
2 −

· · · − r2
d . Then the inverse Fourier transform of S−s exists in a generalized sense and, if s 	=

0,−1,−2, . . . , it is given by

eiπs S∗(r)s−(d/2)

2s−1 (d−2)/2
. (6.16)
2 π �(s)�(s + 1 − (d/2))
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To be precise, let � be the component of the real cone {S > 0} that contains the negative x1-axis
and let η ∈ �, for example, η = e1. Then if g is supported on a compact subset of N∗,

(2π)−d

∫
Rd+iη

S−s(x)ĝ(x) = C

∫
S∗(r)g(r) dr (6.17)

where C = eiπs/[22s−1π(d−2)/2�(s)�(s + 1 − d/2)]. When the Gamma function is infinite, the
generalized Fourier transform vanishes on the open cone � (it is supported on ∂�).

Proof. This result is taken from [5] but with definitions spread across several sections. So as to
make the citation checkable (especially in light of some minor errors), we reference a number of
passages of [5]. Eq. (4.13) in [5] defines a Fourier transform of S−s (their notation for S is a).
Then in [5, 4.20] they give the following formula for this quantity, attributed to [40]:

S∗(r)2−d/2

πd/2−122s−1�(s)�(s + 2 − d/2)
. (6.18)

The argument of the � function the second time is wrong: it should be s + 1 − d/2, agreeing
with [40]. They are also missing a factor of eiπs . To see that this factor should be present, note
that their specification of the branch of S−s is given at the top of page 146: they specify this
over the simply connected set iη + R

d by specifying that ArgS(iη) = π + Arg(S(η)). Taking
η = e1, we see that Arg(S(iη)) must be an odd multiple of π . For such a specification, the
Fourier transform cannot be real for small real values of s. Indeed, taking s to be small and
positive, and noting that S is never positive real on iη + R

d , we see that all arguments of S(x) lie
between 2nπ and 2(n + 1)π , hence all arguments of S(x)−s lie between 2nsπ and (2n + 2)sπ .
Let x = iη + y. Then switching y and −y conjugates eir·x while reflecting S(x)−s about the line
Arg = (2n + 1)sπ . Therefore, the integrand of the Fourier transform∫

iη+Rd

ueir·xS(x)−s dx

is also reflected about the line Arg = (2n + 1)sπ implying that the integral must therefore lie on
the line of reflection. For small values of s this is not real, demonstrating the need for a correction.
The corrected formula (6.18) implies (6.16). �
Corollary 6.5 (Fourier transform of a cone). For any real quadratic A having signature (1, d −
1), any monomial xm, and any s 	= 0, d/2 − 1, the inverse Fourier transform of xmA−s is given
by

eiπsi|m| |M|(∂/∂r)mA∗(r)s−(d/2)

22s−1π(d−2)/2�(s)�(s + 1 − (d/2))
(6.19)

where M is any real linear transformation such that A = S ◦ M−1.



3190 Y. Baryshnikov, R. Pemantle / Advances in Mathematics 228 (2011) 3127–3206
Proof. Pick a linear transformation M such that A = S ◦ M−1. Recall that A∗(r) = S∗(L∗r).
Use the second part of Proposition 6.2 and then the first to obtain (6.19). �
Proof of Theorem 3.7. We are required to prove the given asymptotic expansion of contrib(w).
We have assumed no linear factors, so the second, simpler formula from Lemma 6.1 applies,
giving

contrib(w) =
(

1

2πi

)d

Z−r
∫

Cδ(w)

e−r·y ∑
|m|−2n<N

c(m, n)ymq̃(y)−s−n dy + O
(|r|−(N+d−2s)

)
as long as N > 2s − d .

Now integrate term by term. We see that

contrib(w) = Z−r
[
O
(|r|−d+2s−N

)
+

∑
|m|−2n<N

[(
1

2πi

)d ∫
Cδ(w)

e−r·yc(m, n)ymq̃(y)−s−n

]
dy
]
. (6.20)

The specification of −s-power for this generating function is that the argument of q̃(u) is zero.
To turn this into a Fourier transform, the change of variables y = iy′ is needed. Under this change
of variables, dy = id dy′, and the summand in (6.20) becomes

c(m, n)(2π)−d

∫
−iCδ(w)

e−ir·y′(
iy′)mq̃

(
iy′)−s−n

dy′.

Now the argument of q̃(iy′) is still continued from initial data Arg(q̃(u)) = 0, and this argument
may also be written as iπ plus the argument of q̃(y′) continued from initial data Arg(q̃(−iu)) =
−π as y′ varies over −iCδ(w). The summand in (6.20) now becomes

c(m, n)(2π)−d i|m|e−iπs

∫
−iCδ(w)

e−ir·y′ ∣∣y′∣∣mq̃
(
y′)−s−n

dy′.

Everything is now lined up. Lemma 6.3 shows that this integral, ψ(r), is equal to the partial
function E defined by the Fourier transform of the integrand relative to the domain −iu + R

d .
Corollary 6.5 computes this partial function (recalling that the inverse Fourier transform builds
in the factor (2π)−d ) and yields the summand

c(m, n)(−1)|m| |M|(∂/∂r)mq̃∗(−r)s−(d/2)

22s−1π(d−2)/2�(s)�(s + 1 − (d/2))
.

Multiplying by the Z−r in front of the right-hand side of (6.20) establishes desired conclu-
sion (3.4), still under the assumption N > 2s − d , which was used to bound the remainder term.

