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By using the roughness theory of exponential dichotomies and the contraction mapping,
some sufficient conditions are obtained for the existence and uniqueness of pseudo almost
periodic solution of the above differential equation with piecewise constant argument

dx

dt
= A(t)x(t) +

r∑
j=0

A j(t)x
([t − j])+ g

(
t, x(t), x

([t]), . . . , x
([t − r])).

© 2010 Elsevier Inc. All rights reserved.

1. Exponential dichotomy and pseudo almost periodic sequences

1.1. Introduction

Differential equations with piecewise constant argument arise in an attempt to the theory of functional differential
equations with continuous argument to differential equations with discontinuous arguments and have applications in certain
biomedical models (e.g., see [2]) and impulsive and loaded equations of control theory. The strong interest in these equations
is the fact that they describe hybrid dynamic systems (a continuous and discrete combination) and, therefore, combine
properties of both differential and difference equations. In this work, we investigate the existence of pseudo almost periodic
solution to pseudo almost periodic difference equation. First we need some general results on exponential dichotomy of
linear difference equations, and properties of almost periodic functions that are not continuous.

The theory of exponential dichotomy has played a central role in the study of ordinary differential equations and dif-
feomorphisms for finite dimensional dynamic systems. This theory, which addresses the issue of strong transversality in
dynamic systems, originated in the pioneering works of Lyapunov (1892) and Poincaré (1890). During the last few years one
finds an ever growing use of exponential dichotomies to study the dynamic structures of various partial differential delay
equations.
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The existence problem of periodic and almost periodic solutions has been one of the most attractive topics in the
qualitative theory of ordinary or functional differential equations for its significance in the physic sciences.

Let P T be the set of periodic functions with period T . Then the linear differential equation of first order

dx

dt
= ax(t) + f (t), (1)

has a unique T -periodic solution if a �= 0.

In [8], Yuan and Hong proved the existence of periodic solutions for the following differential equation with piecewise
constant argument (abbreviated in EPCA)

dx

dt
= ax(t) +

N∑
i=−N

aix
([t + i]) + f (t), N � 1 (2)

where the period T is a rational number and [.] denotes the greatest integer function.
In [5], it has been shown that EPCA has a quasi periodic solution and no periodic solution when the period is irra-

tional. The appearance of quasi periodic rather than periodic solutions is due to piecewise constant argument. This new
phenomenon illustrates a crucial difference between ODE and EPCA.

Eq. (2) describes model of disease dynamic, see Busenberg and Cooke [2]. An application of EPCA is the stabilization of
the hybrid control system with feedback delays, see Cooke and Weiner [3], Shah and Weiner [7].

In [1] Ait Dads et al. consider the problem of existence of pseudo almost periodic solutions to the following second order
neutral delay differential equation

d2x

dt2

[
x(t) + px(t − 1)

] = qx

(
2

[
t + 1

2

])
+ f (t), (3)

where p,q are given constants and f : R → R is a given pseudo almost periodic function.
This work deals with the following EPCA

dx

dt
= A(t)x(t) +

r∑
j=0

A j(t)x
([t − j])+ g

(
t, x(t), x

([t]), . . . , x
([t − r])). (4)

In this work we present some results concerning pseudo almost periodic solutions of some difference equations using
the theory of exponential dichotomy.

Dichotomy theories for difference equations are applied to obtain stability criteria for a class of discrete reaction–diffusion
equations.

The rest of the paper is organized as follows. In next section, some definitions and preliminary results are introduced. We
show some interesting properties about discontinuous pseudo almost periodic functions. Section 3 is devoted to establish
some criteria for the existence and uniqueness of pseudo almost periodic solutions for some difference equation. Section 4
is devoted to the problem of existence and uniqueness of pseudo almost periodic solution for Eq. (10).

This work is motivated by the work of R. Yuan [9]. But Looking to the work of Yuan, we note that, in this one there are a
number of inaccuracies in the text concerning the almost periodicity of the function g(t,ϕ1(t),ϕ1([t]), . . . ,ϕ1([t] − r)). We
begin by introducing some Banach spaces in which the equation will be well posed.

2. Some preliminary results on exponential dichotomy and discontinuous almost periodic functions

2.1. Exponential dichotomy in discrete case

Definition 1. Let (A(n))n∈Z be a sequence in GLp(R) (the group of invertible matrix). Consider the following linear difference
equation:

xn+1 = A(n)xn. (5)

We say that Y (n) is a fundamental matrix of (5) if

Y (0) = I and ∀n ∈ Z, Y (n + 1) = A(n)Y (n).

We say that (5) has an exponential dichotomy on Z with parameters (P , K ,α) if there exist nonnegative numbers K and α
and a projection matrix P (P 2 = P ) such that∣∣Y (m)P Y −1(n)

∣∣ � K e−α(m−n), m � n,∣∣Y (m)Q Y −1(n)
∣∣ � K e−α(n−m), n � m,

where Q = I − P .
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Remark 2. We can make explicit the fundamental matrix Y (n) by

Y (n) =
{ A(n − 1) . . . A(1)A(0) if n > 0,

I if n = 0,

A−1(n)A−1(n + 1) . . . A−1(−1) if n < 0.

