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Abstract

We show that a Banach spaceX is complemented in its ultraproducts if and only if for
every amenable semigroupS the space of boundedX-valued functions defined onS admits
(a) an invariant average; or (b) what we shall call “an admissible assignment”. Condition
(b) still provides an equivalence for quasi-Banach spaces, while condition (a) necessarily
implies that the space is locally convex.
 2002 Published by Elsevier Science (USA).

1. Introduction

Invariant means were definitely introduced in the study of functional equations
by Székelyhidi in 1982 [12], although similar ideas appear in Pełczyński’s disser-
tation [9]. Since then, the method of invariant means has been used by a number
of authors for solving stability problems (see the recent book [6, Chapter 4] for an
exposition; the papers [10,11] contain further information). Our purpose with this
note is to give a simple approach to vector-valued invariants means which extends
(and, we hope, clarifies) previous results by Gajda [3], Badora [1] and Ger [4]. To
some extent, our results complement Zhang’s illuminating monograph [14] (see
also [15]). More precisely, we show that a Banach space is complemented in its
ultraproducts (equivalently, in its bidual) if and only if for every amenable semi-
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groupS the spaceB(S,Y ) of Y -valued bounded functions onS admits an invari-
ant average; this is equivalent to admit what we call “an admissible assignment.”
For a quasi-Banach spaceY ,B(S,Y ) admits admissible assignments if and only if
it is complemented in its ultraproducts. Finally, the possible equivalence between
the existence of invariant averages and admissible assignments is settled with the
proof thatB(S,Y ) can only admit invariant averages whenY is locally convex.

2. Vector-valued invariant means

Let S be a (not necessarily commutative) semigroup andY a Banach space.
We denote byB(S,Y ) the Banach space of bounded functionsf :S→ Y normed
by

‖f ‖∞ = sup
x∈S
∥∥f (x)∥∥

Y
.

WhenY = K is the ground field, we simply writeB(S). Givenf ∈ B(S,Y ) and
z ∈ S, the right translate off by z is given byfz(x)= f (x + z). Left translates
are defined in a similar way. We begin with the following:

Definition 1. A (right) invariant average forB(S,Y ) is a bounded linear operator
m :B(S,Y )→ Y satisfying:

• (Invariance)m(fz)=m(f ) for all f ∈B(S,Y ) and allz ∈G.
• (Consistency) Iff (x)= f0 for everyx ∈G, thenm(f )= f0.

(Left invariant averages are defined in the obvious way.)

It is clear that the usual (scalar) invariant means are just invariant averages of
norm 1 forY = R. A semigroupS is said to be (right) amenable ifB(S) admits
a (right) invariant mean. It is well known that commutative semigroups are (two-
sided) amenable [5, Theorem 17.5]. Our main positive result reads as follows.

Theorem 1. Let S be an amenable semigroup andY a Banach space. Suppose
Y is complemented in its second dual by a projectionπ . ThenB(S,Y ) admits an
invariant average of norm at most‖π‖.

Proof. What we shall see is that every (scalar, right) invariant mean onB(S)

“extends” in a natural way to an invariant average forB(S,Y ). So, letm be an
invariant mean forB(S) andπ :Y ∗∗ → Y a bounded linear projection. Given
f ∈ B(S,Y ), definem∗∗(f ) ∈ Y ∗∗ by〈

m∗∗(f ), y∗〉=m(y∗ ◦ f )
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for y∗ ∈ Y ∗ and set

mY (f )= π
(
m∗∗(f )

)
.

We claim thatmY is an invariant average forB(S,Y ). ThatmY is linear and
bounded by‖π‖ is obvious. To verify invariance, it clearly suffices to see that
m∗∗(fz)=m∗∗(f ). Fixing y∗ ∈ Y ∗ we have〈

m∗∗(fz), y∗〉=m(y∗ ◦ fz)=m
(
(y∗ ◦ f )z

)=m(y∗ ◦ f )= 〈
m∗∗(f ), y∗〉,

as desired. Finally, let us prove consistency. Supposef (x) = f0 for all x ∈ S.
Then, for everyy∗ ∈ Y ∗, one has〈m∗∗(f ), y∗〉 = m(y∗ ◦ f ) = 〈y∗, f0〉 since
〈y∗, f (x)〉 = 〈y∗, f0〉 for all x ∈ S. Thus m∗∗(f ) = f0 and alsomY (f ) =
π(f0)= f0. This completes the proof.✷
Remark 1. The invariant averages of Theorem 1 have some additional properties.
First, observe thatm∗∗(f ) lies in the∗weak-convex hull off (S) in Y ∗∗. Thus,
m∗∗ is a (left) invariant∗weak-mean in the sense of [14]. Hence, iff (S) lies in
a weakly compact subset ofY (which always occurs whenY is reflexive), then
mY (f ) belongs to the norm convex hull of the range off . (Compare to [3].)