Finally, if N � 2s − d then the foregoing argument may be applied with N replaced by the
least integer N ′ greater than 2s − d . Each term in the sum with |m| − 2n > N is O(|r|−d+2s−N)
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by (2.12); the remainder term satisfies this bound as well because it is O(|r|−d+2s−N ′
) with

N ′ > N . The theorem is therefore proved for every N . �
6.5. Extra linear factors give rise to integral operators

Let F satisfy the quadratic point hypotheses and let r be a non-obstructed vector in the dual
cone to N∗ := tanxmin(B). Eq. (6.7) of Proposition 6.2 has a moral inverse: just as multiplication
by x turns into differentiation in the r-domain, division by a linear function in x should turn
into integration in the r-domain. This subsection proves a theorem along these lines. However,
because anti-differentiation is not well defined, the resulting formula (6.21) fails to specify which
iterated anti-derivative will result. We show that the correct choice can be determined under the
additional assumption 2s > d + 1. This is not, however, the case with the bulk of our examples,
whence our alternative analysis in Section 6.6.

Let L be any linear function, with coefficients L(x) = a1x1 +· · ·+adxd . We may view L as a
vector in (Rd)∗. The notation ∂/∂L will be used to denote the differential operator

∑d
j=1 aj

∂
∂rj

on r-space. Also, ∂n

∂Ln :=∏k
j=1(

∂
∂Ln

)nj denotes the corresponding sum of monomial operators
(∂/∂r)n.

Proposition 6.6. Let F = P/(Qs
∏k

j=1 H
nj

j ) with nj positive integers, q̃ quadratic and each h̃j

linear. Let n = (n1, . . . , nk) be the multi-exponent of the functions H1, . . . ,Hk in the denominator
of F and denote p := n + n1 = (n1 + n, . . . , nk + n). Then

contrib(w) =
∑

|m|−2�−kn<N

z−r(−1)|p|+|m|c(m, �, n)
∂m

∂rm u�,n(r), (6.21)

where u� is an iterated anti-derivative of q̃−s−� satisfying

i|p|
(

∂p

∂h̃p

)
u�,n = F −1(q̃−s−�

)
= eiπ(s+�)i|m| |M|(∂/∂r)mA∗(r)s+�−(d/2)

22(s+�)−1π(d−2)/2�(s + �)�(s + � + 1 − (d/2))
. (6.22)

Proof. The proof proceeds analogously to the proof of Theorem 3.7. Using the full expansion,
Lemma 3.2, instead of Lemma 2.24 leads to the following generalization of (6.20):

contrib(w) = Z−r
(

1

2πi

)d∑ ∫
Cδ(w)

e−r·yc(m, �, n)ymq̃(y)−s−�

k∏
j=1

h̃j (y)−nj −n dy

+ O
(∣∣z−r∣∣|r|−d+2s−N

)
(6.23)

where the sum is over the finitely many terms with |m| − h� − kn < N and terms with |m| −
h� − kn � N ′ are seen by the big-O lemma to contribute O(|z|−r|r|−d+2s−N ′

). Again, changing
variables to y = iy′ shows the summand to be equal to

Z−ri|m|−|p|e−iπsc(m, �, n)F −1
(

ym

q̃(y)−s−�
∏k

h̃ (y)−nj −n

)
.

j=1 j
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The first conclusion of Proposition 6.2 identifies this inverse Fourier transform as an iterated
derivative (introducing a factor of i|m|), hence the summand becomes

Z−re−iπs i−|p|(−1)�+|m|c(m, �, n)
∂m

∂rm F −1
(

1

q̃(y)−s−�
∏k

j=1 h̃j (y)−nj −n

)
. (6.24)

From Corollary 6.5 we have

F −1(q̃−s−�
)= eiπs(−1)�

|M|A∗(r)s+�−(d/2)

22(s+�)−1π(d−2)/2�(s + �)�(s + � + 1 − (d/2))
. (6.25)

Multiplying the numerator and denominator of 1/q̃s+� by
∏k

j=1 h̃
nj +n

j and applying once more
the first part of Proposition 6.2, we see that

F −1(q̃−s−�
)= i|p| ∂p

∂h̃p
F −1

(
1

q̃(y)−s−�
∏k

j=1 h̃j (y)−nj −n

)
,

proving the proposition. �
The rest of the work is in determining h from the derivative (6.22). Begin with two classical

regularity lemmas.

Lemma 6.7. Let f ∈ L1(i� + R
d). Then F −1(ι�f ) is standard and locally Lipschitz.

Proof. Let g have compact support in (Rd)∗,

F −1(ι�f )(g) := (2π)−d(ι�f )(ĝ)

:= (2π)−d

∫
iη+Rd

f (x)ĝ(x) dx

:= (2π)−d

∫
iη+Rd

f (x)

[ ∫
(Rd )∗

g(r)e−ir·x dr
]

dx

=
∫

(Rd )∗

g(r)
[
(2π)−d

∫
iη+Rd

f (x)e−ir·x dx
]

dr

by Fubini’s Theorem, since e−ir·x is bounded as r varies over the support of g and the imaginary
part of x varies over any bounded subset of �. This shows that F −1(ι�f ) is the standard function
ιh where h(r) = (2π)−d

∫
iη+Rd f (x)e−ir·x dx. To check the local Lipschitz condition on h, note

that

∣∣h(r) − h
(
r′)∣∣= (2π)−d

∫
d

f (x)
(
e−ir·x − e−ir′·x)dx.
iη+R
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If r, r′ vary over a compact set K , and x = iη + ξ then there is a bound independent of ξ :∣∣e−ir·x − e−ir′·x∣∣� CK

∣∣r − r′∣∣,
which implies |h(r) − h(r′)| � CK · ‖f ‖1 · |r − r′|. �

We also require the Paley–Wiener Theorem, stated as [5, Theorem 2.5]. A generalized func-
tion is said to have support in a closed set K if it annihilates test functions vanishing off of K .