Definition 3. A sequence (xn)n∈Z with values in RN is called almost periodic if: ∀ε > 0,

T (x, ε) := {
τ ∈ Z; ∀n ∈ Z, ‖xn+τ − xn‖ < ε

}
is relatively dense.

The set of such sequences is denoted by A P (Z,RN).
If N = 1, we use the notation A P (Z).
(B,‖.‖∞) denotes the space of bounded real sequences.
P A P0(Z) denotes the space of bounded real sequences (xn)n∈Z which satisfy

lim
N→+∞

1

2N

N∑
n=−N

|xn| = 0.

We define the space of pseudo almost periodic sequences by: P A P (Z) = A P (Z) + P A P0(Z).
The space of pseudo periodic sequences by: P Pω(Z) = Pω(Z) + P A P0(Z), where Pω(Z) denotes the space of ω-periodic

real sequences.

Proposition 4. (See [4].)

(1) Let f ∈ A P (R,RN) and ε > 0, then T ( f , ε) ∩ Z is relatively dense.
(2) Let N ∈ N∗ , x = (xn)n∈Z a sequence with values in RN .

Let us consider x̄: R → RN which is defined by ∀n ∈ Z, x̄(n) = xn and x̄ is affine in [n,n + 1]. Then we have

T (x̄, ε) ∩ Z = T (x, ε) and x̄ ∈ A P (R,RN ) if and only if x ∈ A P (Z,RN ).

Theorem 5. (See [8].) Consider the equation

xn+1 = A(n)xn + hn, (6)

where (hn)n is a bounded sequence, (A(n))n∈Z is a sequence in GLp(R). Let us assume that the homogeneous system associated to (6)
has an exponential dichotomy with parameters (P , K ,α), then Eq. (6) has a unique bounded solution (xn)n∈Z; furthermore, we have:

sup
n∈Z

|xn| � K
1 + e−α

1 − e−α
sup
n∈Z

|hn|.

Moreover, if we have (A(n))n ∈ A P (Z) (resp. Pω(Z)), and (hn)n ∈ P A P (Z) (resp. P P w(Z)) then (xn)n∈Z ∈ P A P (Z) (resp. P P w(Z)).

2.2. Some results on discontinuous almost periodic functions

In the objective to study properties of solutions of differential equations with piecewise constant argument with almost
periodic coefficients, we need to introduce some preliminary results on discontinuous almost periodic functions.

Let E be a Banach space, B(E) denote the Banach space of bounded functions x : R → E provided with the uniform norm
topology |x| = supt∈R |x(t)|.

Cm(E) =
{

x : R → E, continuous on R\Z, such that x has a finite limits

on the left and on the right of any point in Z.

}

Let τ ∈ Z and f ∈ Cm(E), we define fτ : t → f (t + τ ). Then we have fτ ∈ Cm(E).
Let us define

BCm(E) = Cm(E) ∩ B(E).

Then one can see that BCm(E) is closed in B(E).

Definition 6. We call that T (x, ε) ∩ Z is relatively dense in R, if there exists a real number L > 0, such that for all a ∈ R,
T (x, ε) ∩ Z ∩ [a,a + L] �= ∅.
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Remark 7. Without any loss of generality, the number L can be chosen as an integer number L ∈ N∗ , we may also replace
∀a ∈ R, by ∀a ∈ Z. Indeed if the intersection is not empty for a ∈ Z, then ∀a ∈ R, T (x, ε) ∩ Z ∩ [a,a + L + 1] �= ∅. In what
follows, we use that T (x, ε) ∩ Z is relatively dense in R if and only if ∃L ∈ N∗ , ∀a ∈ Z, T (x, ε) ∩ Z ∩ [a,a + L] �= ∅.

Let us define the space of almost periodic functions continuous on R\Z with values in E , which are discontinuous on Z

and having a finite limits on the left and on the right of any point in Z:

F1(E) = {
x ∈ Cm(E), such that ∀ε > 0, T (x, ε) ∩ Z is relatively dense in R

}
.

Lemma 8. F1(E) = {x ∈ BCm(E), ∀ε > 0, T (x, ε) ∩ Z is relatively dense in R} i.e. F1(E) ⊆ BCm(E).

Proof. Let x ∈ Cm(E), such that ∀ε > 0, T (x, ε) ∩ Z is relatively dense in R. For ε = 1, there exist L ∈ N∗, ∀a ∈ Z, ∃τa ∈
[0, L] ∩ Z such that ∀x ∈ R, | f (x + a + τa) − f (x)| < 1, we chose a = −E(x) where E(x) is the integer part of x. Since f is
bounded by some M on [0, L + 1] and we obtain that ∀x ∈ R, | f (x)| � M + 1. �
Lemma 9. Let f ∈ Cm(E) be such that for all number sequence (tn)n�0 ∈ ZN we can extract from ( f ( .+ tn))n�0 a subsequence which
converges uniformly on R, then f is bounded on R.