Suppose‖π‖ = 1 (for instance, ifY = �1 or L1(0,1), and, of course, ifY
has the binary intersection property: a Banach space has the binary intersection
property if and only if it is complemented in any superspace by a norm-one
projection). Then‖mY ‖ = 1 and so mY (f ) lies in the ball of radius‖f ‖∞
centered at the origin. (Compare to [4].)

Finally, assume thatY is a boundedly complete Banach lattice with strong
unit e. Then there is a projection ofY ∗∗ ontoY of norm at mostλ, whereλ is the
least number for which the order interval[−λ · e,λ · e] contains the unit ball ofY .
So, in this case we have‖mY ‖ � λ. (Compare to [4].)

We close the section showing that Theorem 1 is a sharp result.

Theorem 2. Let Y a Banach space. Suppose that for every commutative semi-
groupS there is an invariant averagem for B(S,Y ) with ‖m‖ � K. ThenY is
complemented in its second dual by a projection of norm at mostK.

Proof. The proof is based on the “principle of local reflexivity” of Lindenstrauss
and Rosenthal [8] which asserts that every Banach space is locally complemented
in its bidual. Precisely, givenε > 0 and a subspaceF of Y ∗∗ with Y ⊂ F ⊂ Y ∗∗
andF/Y finite-dimensional, there exists a linear projectionP :F → Y such that
‖P‖ � 1 + ε. (There are many proofs of the principle of local reflexivity in the
literature; our favourite is Dean [2].)

Consider the set

S = {
(F, ε): Y ⊂ F ⊂ Y ∗∗, dim(F/Y ) <∞, 0< ε � 1

}
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endowed with the binary operation

(F, ε)(E, δ)= (
F +E,min{ε, δ}).

Clearly,S is a commutative semigroup with identity(Y,1).
Now, for each(F, ε) ∈ S, take a projectionPεF :F → Y with ‖PεF ‖ � 1 + ε

and define a mappingΦ :S × Y ∗∗ → Y as

Φ(F, ε, x)=
{
PεF (x) if x ∈ F,
0 otherwise.

In this way, for each fixedx ∈ Y ∗∗, we obtain a functionΦ(· , · , x) ∈ B(S,Y )
given byΦ(· , · , x)(F, ε)=Φ(F, ε, x).

Let m = m(F,ε)(·) be an invariant average forB(S,Y ) (here, the subscript
indicates thatm acts on functions of the variable(F, ε) and define a mapP :
Y ∗∗ → Y as

P(x)=m(F,ε)
(
Φ(F, ε, x)

)
.

Clearly,P(y)= y for all y ∈ Y , by consistency ofm. ThatP is homogeneous is
obvious. Let us show thatP is additive. Fixx, z ∈ Y ∗∗. Then

P(x + z)=m(F,ε)
(
Φ(F, ε, x + z))

=m(F,ε)
(
Φ
(
F + [x, z], ε, x + z))

=m(F,ε)
(
PεF+[x,z](x, z)

)
=m(F,ε)

(
PεF+[x,z](x)+ PεF+[x,z](z)

)
=m(F,ε)

(
PεF+[x,z](x)

)+m(F,ε)
(
PεF+[x,z](z)

)
=m(F,ε)

(
Φ
(
F + [x, z], ε, x))+m(F,ε)

(
Φ
(
F + [x, z], ε, z))

=m(F,ε)
(
Φ(F, ε, x)

)+m(F,ε)
(
Φ(F, ε, z)

)
= P(x)+ P(z).

Thus,P is a linear projection ofY ∗∗ ontoY . It remains to show that‖P‖ � ‖m‖.
Let x ∈ Y ∗∗ andδ > 0 be fixed. We have∥∥P(x)∥∥= ∥∥m(F,ε)(Φ(F, ε, x))∥∥

= ∥∥m(F,ε)(Φ(F + [x],min{ε, δ}, x))∥∥
� ‖m‖∥∥Pmin{ε,δ}

F+[x]
∥∥‖x‖ � (1+ δ)‖m‖‖x‖,

and sinceδ was arbitrary we conclude that‖P‖ � ‖m‖, which ends the proof. ✷
Observe that the semigroup used in the proof of Theorem 2 is a directed set (in

fact, a lattice). The following definition isolates the relevant property ofB(S,Y ).