Lemma 6.8 (Paley–Wiener Theorem). Suppose that � contains the convex cone K . Then the
support of F −1(ι�f ) is contained in the negative dual cone −K∗. �

With these in hand, let K∗ be a connected component of the non-obstructed subset of N∗. Fix
r ∈ K∗. Suppose that for each 1 � j � k, there is a line segment {r + λLj : λ ∈ [0, λ∗]} (where
λ∗ could be negative) such that r + λ∗Lj is on the boundary of N∗ and r + βλ∗Lj is in K∗ for
all 0 � β < 1. In other words, for each j , traveling from r in the directions ±Lj , we come to the
boundary of K∗ at the same time as we come to the boundary of N∗. Define the integral operator
Ij on functions on r-space by

Ij (g)(r) =
0∫

λ∗

g(r + λLj )dλ.

Let Ip denote the composition over j of powers I
pj

j . We then have the following result.

Theorem 6.9. Under the above geometric conditions on the component K∗ of the non-obstructed
set of N∗, if 2s > d + 1, then h(r) in (6.21) is given by

i−|p|Ip[F −1(q̃−s−�
)]

where p = n + n1 as in Proposition 6.6.

Proof. Under the condition 2s > d + 1, one has |q̃(x)−s | = O(|x|−d−ε) for some ε > 0. Hence
the function q̃−s is integrable away from its poles, as is therefore q̃−s−�

∏k
j=1 h̃

−nj −n

j . Moving

to iη + R
d , we avoid all poles and hence q̃−s−�h̃p ∈ L1. By Lemma 6.7, the Fourier transform

is a standard, locally Lipschitz function, hence continuous. The domain of analyticity of f con-
tains every cone whose closure is in the interior of tanxmin(B). By the Paley–Wiener Theorem,
therefore, the inverse Fourier transform vanishes outside of the closed negative dual cone, N∗.
Each differential operator ∂/∂Lj in (6.22) may now be inverted uniquely, due to the boundary
condition of vanishing at r + λ∗Lj . The unique inverse is Ij . Together with (6.22), this proves
the theorem. �
Remark. Without the hypothesis 2s > d + 1 we still have

h(r) = i−|p|Ĩp[F −1(A−s−�
)]
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where Ĩj are anti-derivative operators whose boundary conditions are not determined by conti-
nuity from the Paley–Wiener Theorem.

6.6. Proof of Theorem 3.9

We have seen that a linear factor L(x) in the denominator corresponds to a convolution with
a Heaviside function, or equivalently, to an integral operator IL. The integrability hypothesis in
this result is unfortunately somewhat restrictive, ruling out, for example, the case s = 1, d = 3.
Moreover, from a computational viewpoint, it is not desirable to have the answer represented as
an (iterated) integral. It is therefore worth exploring a general method for reducing the dimension
of the integral in question. In [5], homogeneity of the integrand is exploited: integrating out the
radial part, the Fourier transform is reduced to an integral over a cycle in (d − 1)-dimensional
projective space, which will be either the Leray cycle or the Petrovsky cycle. To this device, we
add a residue computation that further reduces the dimension by one. Evaluation of the resulting
one-dimensional integral leads to Theorem 3.9. Computations in projective space rely on some
standard constructions and notational conventions which we now introduce.

Let π : Cd \ {0} → CP
d−1 be the projection map. Any meromorphic form ω on CP

d−1 pulls
back to a form π∗ω on C

d \ {0}. The pullback π∗ is one-to-one onto its range. It is well known
e.g., [24, p. 409], that the range is the set of all meromorphic (d − 1)-forms on C

d whose con-
traction with the Euler vector field

∑
xi∂/∂xi is zero and that are homogeneous of degree zero.

Here, the degree of f dxj1 ∧· · ·∧dxjk
is degf +k and for (d −1)-forms, those forms killing the

Euler field are in a one-dimensional subspace of the (d −1)-dimensional cotangent space at each
point. Forms on CP

d−1 have no natural names of their own, so we name them by identifying
with their pullbacks to Cd , as is done in [5] and elsewhere. For computational purposes, when
integrating over a chain C in CP

d−1, we usually use an elementary chart map from a slice of C
d ,

such as π restricted to (z1, . . . , zd−1,1). If fj are homogeneous of degree 1 − d , for example,
pulling back by this chart map yields

∫
C

d∑
j=1

fj (z) dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzd =
∫

C′
fd dz1 ∧ · · · ∧ dzd−1

where C′ is the (unique) lifting of C to the (simply connected) slice.
The proof of Theorem 3.9 begins analogously to the proof of Theorem 3.7. Use the general

expansion in Lemma 3.2, just for the leading term, to write

p(xmin + iw + y)

q(xmin + iw + y)h(xmin + iw + y)
= p(z)

q̃(y)h̃(y)
+ R

where R = O(|y|−2) on Cw. Use Lemma 6.1 and the big-O lemma to see that

contrib(w) = Z−rP(Z)