Proof. Suppose that f is not bounded, then there exits a sequence number (tn) such that | f (tn)| → ∞. Putting tn = kn + rn
where kn is in Z and 0 � rn < 1, (rn) is bounded, then it converges in term of subsequence rn → r and∣∣ f (t + kn) − g(t)

∣∣ → 0 uniformly on R,

this implies that∣∣ f (t + kn + rn) − g(t + rn)
∣∣ → 0 uniformly in R.

By taking t = 0 in the last formula, we obtain that∣∣ f (kn + rn) − g(rn)
∣∣ → 0,

but g(rn) → g(r−) or g(r+) because g ∈ Cm(E) which implies that f (tn) → g(r−) or g(r+), which is a contradiction. �
Remark 10. When we call that g(rn) tends to g(r−) or g(r+) this suppose that rn − r has a constant sign, if no, we may
extract a subsequence of rn which goes to r− or r+ and the problem is solved.

In fact if there exists an infinite of numbers n such that rn is greater than r, one can extract a subsequence which goes
to r+, if no, we have a subsequence which goes to r−.

Lemma 11. Let f ∈ Cm(E), then one has f ∈ F1(E) if and only if for all real number sequence (tn)n�0 ∈ ZN we can pick up from
( f ( . + tn))n�0 a subsequence which converges uniformly on R.

Proof. From Lemmas 8 and 9 we work on the space BCm(E), we have to prove that f ∈ F1(E) if and only if { fτ , τ ∈ Z}
is a relatively compact part of BCm(E). Since BCm(E) is a complete space, it suffices to prove that f ∈ F1(E) if and only if
{ fτ , τ ∈ Z} is precompact; mainly: for all ε > 0, there exist τ1, . . . , τn ∈ Z such that { fτ , τ ∈ Z} ⊂ ⋃n

i=1 B( fτi , ε).
Sufficient condition: Let ε > 0. Since f ∈ F1(E), then there exists L ∈ N∗ such that ∀a ∈ Z, T ( f , ε) ∩ Z ∩ [a,a + L] is not

empty, identically to ∀a ∈ Z, ∃τ ∈ Z∩[a,a + L] such that | f − fτ | < ε, or yet, ∀a ∈ Z, ∃τ ∈ Z∩[0, L] such that | f − fa+τ | < ε.
By remarking that | f − fa+τ | = | f−a − fτ | one obtains: ∀a′ ∈ Z, ∃τ ′ ∈ Z∩[0, L] such that | fa′ − fτ ′ | < ε. If we put Z∩[0, L] =
{τ1, . . . , τn} one has the desired result.

Necessary condition: Let ε > 0. Then there exist τ1, . . . , τn ∈ Z such that { fτ , τ ∈ Z} ⊂ ⋃n
i=1 B( fτi , ε). Let � ∈ N such that

∀i ∈ {1, . . . ,n}, � + τi > 0. If we put L = max1�i�n � + τi one has L ∈ N∗ . For a ∈ Z, if we take τ = −� − a, we obtain ∃i ∈
{1, . . . ,n} such that | f−�−a − fτi | < ε, mainly | f − fa+�+τi | < ε and since a+�+τi ∈ [a,a+ L]∩Z, then T ( f , ε)∩Z∩[a,a+ L]
is not empty. �
Lemma 12. Let G and H be two Banach spaces, if x ∈ F1(G) and y ∈ F1(H) then (x, y) ∈ F1(G × H).

Proof. Let (tn)n�0 ∈ ZN . Since x ∈ F1(G), then there exists a nondecreasing function ϕ such that (x( . + tϕ(n)))n�0 con-
verges uniformly, on the other hand y ∈ F1(H) and (tϕ(n))n�0 ∈ ZN then there exists a nondecreasing function ψ such
that (y( . + tϕ◦ψ(n)))n�0 converges uniformly, then if we put θ = ϕ ◦ ψ , we obtain that (x( . + tθ(n)), y( . + tθ(n))) converges
uniformly, then from Lemma 11 one has (x, y) ∈ F1(G × H). �
Corollary 13. Let x ∈ F1(G), y ∈ F1(H). Take ε > 0, we have T (x, ε) ∩ T (y, ε) ∩ Z is relatively dense, in particular, one has that if
x ∈ F1(R

N ), then ∀N � 1, ∀y ∈ A P (R,RN) and ∀ε > 0, T (x, ε) ∩ T (y, ε) ∩ Z is relatively dense.
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Proof. From Lemma 12 one has (x, y) ∈ F1(G × H), then T ((x, y), ε) ∩ Z is relatively dense, mainly T (x, ε) ∩ T (y, ε) ∩ Z is
relatively dense. For the rest of the proof, we use the fact A P (R,RN) ⊂ F1(R