Definition 2. Let (S,�) be a directed set. An admissible assignment inB(S,Y )
is a bounded linear operatora :B(S,Y )→ Y such thata(f ) = f0 if f (x) = f0
eventually.
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We say thatf (x)= f0 eventually if there is somey ∈ S such thatf (x)= f0

for everyx � y. It is clear that admissibility and boundedness imply thata(f )=
limx∈S f (x) provided the limit exists (in the sense of net convergence [13]).

Corollary 1. For a Banach spaceY the following are equivalent:

(a) Y is complemented in its second dual space.
(b) For every commutative semigroupS there is an invariant average for

B(S,Y ).
(c) For every directed set S there is an admissible assignment inB(S,Y ).

Proof. It remains to show that (a) implies (c). Supposeπ :Y ∗∗ → Y is a bounded
linear projection and let(S,�) be a directed set. Take a ultrafilterU refining the
Fréchet (= order) filter onS and definea :B(S,Y )→ Y by

a(f )= π
(∗weak− lim

U(x)
f (x)

)
.

The definition makes sense because of the∗weak compactness of balls inY ∗∗. It
is clear thata is an admissible assignment, with‖a‖ � ‖π‖. ✷

3. The role of local convexity

In this section we analyze to what extent the results obtained so far depend
on the local convexity of the range space. Recall from [7] that a quasi-norm on
a (real or complex) vector spaceX is a non-negative real-valued function onX
satisfying:

• ‖x‖ = 0 if and only ifx = 0;
• ‖λx‖ = |λ|‖x‖ for all x ∈X andλ ∈ K;
• ‖x + y‖ �∆(‖x‖ + ‖y‖) for some fixed∆� 1 and allx, y ∈X.

A quasi-normed space is a vector spaceX together with a specified quasi-norm.
On such a space one has a (linear) topology defined as the smallest linear topology
for which the setBX = {x ∈X: ‖x‖ � 1} (the unit ball ofX) is a neighborhood
of 0. In this way,X becomes a locally bounded space (i.e., it has a bounded neigh-
borhood of 0); and, conversely, every locally bounded topology on a vector space
comes from a quasi-norm. A quasi-Banach space is a complete quasi-normed
space.

Of course, every Banach space is a quasi-Banach space, but there are important
examples of quasi-Banach spaces which are not (isomorphic to) Banach spaces.
Let us mention theLp spaces and the Hardy classesHp for 0<p < 1.



H. Bustos Domecq / J. Math. Anal. Appl. 275 (2002) 512–520 517

Proposition 1. SupposeY is a quasi-Banach space such thatB(Z, Y ) admits an
invariant average. ThenY is (isomorphic to)a Banach space.

Proof. Notice thatY is isomorphic to a Banach space if and only if there is a
constantM such that∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥�M
(
n∑
i=1

‖xi‖
)

for all xi ∈ Y .
Supposem is a linear average forB(Z, Y ). Takexi ∈ Y , 1 � i � n, and de-

fine f :Z → Y by f (k) = xi if k ≡ i modulon. From linearity, invariance and
consistency ofm, it follows thatm(f )= (1/n)∑n

i=1 xi . Hence,

1

n
·
∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥� ‖m‖ · max
1�i�n

‖xi‖

holds for eachn and allxi . A straightforward induction shows that, in fact, one
has ∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥� ‖m‖ ·
(
n∑
i=1

‖xi‖
)

for all xi ∈ Y . SoY is a Banach space and the proof is complete.✷
Thus, the following example shows that the implication(c)⇒ (b) of Corol-

lary 1 may fail if one allows quasi-Banach spaces.

Example 1. A non-locally convex quasi-Banach spaceY such thatB(S,Y ) has
admissible assignments for every nested setS.

Proof. Let us recall that a quasi-Banach space is said to be a pseudo-dual space
if there is a linear topologyτ weaker than the quasi-norm topology which makes
compact the unit (hence every) ball. SupposeY is a pseudo-dual space. Then, for
every nested set(S,�) there is an admissible assignment forB(S,Y ). Indeed, let
U be an ultrafilter stronger than the Fréchet filter onS and put

a(f )= τ − lim
U(s)

f (s).