(2πi)3

∫
C(δ)

exp(−r · y)
1

q̃(y)h̃(y)
dy + O

(|r|−1).
Changing variables by y = iy′ and noting that dy/[q̃(y)h̃(y)] = dy′/[q̃(y′)h̃(y′)] gives
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contrib(w) = Z−rP(Z)

(2πi)3

∫
−iu+C(δ)

exp(−ir · y)
1

q̃(y)h̃(y)
dy + O

(|r|−1)

= Z−rP(Z)i−3 F −1
(

1

q̃h̃

)
+ O

(|r|−1).
Comparing to (3.9), it suffices, therefore, to show that

F −1
(

1

q̃h̃

)
= i3 Res(2)

π
arctan

(√
q̃∗(r)q̃(h̃∗)

h̃∗(r)

)
. (6.26)

The Leray and Petrovsky cycles
We are left to compute the inverse Fourier transform of 1/(q̃h̃). The first part of this compu-

tation, reducing to the Leray cycle, is valid for any hyperbolic polynomial in any non-obstructed
direction, so we do it in this generality. Let P/H be the ratio of two homogeneous polynomials
and assume H is hyperbolic. Later we will specialize to the case where H = q̃h̃. Denote by
d∗ := degH − degP − d the inverse degree of homogeneity of the form (P/H)dz.

Let B be a cone of hyperbolicity for H and fix u ∈ B . Fix a non-obstructed vector r ∈ N∗ :=
−B∗. Recall from our homotopy constructions that there is a vector field η on R

d with the
following properties.

1. η is homogeneous of degree +1.
2. There is a 1-homogeneous homotopy {ηt : 0 � t � 1} between η0 ≡ u and η1 = η such that

for all t and all nonzero y, H(iy + ηt (y)) 	= 0.
3. For all y 	= 0, r · η(y) = 0.

Indeed, a similar homotopy with the third condition replaced by r · η(y) < 0 is constructed in
Section 5. Stopping the homotopy at the instant, depending on y, that it crosses the hyperplane
orthogonal to r, yields the desired η along with a homotopy as prescribed.

Let S+ denote the hemisphere {y ∈ R
d : |y| = 1, r · y � 0}. Let S− denote the other hemi-

sphere, where r · y � 0. Let cycles σ± be (singular triangulations of) S± oriented in such a way
that ∂(σ+ + σ−) = 0. Then σ := σ+ − σ− is a (d − 1)-chain supported on Sd−1 whose boundary
is supported on the equator {y ∈ Sd−1: r · y = 0}.

The map φ defined by φ(y) := iy+η(y) induces a covariant map φ∗ on cycles and homology.
The chain φ∗(σ ) maps to a cycle in Cd with boundary in the complex hyperplane Xr := {z: r ·
z = 0}. Hence φ∗(σ ) represents a homology class in Hd−1(C

d ,Xr). For any homogeneous set
W ⊆ C

d , let W denote the projection πW of W to CP
d−1. The sets Vq̃ and Xr are homogeneous,

therefore the pair (Cd − Vq̃ , (Cd − q̃)∩Xr) projects radially under π to (CP
d−1 − Vq̃ , (CP

d−1 −
Vq̃ ) ∩ Xr).2

Definition 6.10 (Leray and Petrovsky cycles). The chain α = α(r) := πφ(σ) is called the Leray
cycle and its class π∗φ∗[σ ] ∈ Hd−1(CP

d−1 − Vq̃ , (CP
d−1 − Vq̃ ) ∩ Xr) is called the Leray class.

2 The bars denoting projective varieties are about to proliferate; we apologize for the mess, but we tried dropping them
but we became confused about which varieties were projective and which were affine.



3196 Y. Baryshnikov, R. Pemantle / Advances in Mathematics 228 (2011) 3127–3206
The boundary of α is a cycle β representing a class in Hd−2((CP
d−1 − Vq̃ ) ∩ Xr). Define the

Petrovsky cycle γ to be a tubular neighborhood around β orthogonal to Xr. This is the image
under π of a cycle supported on {y: |r · y| = ε} and avoiding Vq̃ .

The following result is proved in [5, Theorem 7.16]; here we correct a typo: the second ap-
pearance of χ0

q , namely the one in (7.17′), should be just χq ; see [5, Eq. (1.6) on p. 122]. Define
a (d − 1)-form ω, killing the Euler vector field and having homogeneous degree d , by

ω := 1

d

d∑
j=1

(−1)j+1zj dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzd .

To explain what is about to appear in (6.27)–(6.28) below, we must see why the integral of a
meromorphic 2-form on CP

2 over a relative homology class in H2(CP
2, M) is well defined.

Indeed, integration over a relative homology class with respect of a complex submanifold of
positive co-dimension is always well defined, for the following reason. Let C be a representing
cycle for the class, that is a 2-chain with boundary in M. The integral over any other relative
cycle differs from the integral over C by the integral over a relative boundary, a relative boundary
being an absolute boundary plus something in M. Since dω = 0 for any meromorphic 2-form on
CP

2, the integral over the boundary vanishes, and since M has positive complex co-dimension,
the second part of the integral vanishes as well.