N ). �
3. Mean results

Let D j(n), j = 0, . . . , r, be a sequence in Mq(C) with Dr(n) invertible, and consider the difference equation in Cq ,

xn+1 =
r∑

j=0

D j(n)xn− j + hn, n ∈ Z, (7)

such that (hn)n is bounded. We start by studying the following homogeneous equation

xn+1 =
r∑

j=0

D j(n)xn− j . (8)

By putting

Xn =

⎛
⎜⎜⎝

xn

xn−1
...

xn−r

⎞
⎟⎟⎠

and

D(n) =

⎛
⎜⎜⎜⎜⎜⎜⎝

D0(n) D1(n) · · · · · · Dr(n)

Iq 0 · · · · · · 0

0 Iq
. . . .

...

...
. . .

. . .
. . .

...

0 · · · 0 Iq 0

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

Eq. (8) takes the form

Xn+1 = D(n)Xn. (9)

Remark 14. Denote if Dr(n) is invertible then D(n) is also.

One has the following theorem which is an extension of the result proved by R. Yuan [9].

Theorem 15. If S := supn∈Z

∑r
j=0 |D j(n)| < 1, then the system (9) has an exponential dichotomy on Z with parameters (P , M,α)

such that

P = Id, M = S− r
r+1 , α = 1

r + 1
ln

(
1

S

)
.

Proof. Let Y (n) be the fundamental matrix of system (9), we must prove that ∀n, p ∈ Z, with n � p,∣∣Y (n)Y −1(p)
∣∣ � Me−α(n−p),

or ∀Z ∈ Cq(r+1) ,∣∣Y (n)Z
∣∣ � Me−α(n−p)

∣∣Y (p)Z
∣∣.

For all k ∈ Z, putting Zk = Y (k)Z and K = e−α, it suffices to prove that for n � p,

|Zn| � M K n−p|Z p|.
One has for all i,

Zi =

⎛
⎜⎜⎝

zi
zi−1

...

zi−r

⎞
⎟⎟⎠ ,

Zi+1 = D(i)Zi , then Zi is of the form zi+1 = ∑r
j=0 D j(i)zi− j , here |Zi | denotes max(|zi |, . . . , |zi−r |).
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Let us prove by recurrence on i that

∀i � p − r, |zi| � |Z p|K i−p .

The recurrence hypothesis: if p − r � i � p one has |zi | � |Z p| � |Z p |K i−p . Assume that |zk| � |Z p |K k−p , k = i − r, . . . , i and
prove that |zi+1| � |Z p |K i+1−p . In fact, one has

|zi+1| �
r∑

j=0

∣∣D j(i)
∣∣K i− j−p|Z p| � K i−r−p

r∑
j=0

∣∣D j(i)
∣∣Z p| � K i−r−p S|Z p| � K i−r−p K r+1|Z p| � K i+1−p|Z p|.

Finally, ∀i � p − r, |zi | � |Z p |K i−p . Let now i � p, so one has

|Zi| = max
(|zi |, . . . , |zi−r |

)
� |Z p|max

(
K i−p, . . . , K i−r−p) � |Z p|K i−r−p � M|Z p|K i−p . �

Corollary 16. If S := supn∈Z

∑r
j=0 |D j(n)| < 1, then Eq. (7) has a unique bounded solution (xn)n. Moreover, if for j = 0, . . . , r,

(D j(n))n is almost periodic, and (hn)n ∈ P A P (Z,Rq), then (xn)n ∈ P A P (Z,Rq).

Proof. It is an immediate consequence of Theorems 5 and 15. �
3.1. Pseudo almost periodic solution of equation with piecewise constant argument

We start the section with some definitions and notations with respect to the pseudo almost periodicity.

Definition 17.

E0 = {
ϕ ∈ P A P0

(
R,Rq) such that

(
ϕ(n)

)
n∈Z

∈ P A P0
(
Z,Rq)},

E = A P
(
R,Rq)⊕ E0.

For ω > 0,

Eω = Pω

(
R,Rq) ⊕ E0.

Cm = { f : R → Rq continuous on R\Z, which have finite limits at left and right of any point in Z}.

BCm = { f ∈ Cm, and f is bounded},

F0 =
{

f ∈ BCm, lim
T →+∞

1

2T

T∫
−T

∣∣ f (s)
∣∣ds = 0

}
,

F1 = {
f ∈ BCm, ∀ε > 0, T ( f , ε) ∩ Z is relatively dense

}
,

F1,ω = {
f ∈ BCm, ∀t ∈ R, f (t + ω) = f (t)

}
,

F = F1 + F0 and F ω = F1,ω + F0.

Remark 18. The following example proves the fact that ϕ ∈ P A P0(R,R), but (ϕ(n))n∈Z /∈ P A P0(Z,R):

ϕ(t) =
{

1 − 2n2|t − n| if |t − n| � 1
2n2 , n ∈ N∗,

0, otherwise.