Clearly,a is an admissible assignment of norm one.
So, the proof will be complete if we exhibit a non-locally convex pseudo-dual

space. Classical examples are the Hardy spacesHp for 0< p < 1 (according to
Montel’s theorem about normal families of holomorphic functions, the topology
of compact convergence makes compact the unit ball ofHp). A simpler example
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is provided by the sequence spacelp for 0< p < 1. Needless to say,lp = lp(N)
consists of all sequencesf :N → K for which the quasi-norm

‖f ‖p =
( ∞∑
k=1

∣∣f (k)∣∣p
)1/p

is finite. Fix 0< p < 1 and considerlp as a subset ofl1 via the formal identity
lp → l1. Clearly,‖f ‖p � ‖f ‖1 for all f ∈ lp . Let τ be the restriction tolp of
the ∗weak topology ofl1 viewed as the space of linear functionals onc0 (= the
space of null sequences with the sup norm). Sincec0 is separable, the∗weak
topology ofl1 is metrizable on bounded sets, and so isτ . We show thatBp , the
unit ball of lp , is (sequentially)τ -compact. Let(fn)∞n=1 be a sequence inBp .
SinceB1 is a ∗weakly compact set and containsBp we may assume and do that
(fn)

∞
n=1 converges∗weakly to somef ∈ B1. It remains to see thatf belongs

toBp . But ∗weak convergent sequences inl1 are pointwise convergent, hence one
has|fn(k)|p → |f (k)|p asn→ ∞ for all k. Thus Fatou’s lemma yields

‖f ‖pp =
∞∑
k=1

lim
n→∞

∣∣fn(k)∣∣p � lim inf
n→∞

( ∞∑
k=1

∣∣fn(k)∣∣p
)

= lim inf
n→∞ ‖fn‖pp � 1,

and sof lies is the unit ball oflp . Sincelp is not locally convex for 0< p < 1,
the proof is complete. ✷

4. Admissible assignments and quasi-Banach ultrasummands

In this section, we prove that a quasi-Banach spaceY is an ultrasummand if
and only ifB(S,Y ) has admissible assignments for every directed setS.

Let X be a quasi-Banach space,S a (not necessarily directed) set andU an
ultrafilter onS. The ultrapower ofX with respect toU is the quasi-Banach space
obtained taking the quotient ofB(S,X) by the subspace

NU =
{
f ∈B(S,X): lim

U(s)

∥∥f (s)∥∥
X

= 0
}

and will be denoted byXU . The quasi-norm ofXU enjoys the following nice
property:∥∥[f ]∥∥

XU
= lim
U(s)

∥∥f (s)∥∥
X
,

where[f ] denotes the class off ∈ B(S,X) in XU . Observe thatXU contains a
natural copy of the spaceX that consists of all (classes of) constant mapsS→X.

A quasi-Banach spaceX is said to be an ultrasummand provided it is com-
plemented in each ultrapowerXU . For Banach spaces this turns out to be
equivalent to being complemented in the bidual (a consequence of Corollary 1
and the following result).
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Theorem 3. A quasi-Banach spaceY is an ultrasummand if and only if, for every
directed setS, the spaceB(S,Y ) has admissible assignments.

Proof. Sufficiency.Let S be a directed set,U be an ultrafilter onS and letYU be
the corresponding ultrapower. IfP :YU → Y is a bounded linear projection and
π :YU → Y is the natural quotient map, thenP ◦ π is an admissible assignment
for B(S,Y ).

Necessity.SupposeYU = B(S,Y )/NU is an ultrapower. Consider the setΛ=
{(s,A): A ∈ U, s ∈ A} directed by(s,A)� (t,B)⇔ B ⊂ A. Now, observe that
every boundedf :S→ Y extends to a bounded netf̃ :Λ→ Y by f̃ (s,A)= f (s).
Moreover,f̃ is constant if and only iff is. On the other hand,

lim
(s,A)∈Λf̃ (s,A)= lim

U(s)
f (s),

for all f ∈ B(S,Y ).
Let, finally, a :B(Λ,Y ) → Y be an admissible assignment. Then, the map

ã :B(S,Y )→ Y given by ã(f ) = a(f̃ ) is a bounded projection ontoY . Since
ã obviously vanishes onNU , ã factors throughoutYU thus given a bounded
projection fromYU ontoY . This completes the proof.✷
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