Theorem 6.11 (Reducing Fourier integrals to Leray/Petrovsky cycles). Let P/H be hyperbolic
and fix u in a cone B of hyperbolicity for H as above. Let d∗ be the inverse degree of homogeneity
of the form (P/H)ω, that is, d∗ = degH − degP − d . Let α be the Leray cycle and γ be the
Petrovsky cycle. If d∗ � 0 then

F −1
(

P

H

)
= id∗+1

(2π)d−1d∗!
∫
α

(r · z)d∗ P

H
ω, (6.27)

while if d∗ < 0 then

F −1
(

P

H

)
= id∗

(2π)d(|d∗| − 1)!
∫
γ

(r · z)d∗ P(z)
H(z)

ω. � (6.28)

Remarks. (i) Note that the introduction of the factor (r · z)d∗ makes the integrand 0-
homogeneous, which is exactly what we need to interpret it as a form on CPd−1.

(ii) In the case d∗ < 0, the integrand contains a negative power of r · z. Let Res(ω) be |d∗|th
residue of the integrand (r · z)d∗(P/H)ω along the projective hyperplane Xr. The product struc-
ture in the Petrovsky cycle immediately reduces the integral one dimension further to

∫
β

Res(ω).
In the case d∗ � 0, the integral does not localize to the boundary cycle β and one must work
harder to kill one more dimension.

Residue reduction
The second step is to reduce by one further dimension via a residue computation. The first

half of this step still works in any dimension. Begin by observing:
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Lemma 6.12. The homology group Hd−1(CP
d−1,Xr) vanishes.

Proof. CP
d−1 ∩ Xr is homeomorphic to CP

d−2. If p � 2(d − 2) then this inclusion induces an
isomorphism Hp(CP

d−1 ∩ Xr) → Hp(CP
d−1), where both groups have rank 1 if p is even and

vanish otherwise. It follows that the first and last arrows are isomorphisms in the exact sequence

Hd−1
(
CP

d−1 ∩ Xr
)→ Hd−1

(
CP

d−1)→ Hd−1
(
CP

d−1,Xr
)→ Hd−2

(
CP

d−1 ∩ Xr
)

→ Hd−2
(
CP

d−1)
hence the middle group vanishes. �

We now make use of the Thom isomorphism to “pass α through VH ” and obtain a (d −
2)-chain, whose tubular neighborhood is homologous to α. The details are as follows. By
Lemma 6.12 any chain representing the Leray class is a boundary of a d-chain β ∈ (CPd−1,Xr).
We may therefore choose a d-chain C in CP

d−1 whose boundary is α plus something in Xr
(because ∂C is a cycle and α is not, the part in Xr will be nonzero). Perturbing C if necessary,
we can assume that C intersects VH transversely. The dimension of the intersection of the d-
chain C′ with the surface VH having co-dimension 2 is a (d − 2)-chain δ, whose orientation is
prescribed by the orientations of C, CP

d−1 and VH . The chain δ has boundary in VH ∩ Xr, and
is therefore a relative cycle in (VH , VH ∩ Xr).

Now we are at a point where we require the dimension to be 3. The chain C has (real) dimen-
sion 3 and the surface VH has dimension 4. The projective variety VH may not be smooth, but its
singular set has complex co-dimension at least 1, hence has real dimension at most 2. Generically
perturbed C therefore does not intersect the singular set of VH , and hence δ is supported on the
set of smooth points of VH . We may define the tubular neighborhood T (δ) supported on the set
{|H | = ε}, which is locally a product of δ with a small circle about the origin in C

1 with the
standard orientation.

Integration around this circle is computed by taking a residue. We recall a definition of the
residue form on any complex space. Let θ be a meromorphic form with a pole on the set VH , the
pole being simple except on a proper subvariety VH ∩ VK . Then the residue is defined as follows.
Write θ = H · ω where ω is holomorphic away from on VK . Define Res[θ, VH ] to be the unique
form on VH that satisfies

Res[θ, VH ] ∧ dH = ω

away from VK . In coordinates, the residue of (G/H)dz1 ∧ · · · ∧ dzd is given by (G/(∂H/

∂z1)) dz2 ∧· · ·∧dzd (with zj in place of z1, we have the alternative expression (−1)j−1(G/∂H/

∂zj ) dz1 ∧ · · · ∧ dzj−1 ∧ dzj+1 ∧ · · · ∧ dzd ). The following well-known result may be demon-
strated by expressing the integral over the tube as an iterated integral, first around a circle.

Lemma 6.13. Suppose d = 3. The Leray class α is homologous to the tube T (δ) around δ.
Consequently, for any meromorphic form θ on H with a simple pole at H ,∫

α

θ =
∫

θ = (2πi)

∫
Res[θ; VH ].
T (δ) δ



3198 Y. Baryshnikov, R. Pemantle / Advances in Mathematics 228 (2011) 3127–3206
In particular, when d∗ = 0 in Theorem 6.11, putting this together with (6.27) and specializing to
H = q̃h̃ and θ = ω/(q̃h̃) yields

F −1
(

1

q̃h̃

)
= i

(2π)2

∫
α

ω

q̃h̃
= −1

2π

∫
δ

ωL

where

ωL := Res

[
ω

q̃h̃
; V

q̃h̃

]
. �

Remark. In higher dimensions, it may happen that δ intersects the singular set of VH . In that
case, one might expect a version of Lemma 6.13 showing the Leray cycle to be homologous to
the sum of a tubular neighborhood of δ away from the singular set and a cycle supported on a
neighborhood of the singular set.