Remark 19. Now, let us consider the following differential equation with piecewise constant argument

dx

dt
= A(t)x(t) +

r∑
j=0

A j(t)x
([t − j])+ g

(
t, x(t), x

([t]), . . . , x
([t − r])), (10)

where [.] denotes the greatest integer function, A, A j : R → Mq(R) are almost periodic, g : R × Rq × Rq × · · · × Rq → Rq is
pseudo almost periodic.

Moreover, we assume that there exists η such that

∣∣g(t, x0, x1, . . . , xr+1) − g(t, y0, y1, . . . , yr+1)
∣∣ � η

r+1∑
j=0

|x j − y j|, t ∈ R, x j, y j ∈ Rq.
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Remark 20. This last inequality is also satisfied by the almost periodic component of g .

We will start by studying the following equation

dx

dt
= A(t)x(t) +

r∑
j=0

A j(t)x
([t − j])+ f (t). (11)

By the variation constant formula, one has for t ∈ [n,n + 1[:

x(t) = X(t)X−1(n)x(n) +
t∫

n

X(t)X−1(s)

[
r∑

j=0

A j(s)x(n − j) + f (s)

]
ds, (12)

where X(t) denotes the fundamental matrix associated to the equation

dx

dt
= A(t)x(t).

By the continuity of solutions, we get

x(n + 1) = X(n + 1)X−1(n)x(n) +
n+1∫
n

X(n + 1)X−1(s)

[
r∑

j=0

A j(s)x(n − j) + f (s)

]
ds,

which is the equation of the form:

xn+1 =
r∑

j=0

D j(n)xn− j + hn,

where

D0(n) = X(n + 1)X−1(n) +
n+1∫
n

X(n + 1)X−1(s)A0(s)ds,

D j(n) =
n+1∫
n

X(n + 1)X−1(s)A j(s)ds, j = 1, . . . , r,

hn =
n+1∫
n

X(n + 1)X−1(s) f (s)ds.

In the sequel, we assume that ∀n ∈ Z, Dr(n) is invertible.

Lemma 21. (See [6].) Assume that ∀t ∈ R, |A(t)| � M, then

(i) there exists K0 > 0, such that∣∣X(t)X−1(s)
∣∣ � K0, for 0 � t − s � 1;

(ii) moreover, if τ ∈ T (A, ε), then∣∣X(t + τ )X−1(s + τ ) − X(t)X−1(s)
∣∣ � K0εeM for 0 � t − s � 1.

Lemma 22.

(1) If f ∈ F1, then (hn)n is an almost periodic sequence and the sequences (D j(n))n for 0 � j � r are also almost periodic.
(2) If f ∈ F0, then (hn)n ∈ P A P0(Z,Rq).

Proof. (1) According to Lemma 21, for τ ∈ T (A, ε) ∩ Z, one has∣∣X(n + 1 + τ )X−1(n + τ ) − X(n + 1)X−1(n)
∣∣ � εK0eM ,
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it results that (X(n + 1)X−1(n))n is almost periodic. To end the proof, it suffices to prove that if p ∈ F1, then the sequence

sn :=
n+1∫
n

X(n + 1)X−1(s)p(s)ds,

is also almost periodic. One has, for τ ∈ T (p, ε) ∩ T (A, ε) ∩ Z,

sn+τ − sn =
n+1∫
n

[
X(n + 1 + τ )X−1(s + τ )p(s + τ ) − X(n + 1)X−1(s)p(s)

]
ds

=
n+1∫
n

[(
X(n + 1 + τ )X−1(s + τ ) − X(n + 1)X−1(s)

)
p(s + τ ) + X(n + 1)X−1(s)

(
p(s + τ ) − p(s)

)]
ds,

then from Lemma 21,

|sn+τ − sn| � K0ε
[
eM‖p‖∞ + 1

]
,

thus, (sn)n is also almost periodic.
(2) From Lemma 21,

|hn| � K0

n+1∫
n

∣∣ f (s)
∣∣ds, (13)

since f ∈ F0, gives that (
∫ n+1

n | f (s)|ds)n ∈ P A P0(Z,R), so (hn)n ∈ P A P0(Z,Rq). �
Theorem 23. Assume that the system (9) has an exponential dichotomy. Then, for f ∈ BCm, Eq. (11) has a unique bounded solution.
Furthermore, there exists a positive constant c which is independent from f such that

‖x‖∞ � c‖ f ‖∞.

Moreover, if f ∈ F (resp. f ∈ F ω , A and (A j)0� j�r are ω-periodic where ω ∈ N∗), then the unique bounded solution of Eq. (11) is in
E (resp. Eω).

Proof. (1) Case where f ∈ BCm . One has from (13) |hn| � K0‖ f ‖∞, then (hn)n is bounded, and thanks to Theorem 5, Eq. (7)
has a unique bounded solution (xn)n . (12) gives existence and uniqueness of x. On the other hand, there exists a constant
c1 which depends only on A and from the Ai such that

sup
n∈Z

|xn| � c1 sup
n∈Z

|hn| � c1 K0‖ f ‖∞.