The special case of a cone and a plane
For the remainder of this section, we specialize to the case in Theorem 3.9. In addition to

d = 3, we suppose k = s = 1, whence the inverse degree, d∗, of homogeneity is zero. We further
specialize to the case where Vq̃ ∩ V

h̃
∩ R

d 	= ∅ and where the variety V
q̃·h̃ has precisely two

points, each of multiplicity one. Thus we are in the case of Section 5.3, which arises in several
of our applications and is illustrated in Fig. 14. The normal cone is shaped as in Fig. 8 and the
vector field η1 constructed in Section 5.3 is one we can use to construct the Leray cycle. In this
case (d = 3), since δ avoids V

h̃
, we may restrict to Vq̃ and write

ωL := Res

[
ω

q̃h̃
; Vq̃

]
.

Let p be a common zero of q̃ and h̃. The space of 2-forms on CP
2 is one-dimensional, hence

at p, the form ω is a multiple of the form dq̃ ∧ dh̃. The double residue

Res(2) := Res

[
ω

q̃h̃
, Vq̃ ∩ V

h̃

]

is the value of this ratio, that is, ω = Res(2)(p)dq̃ ∧ dh̃ at p. We have the following explicit
description of the residue form ωL.

Lemma 6.14. Let t : CP
1 → Vq̃ be any local parametrization. Then

ωL = Res(2)(t3) ·
(

dt

t − t3
− dt

t − t4

)
= Res(2)(t4) ·

(
dt

t − t4
− dt

t − t3

)
where t3 and t4 are the values of the parameter t for which h̃ vanishes.
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Fig. 20. The topological sphere Vq̃ , its real part (the equator) and its intersections with the planes {h̃ = 0} and Xr.

Proof. The form ωL is meromorphic on Vq̃ with precisely two simple poles. Therefore, it may
be written as C[dt/(t − t3) − dt/(t − t4)]. Taking the residue at t = t3 yields Res(ωL; t3) = C.
But iterated resides are the same as multiple residues, hence

C = Res(ωL; t3)
= Res

[
Res

(
ω

q̃h̃
; Vq̃

)
; V

h̃

]
= Res(2)

[
ω

q̃h̃
; Vq̃ ∩ V

h̃

]
= Res(2).

To carry out the rest of the computation, let us choose coordinates for C
3 in which q̃ =

x2 − y2 − z2. Although these are unrelated to the coordinates in which h̃ and r are described, we
will use them to compute a coordinate-free description of the integral.

The cones of hyperbolicity of q̃ are the two components of x2 > y2 + z2, one containing the
negative x-axis and one containing the positive x-axis. Recall that the cones of hyperbolicity for
q̃h̃ are these cones, bisected by the plane h̃ = 0. Recall we have fixed u ∈ B , where B is one of
these sliced cones and its dual has a teardrop shape.

The space Vq̃ is a quadratic curve in CP
2. We may choose the explicit parametrization

t : CP1 → Vq̃ by

(x, tx) �→ (
t2 + 1,2t, t2 − 1

)
in the (x, y, z)-coordinate system. Topologically, CP

1 is a sphere with RP
1 as its equator, and

our parametrization has the nice feature that the copy of RP
1 inside CP

1 maps to the real part of
the quadric Vq̃ . Thus Fig. 20 depicts Vq̃ as a sphere and the real part as the equator. The points of

Vq̃ where r · x vanishes are denoted t1 and t2 and the points where h̃ vanishes are denoted by t3

and t4. The assumption that V
h̃

and Vq̃ intersect in real space is equivalent to h̃ lying outside the
dual cone, which is equivalent to t having real roots. Thus t3 and t4 are shown on the equator in
Fig. 20. Note that the two arcs into which t3, t4 separate the equator differ in their position with
regard to the cone of hyperbolicity: one of them bounds it (we will call this arc the active one),
while the other not.
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If r is in the dual cone then t1 and t2 will be complex conjugates, while if r is in the pointy
region of the teardrop then t1 and t2 will be real.

Case 1: t1 and t2 are complex
We are nearly ready to evaluate the integral, but we need first to understand the cycle δ. The

intersection class δ is a relative cycle in (Vq̃ , Vq̃ ∩ Xr). Thus we may draw a representative of
this class as a path, beginning and ending in the set {t1, t2}. The meromorphic residue form ωL

is holomorphic away from t3 and t4 where it has simple poles. The integral of this form over δ

is therefore determined by combinatorial invariants of δ: the positions of the endpoints and the
number of signed intersections with the two equatorial arcs bounded by t3 and t4.

Lemma 6.15. The homology class of δ in (Vq̃ \ {t3, t4}, {t1, t2}) is that of an oriented path from
t2 to t1, intersecting one equatorial arc exactly once.

Proof. It is shown in [5] (see in particular Fig. 6(b) there and the paragraph preceding it) that one
can find a representative of the Leray class such that its boundary (in Xr − Vq̃ ∩ Xr) is localized
near the complex points of Vq̃ ∩ Xr, i.e. in our situation is the sum of small circles around the
complex zeros of q̃ in Xr, oriented according to their imaginary parts (note that h̃ has no non-real
zeros there). It follows that the boundary of the (relative) cycle δ is given by

∂δ = [t1] − [t2]

where t1 has the positive imaginary part, and δ is the claimed path, plus one or more absolute
cycles (i.e. oriented closed loops) in Vq̃ and V

h̃
.

To find the homology classes represented by these arcs and loops, we recall the definition
of the Leray class: the vector field η constructed at the end of Section 5.3 is restricted to the
unit sphere, defining the relative class, the sum of oppositely oriented hemispheres separated by
the hyperplane Xr. To evaluate δ we find a homotopy shrinking these hemispheres to a point,
keeping their boundaries in Xr and tracking where the resulting 3-chain hits Vq̃ and V

h̃
. This

homotopy proceeds in two stages: first we take the linear homotopy of (the restriction to the unit
sphere of) η, the vector field constructed in Section 5.3 to the (restriction to the unit sphere of
the) constant vector field x defined in the same place. In the second stage we collapse the sphere
to a point, keeping the constant vector field.

We note first that in V
h̃

this deformation yields the empty set: at no instant are the deformed
vectors tangent to h̃, which would be necessary if the deformation were to intersect h̃. This is not
the case for q̃ , and indeed, we know already that the boundary of δ there is nontrivial. The class
of δ is completely determined by the index of intersection with the active arc between t3 and t4.
The intersection number of δ with the active arc is just the number of points in the real part of
Vq̃ where our deformation results, at some instant of the homotopy, in a vector field tangent to
the (real part of) the quadric. It is immediate that there is a single point and a single time in the
homotopy where this occurs (in fact, the vector field vanishes at this place and time), and it is
easy to check that this uniqueness survives small perturbations (see Fig. 21). �

Having this geometric understanding of Vq̃ , t1, t2, t3, t4 and δ, we may now compute the inte-
gral. We find that
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Fig. 21. Showing where the homotopy intersects the quadric.

Fig. 22. The logarithm as an arctangent.

∫
δ

Res(2) ·
(

dt

t − t3
− dt

t − t4

)
= Res(2) · log

(t2 − t3)(t1 − t4)

(t1 − t3)(t2 − t4)

= i(α + β)Res(2).

Here, the fact that t1, t2 are complex conjugates while t3, t4 are real implies that the numerator
and denominator are complex conjugates and the logarithm is purely imaginary, being in fact 2i

times the arctangent of the sum α + β of the angles shown in Fig. 22. The logarithm is therefore
given by twice the arctangent of the ratio of imaginary to real parts in the numerator.

Whenever t1, t2 satisfy a quadratic equation t2 + at + b with real coefficients while t3, t4
satisfy a quadratic equation t2 + a′t + b′ = 0, also with real coefficients, then simple algebra
shows the cross ratio to be given by

(t1 − t4)(t2 − t3)

(t − t )(t − t )
= b + b′ − aa′/2 + i

√
a2 − 4b

√
4b′ − a′2

′ ′ √
2

√ ′ ′2
. (6.29)
1 3 2 4 b + b − aa /2 − i a − 4b 4b − a
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The ratio of the imaginary to real parts simplifies considerably, so we obtain the equivalent
expressions

2i arctan

√
a2 − 4b

√
4b′ − a′2

b + b′ − aa′/2
. (6.30)

Here, we recall the definition of the range of the arctangent function in Theorem 3.9, namely
0 � arctanx < π .

Let L = �1x+�2y+�3z describe h̃ in our coordinate system. Then t3, t4 solve q̃ = L = 0. The
minimal polynomial for t3 and t4 (produced, for example, in Maple as an elimination polynomial
for the ideal 〈x − (t2 + 1), y − 2t, z − (t2 − 1), x2 − y2 − z2, �1x + �2y, �3z) is given by

t2 + 2�2

�1 + �3
t + �1 − �3

�1 + �3
.

Similarly, let r = r1x + r2y + r3z, giving the minimal polynomial for t1 and t2 as

t2 + 2r2

r1 + r3
t + r1 − r3

r1 + r3
.

Plugging in a = 2r2/(r3 + r1), b = (r1 − r3)/(r1 + r3), a′ = 2�2/(�3 + �1) and b′ = (�1 −
�3)/(�1 + �3) to (6.30) now gives

∫
δ

ωL = 2i Res(2) arctan

(√r2
1 − r2

2 − r2
3

√
−�2

1 + �2
2 + �2

3

r1�1 − r2�2 − r3�3

)

where the two quantities under the radical signs are both positive. Writing the right-hand side as
a combination of coordinate-free quantities, this becomes

∫
δ

ωL = 2i Res(2) arctan

√
q̃∗(r, r)

√
−q̃∗(h̃, h̃)

q̃∗(r, h̃)
. (6.31)

Combining this with the result of Lemma 6.13 shows that

F −1
(

1

q̃ · h̃
)

= −i

π
Res(2) arctan

√
q̃∗(r, r)

√
−q̃∗(h̃, h̃)

q̃∗(r, h̃)
,

and checking this against (6.26) proves Theorem 3.9 in the case where r is inside the dual cone.