For t ∈ [n,n + 1[, one has from (12):

∣∣x(t)∣∣ �
∣∣X(t)X−1(n)

∣∣∣∣x(n)
∣∣ + t∫

n

∣∣X(t)X−1(s)
∣∣( r∑

j=0

∣∣A j(s)
∣∣∣∣x(n − j)

∣∣+ ∣∣ f (s)
∣∣)ds

� K0
∣∣x(n)

∣∣ + t∫
n

K0

(
r∑

j=0

∣∣A j(s)
∣∣∣∣x(n − j)

∣∣+ ∣∣ f (s)
∣∣)ds

� c1 K 2
0‖ f ‖∞ + K0

(
r∑

j=0

‖A j‖∞c1 K0‖ f ‖∞ + ‖ f ‖∞

)
.

We see that x is bounded and

sup
t∈R

∣∣x(t)∣∣ � c‖ f ‖∞,

with

c = c1 K 2
0 + K0

(
r∑

j=0

‖A j‖∞c1 K0 + 1

)
,

independent of f .
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(2) Case where f ∈ F0. According to Lemma 22 (hn)n ∈ P A P0(Z), Theorem 5 gives that (xn)n ∈ P A P0(Z).
On the other hand, (12) implies:

∣∣x(t)∣∣ � K0
∣∣x(n)

∣∣ + K0

(
r∑

j=0

‖A j‖∞
∣∣x(n − j)

∣∣+ n+1∫
n

∣∣ f (s)
∣∣ds

)
,

then

n+1∫
n

∣∣x(t)∣∣dt � K0
∣∣x(n)

∣∣ + K0

(
r∑

j=0

‖A j‖∞
∣∣x(n − j)

∣∣+ n+1∫
n

∣∣ f (s)
∣∣ds

)
,

it follows that( n+1∫
n

∣∣x(t)∣∣dt

)
n

∈ P A P0(Z),

then x ∈ P A P0(R). Finally, x ∈ E0.
(3) Case where f ∈ F1. Lemma 22 gives that (hn)n ∈ A P (Z), Theorem 5 implies that (xn)n ∈ A P (Z), and as f ∈ F1, then

T ( f , ε) ∩ T ((xn)n, ε) ∩ T (A, ε) is relatively dense. Let τ ∈ T ( f , ε) ∩ T ((xn)n, ε).
We have for n ∈ Z and t ∈ [n,n + 1[, t + τ ∈ [n + τ ,n + τ + 1[. Then, from (12), we obtain

x(t + τ ) = X(t + τ )X−1(n + τ )x(n + τ ) +
t+τ∫

n+τ

X(t + τ )X−1(s)

(
r∑

j=0

A j(s)x(n + τ − j) + f (s)

)
ds

= X(t + τ )X−1(n + τ )x(n + τ ) +
t∫

n

X(t + τ )X−1(s + τ )

[
r∑

j=0

A j(s + τ )x(n + τ − j) + f (s + τ )

]
ds,

and ∣∣x(t + τ ) − x(t)
∣∣ � I1 + I2 + I3,

where

I1 = ∣∣X(t + τ )X−1(n + τ )x(n + τ ) − X(t)X−1(n)x(n)
∣∣,

I2 =
r∑

j=0

t∫
n

∣∣(X(t + τ )X−1(s + τ )
(

A j(s + τ )x(n + τ − j)
)− X(t)X−1(s)

(
A j(s)x(n − j)

))∣∣ds,

I3 =
t∫

n

∣∣(X(t + τ )X−1(s + τ ) f (s + τ ) − X(t)X−1(s) f (s)
)∣∣ds.

One has from Lemma 21,

I1 �
∣∣(X(t + τ )X−1(n + τ ) − X(t)X−1(n)

)
x(n + τ )

∣∣+ ∣∣X(t)X−1(n)
(
x(n + τ ) − x(n)

)∣∣
� K0εeM sup

n∈Z

|xn| + K0ε

�
(
eMc1 K0‖ f ‖∞ + 1

)
εK0,

I2 �
r∑

j=0

t∫
n

λ j(s)ds,

where

λ j(s) = ∣∣(X(t + τ )X−1(s + τ )
(

A j(s + τ )x(n + τ − j)
)− X(t)X−1(s)

(
A j(s)x(n − j)

))∣∣
�

∣∣(X(t + τ )X−1(s + τ ) − X(t)X−1(s)
)(

A j(s + τ )x(n + τ − j)
)∣∣

+ ∣∣X(t)X−1(s)
(

A j(s + τ )x(n + τ − j) − A j(s)x(n − j)
)∣∣
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� K0εeM‖A j‖∞ sup
n∈Z

|xn| + K0
∣∣A j(s + τ )x(n + τ − j) − A j(s)x(n − j)

∣∣
� K0εeM‖A j‖∞ sup

n∈Z

|xn| + K0
∣∣(A j(s + τ ) − A j(s)

)
x(n + τ − j)

∣∣+ ∣∣A j(s)
(
x(n + τ − j) − x(n − j)

)∣∣
�

(
K 2

0 eM‖A j‖∞c1‖ f ‖∞ + K 2
0 c1‖ f ‖∞ + K0‖A j‖∞

)
ε.