Case 2: t1 and t2 are real
In this case, r is in the pointy region of the teardrop. The result (6.23) from [5] tells us that

the Leray cycle, which is by definition a relative cycle, is an absolute cycle. It follows that the
intersection class δ is an absolute cycle in the twice punctured sphere. Thus t1 = t2 when the
roots are real, and the cycle δ is represented by a circle. Geometrically, in the previous case
(t1, t2 complex), as r approaches the boundary of the dual to the conic, the points t1 and t2
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converge to a single point on the equator and the arc δ closes up into a circle. Provided this
point of convergence is not one of the poles, t3 or t4, the integral will approach a well-defined
limit, which is the integral over the absolute intersection cycle. By continuity, the homology
class of this absolute cycle cannot vary as the limit point varies over the common boundary of
the two regions of the teardrop, nor can this class vary as r varies over the pointy region of the
teardrop.

To summarize, there is a constant c such that for all r in the pointy region, the integral is equal
to c. This is also the limiting value if r approaches any point of the common boundary from
inside the other region, and thus coincides with the limit of the quantity in the previous case, as
r approaches any ray in the common boundary; in the limit the arctangent is π and we obtain
simply P(Z)Res(2)Z−r. �
Remark. If r crosses out of the dual conic at a point α not on the boundary of the pointy region,
it exits the normal cone. We know the integral must become zero in this case. Geometrically, this
corresponds to t1 and t2 coming together in a cycle homologous to zero. There is a discontinuity
if α is one of the two projective points of tangency in Fig. 10. Near these two points, t1 and t2
approach t3 and t4 respectively. Crossing out of the dual cone on one side or the other will cause
δ to close up to a null or non-null cycle, in the former case the integral is zero; the difference
between the two integrals is the residue at the pole t3 or t4.

7. Further questions

1. It would be nice to remove the integrability hypothesis 2s > d + 1 from Theorem 6.9. Do-
ing so would necessitate a specification of which anti-derivative

∫ 0
λ∗ g(r + λLj )dλ is meant

when the integral in question is not convergent. There are cases when there is one “obvious”
interpretation of this as a closed form function, but proving this to be correct requires bet-
ter understanding of the generalized function partially identified as g on the Paley–Wiener
cone.

2. When d = 3 but Q has an isolated singularity of degree greater than 2, the techniques of Sec-
tion 6.6 are still applicable through Lemma 6.13. The representation in Lemma 6.14 must
be replaced by one with four poles, and the intersection class in Lemma 6.15 correspond-
ingly specified. Work is in progress on details of this computation and its application to the
Fortress tiling ensemble.

3. In principle, generalized Fourier transform theory should give us some information on
asymptotics in scaling windows near the boundary or in obscured directions. An additional
complication is that, because projective homotopies do not exist giving exponential decay
of exp(−r · x) for these r, one must verify the existence of chains on which exp(−r · x) de-
cays sufficiently rapidly to justify the exchanges of limits in Lemma 6.3 and elsewhere.
This, together with the increased complexity of Fourier integrals with varying parame-
ters, has kept us thus far from obtaining limit theorems near these boundaries. This is
perhaps the most broad and challenging open problem pertaining to the results in this pa-
per.
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Appendix A. Glossary of notation

page symbol meaning

3135 ReLog coordinatewise log-modulus
3135 deg(f, z) degree of vanishing of f at z
3135 hom(f, z) leading homogeneous part of f at z
3135 V , VF variety where F vanishes
3135 amoeba(F ) amoeba of the Laurent polynomial F

3136 TR the torus R
d/Z

d

3136 Ł∗ dual cone to a cone L
3137 tanx(C) tangent cone to C at x
3137 N∗

x(C) dual cone to − tanx∗(C)

3137 xmin the point of a given region where r · x is maximized
3139 Kv(A) cone of hyperbolicity in direction v of a homogeneous

polynomial A

3140 KA,B(x) cone of hyperbolicity of A at x containing B

3139 Kf,B(Z) cone of hyperbolicity in direction v of a polynomial f at B

3141 f abbreviation for hom(f,x + iy)

3141 N∗(Z), (N∗)f,B(Z) the normal cone to f at Z that contains B

3147 V1 intersection of V with the torus whose image under
ReLog is xmin

3147 crit set of minimal critical points in direction r
3147 W, W(r) logarithmic version of crit
3148 ∇log the logarithmic gradient
3148 oexp less by an exponential factor
3148 S the standard Lorentzian quadratic
3148 A∗ dual to the quadratic form A

3152 contrib contribution to the Cauchy integral from the chain Cw
local to w

3153 κ Gaussian curvature
3174 Uw a neighborhood of w ∈ W(r)
3174 U the union of all the Uw
3174 ηUc an outward vector field on Uc that is a section

of the cones Kf,b(·)
3175 η a section of Kf,b(·) defined everywhere but pointing

outward only on Uc

3176 Φ, Φε,η ε-scaled homotopy from a constant inward vector field
to C(η)

3176 C(η) the cycle resulting from sliding along η

3176 Cw restriction of C(η) to a neighborhood of w
3177 C projective chain

3177 C(δ)
projective chain lifted off V in the δ-ball

3177 Cδ(w) C(η) for a particular η, restricted to a neighborhood of w
3178 C chain pieced together from local chains C (w)
δ δ
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3183 C0(R
d∗) the space of test functions

3183 G∗ the space of generalized functions
3183 loc-int the space of locally integrable functions
3184 CRD(Rd) the space of rapidly decaying functions
3184 F −1 inverse Fourier transform
3195 α the Leray cycle
3195 γ the Petrovsky cycle
3197 Res[θ, VH ] the form ω/dH

3156, 3198 Res(2) the second residue of ω/(q̃h̃) on the double pole Vq̃ ∩ V
h̃
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