It results that

I2 � Kε

where

K =
r∑

j=0

K 2
0 eM‖A j‖∞c1‖ f ‖∞ + K 2

0 c1‖ f ‖∞ + K0‖A j‖∞,

I3 �
t∫

n

∣∣(X(t + τ )X−1(s + τ ) − X(t)X−1(s)
)

f (s + τ )
∣∣ds +

t∫
n

∣∣X(t)X−1(s)
(

f (s + τ ) − f (s)
)∣∣ds

�
(
eM‖ f ‖∞ + 1

)
K0ε,

finally x ∈ A P (R).
By superposition principle of solutions for the linear system we deduce the proof of the case where f ∈ F .
When f ∈ Fω, the proof is a simple consequence of existence and uniqueness. �

Proposition 24. Let ϕ be a continuous and bounded function defined on R and fϕ : t �→ g(t,ϕ(t),ϕ([t]), . . . , ϕ([t − r])); then

(i) fϕ ∈ BCm;
(ii) fϕ ∈ F if ϕ ∈ E.

Proof. (i) is clear.
(ii) Let ϕ ∈ E , ϕ = ϕ1 + ϕ0, ϕ1 ∈ A P (R,Rq) and ϕ0 ∈ E0. Let us denote

f1(t) = g
(
t,ϕ1(t),ϕ1

([t]), . . . ,ϕ1
([t] − r

))
and f0 = fϕ − f1.

Let us prove that f1 ∈ F1.
One has f1 ∈ BCm and W := ϕ1(R)r+2 is a compact set in (R

q
)r+2. Denote

T (g1, W , ε) = {
τ ∈ R; ∀t ∈ R, ∀z ∈ W ,

∣∣g1(t + τ , z) − g1(t, z)
∣∣ � ε

}
,

where g1 is the almost periodic component of g .
Now, let ε > 0, prove that T ( f1, ε) ∩ Z is relatively dense. We know that T (g1, W , ε) ∩ T (ϕ1, ε) ∩ Z is relatively dense,

choosing τ in the last set, and it follows that:∣∣ f1(t + τ ) − f1(t)
∣∣ �

∣∣g1
(
t + τ ,ϕ1(t + τ ),ϕ1

([t] + τ
)
, . . . ,ϕ1

([t] + τ − r
))

− g1
(
t,ϕ1(t + τ ),ϕ1

([t] + τ
)
, . . . ,ϕ1

([t] + τ − r
))∣∣

+ ∣∣g1
(
t,ϕ1(t + τ ),ϕ1

([t] + τ
)
, . . . ,ϕ1

([t] + τ − r
))

− g1
(
t,ϕ1(t),ϕ1

([t]), . . . ,ϕ1
([t] − r

))∣∣
� ε + (r + 2)ηε.

Thus T ( f1, ε) is relatively dense.
Finally f1 ∈ F1. Now, let us prove that f0 ∈ F0. One has f0 = fϕ − f1 and since we have that fϕ , f1 are in BCm , then

f0 ∈ BCm . On the other hand,

f0(t) = g
(
t,ϕ(t),ϕ

([t]), . . . ,ϕ([t] − r
)) − g1

(
t,ϕ1(t),ϕ1

([t]), . . . ,ϕ1
([t] − r

))
= g

(
t,ϕ(t),ϕ

([t]), . . . ,ϕ([t] − r
)) − g

(
t,ϕ1(t),ϕ1

([t]), . . . ,ϕ1
([t] − r

))︸ ︷︷ ︸
ψ(t)

+ g0
(
t,ϕ1(t),ϕ1

([t]), . . . ,ϕ1
([t] − r

))︸ ︷︷ ︸
γ (t)

.
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One has∣∣ψ(t)
∣∣ � η

(∣∣ϕ0(t)
∣∣+ ∣∣ϕ0

([t])∣∣+ · · · + ∣∣ϕ0
([t] − r

)∣∣),
n+1∫
n

∣∣ψ(t)
∣∣dt � η

( n+1∫
n

∣∣ϕ0(t)
∣∣dt + ∣∣ϕ0(n)

∣∣ + · · · + ∣∣ϕ0(n − r)
∣∣),

and ( n+1∫
n

∣∣ϕ0(t)
∣∣dt

)
n

∈ P A P0(Z).

Then ( n+1∫
n

∣∣ψ(t)
∣∣dt

)
n

∈ P A P0(Z),

it follows that

lim
T →+∞

1

2T

T∫
−T

∣∣ψ(t)
∣∣dt = 0.

It remains to verify that limT →+∞ 1
2T

∫ T
−T |γ (t)|dt = 0.

According to the compactness of W = ϕ1(R)r+2, g1 is uniformly continuous on R × W .
Let ε > 0, ∃δ ∈ ]0, ε[ such that:

∀z, z′ ∈ W : ∥∥z − z′∥∥ � δ ⇒ ∀t ∈ R,
∣∣g1(t, z) − g1

(
t, z′)∣∣ � ε,

and ∃z1, . . . , zm ∈ W , such that W ⊂ ⋃m
i=1 B(zi, δ).

Let

h(t) = (
ϕ1(t),ϕ1

([t]), . . . ,ϕ1
([t] − r

))
,

Bi = {
t ∈ R, h(t) ∈ B(zi, δ)

}
,

E1 = B1, Ei = Bi\
i−1⋃
j=1

B j,

for 2 � i � m. One has R = ⋃m
i=1 Ei .

If t ∈ Ei , then∣∣γ (t)
∣∣ �

∣∣g0
(
t,h(t)

)− g0(t, zi)
∣∣+ ∣∣g0(t, zi)

∣∣
�

∣∣g1
(
t,h(t)

)− g1(t, zi)
∣∣+ ∣∣g(t,h(t)

)− g(t, zi)
∣∣+ ∣∣g0(t, zi)

∣∣
� ε + η

∣∣h(t) − zi
∣∣+ ∣∣g0(t, zi)

∣∣
� (1 + η)ε + ∣∣g0(t, zi)

∣∣,
so we have

1

2T

T∫
−T

∣∣γ (t)
∣∣dt =

m∑
i=1

1

2T

∫
[−T ,T ]∩Ei

∣∣γ (t)
∣∣dt

� (1 + η)ε

m∑
i=1

mes([−T , T ] ∩ Ei)

2T
+

m∑
i=1

1

2T

∫
[−T ,T ]∩Ei

∣∣g0(t, zi)
∣∣dt

� (1 + η)ε +
m∑

i=1

1

2T

T∫ ∣∣g0(t, zi)
∣∣dt,
−T
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which implies that

lim
T →+∞

1

2T

T∫
−T

∣∣γ (t)
∣∣dt = 0.

Thus f0 = ψ + γ ∈ F0, finally fϕ = f1 + f0 ∈ F . �
Theorem 25. Let g ∈ P A P (R × (Rq)r+2,Rq) such that

∃η > 0, ∀t ∈ R, ∀x, y ∈ (Rq)r+2,

∣∣g(t, x) − g(t, y)
∣∣ � η|x − y|, where |x − y| =

r+1∑
j=0

|x j − y j|.

Then:

(i) There exists η∗ > 0 such that for 0 < η < η∗ , Eq. (10) has a unique solution in P A P (R,Rq).
(ii) Moreover, if g ∈ P Pω(R × Rq,Rq) one has: For ω ∈ N∗ , the solution is in P Pω(R,Rq).

(iii) For ω = n0
m0

∈ Q+∗ , the solution is in P Pn0(R,Rq).

Proof. (i) Let ϕ ∈ P A P (R), in particular ϕ is continuous and bounded on R. Then thanks to Proposition 24, fϕ ∈ BCm , and
from Theorem 23, equation

dx

dt
= A(t)x(t) +

r∑
j=0

A j(t)x
([t − j])+ fϕ(t)

has a unique bounded solution denoted by Tϕ .
We define the operator T : P A P (R,Rq) → Cb(R,Rq) (the space of continuous and bounded functions).
For ϕ,ψ ∈ P A P (R), Tϕ − T ψ is the unique bounded solution of

dx

dt
= A(t)x(t) +

r∑
j=0

A j(t)x
([t − j])+ fϕ(t) − fψ(t),

then, from Theorem 23, there exists a constant c which depends only of A and Ai such that

‖Tϕ − T ψ‖∞ � c‖ fϕ − fψ‖∞.

Thus

∀ϕ,ψ ∈ P A P
(
R,Rq), ‖Tϕ − T ψ‖∞ � (r + 2)cη‖ϕ − ψ‖∞. (14)

Putting η∗ = 1
(r+2)c , for 0 < η < η∗ one has (r + 2)cη < 1.

On the other hand, follows to Proposition 24, if ϕ ∈ E, then fϕ ∈ F and from Theorem 23, Tϕ is in E , so T (E) ⊂ E ,
moreover E is a Banach space, then T has a unique fixed point x in E , and from (14) x is the unique fixed point of T , in
P A P (R,Rq). Finally, Eq. (10) admits a unique solution in P A P (R,Rq).

(ii) Moreover for g ∈ P Pω , one has t → x(t + ω) is also a solution, and by uniqueness x ∈ P Pω(R,Rq).
(iii) If ω = n0

m0
∈ Q+∗ , then g ∈ P Pn0 and n0 ∈ N∗ . Then from the previous comment x ∈ P Pn0 (R,Rq). �
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