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Let Λ be a graded self-injective algebra. We describe its smash
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the same as Λ# kZ∗. There exist τ -mutations similar to the BGP
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1. Introduction

In [3], it is proved that the derived category D(cohPn−1) of the coherent sheaves of a projective
space is equivalent to the stable category gr ∧ V of the graded modules of the exterior algebra (called
BGG correspondence). Koszul duality between Artin–Schelter regular Koszul algebra and the self-
injective Koszul algebra [21,15] generalizes BGG correspondence to non-commutative setting [16,17,
13,11]. It is also known that the derived category of the coherent sheaves of a projective line is
equivalent to the derived category of the Kronecker algebra, which is hereditary and of finite global
dimension [14]. Recently, Chen proves in [5] that for a well graded self-injective algebra, the category
of its graded modules is equivalent to the category of the graded modules over the trivial extension
algebra of its Beilinson algebra, which is of finite global dimension. As a consequence, the derived
category of its Beilinson algebra is equivalent to the stable category of its trivial extension [5]. So
the case of Kronecker algebra can be generalized, and the BGG correspondence is extended to a de-
rived category of algebra of finite global dimension, and we get equivalences of triangulated categories
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as follows

Db(coh X) � grΛ � Db(Λ′).
Here the left side is the bounded derived category of the quasi-coherent sheaves of non-commutative
projective space, middle is the stable category of a graded self-injective algebra Λ and the right side
is the bounded derived category of an algebra Λ′ of finite global dimension. According to [5], the right
equivalence is also well known [8,9], when we start with Λ′ . It follows from [8] that Db(Λ′) is also
equivalent to mod Λ̂′ , the stable category of finitely generated modules over the repetitive algebra Λ̂′
of Λ′ , as triangulated categories.

This paper mainly studies the algebras appearing on the right side of the equivalences of the
triangulated categories above. Starting with a graded self-injective algebra Λ, we are interested in
the algebras Λ′ of finite global dimension. Our approach is similar to the classical approach initiated
in [12], and developed, e.g., in [20,18], using repetitive algebras and coverings in study self-injective
algebra. Our aim is to find out how to construct the algebras Λ′ of finite global dimension from Λ,
and how such algebras are related. Coverings and truncations related to the Nakayama functor play
key roles in our approach.

Let Λ be a graded self-injective algebra over an algebraically closed field k, and let N =
D HomΛ( ,Λ) be the Nakayama functor. N is an auto-equivalence on the category of Λ-modules,
and it induces a permutation τ on the vertex set of the Gabriel quiver of Λ, which we call Nakayama
translation. It also induces Nakayama automorphism on the category of non-isomorphic indecompos-
able projective Λ-modules. When the group G generated by the Nakayama automorphism acts freely,
Λ is a regular covering of its orbit algebra with respect to the group G . This orbit algebra is a weakly
symmetric algebra, that is, graded self-injective with trivial Nakayama translation.

To find Λ′ , we first go to the smash product Λ # kZ∗ of Λ with the group Z, whose bound quiver
is described as the separated directed quiver of Λ. The Beilinson algebra of Λ defined in [5] is the
first candidate for Λ′ . We describe the bound quiver of the Beilinson algebra of Λ as some truncation
of the bound quiver of Λ # kZ∗ . We also show that the orbit algebra ΛT of Λ # kZ∗ with respect
to the Nakayama functor is a twisted trivial extension of the Beilinson algebra and that Λ # kZ∗ is
exactly the repetitive algebra of the Beilinson algebra.

There are more such algebras Λ′ for a given graded self-injective algebra Λ, in addition to the
Beilinson algebra. These algebras are obtained by truncating the bound quiver of Λ # kZ∗ mimic
the complete slice in the tilting theory [10,12]. We call the truncated bound quivers complete τ -
slices and the algebras obtained τ -slice algebras. We also introduce the τ -mutations for the τ -slices
algebras, mimic the Bernstein–Gel’fand–Poromarev (BGP) reflections. Each connected component of
the Beilinson algebra defined in [5] is a τ -slice algebra. We show that all the τ -slice algebras have
equivalent derived categories, by showing that they all have the same trivial extensions, and the same
repetitive algebra Λ # kZ∗ .

The τ -mutation is not a direct generalization of the BGP reflection, we need to go to the Koszul
dual for it. We show that if ΛT is Koszul, then all its τ -slice algebras are also Koszul. If Λ is of Loewy
length 3, all the τ -slice algebras are Koszul and the τ -mutation induces the BGP reflection on their
Koszul duals.

The paper is organized as follows. In Section 2, we recall basic notions on bound quivers, path
algebras etc., to fix terminology. We also give a description on the graded self-injective algebra of
Loewy length l + 1 using bound quiver with Nakayama translation. In Section 3, we study the orbit
algebra of a graded self-injective algebra Λ with respect to the Nakayama functor. We show that the
orbit algebra with respect to the Nakayama functor is graded self-injective and Λ is a covering of the
orbit algebra when the group generated by the Nakayama automorphism acts freely. In Section 4, we
introduce separated directed quiver Q for the bound quiver Q of a graded self-injective algebra Λ.
We show that this quiver is the bound quiver of the smash product Λ # kZ∗ and the group generated
by the Nakayama automorphism acts freely on the indecomposable projective Λ # kZ∗-modules. We
also introduce specially truncated quiver of the separated directed quiver, and discuss some basic
properties of these quivers. In Section 5, we show that the bound quiver of the Beilinson algebra
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of Λ is the total specially truncated quiver. We also show that the orbit algebra of Λ # kZ∗ with
respect to the group generated by the Nakayama automorphism is isomorphic to a twisted trivial
extension of the Beilinson algebra, and that Λ # kZ∗ is the repetitive algebra of the Beilinson algebra
of Λ. In Section 6, we introduce τ -slices, τ -slice algebras and τ -mutations. The action of the τ -
mutations on the τ -slices is transitive. We prove that the trivial extensions of the τ -slice algebras
are isomorphic when they are τ -mutations one another. Such isomorphism induces equivalence of
the derived categories of the τ -slice algebras, and τ -mutation can be regarded as generalization of
tilting process. We also show that all the τ -slice algebras have the same repetitive algebra, Λ # kZ∗ .
In Section 7, we prove that for a self-injective algebra with vanishing radical cube, the Yoneda algebra
of the τ -mutation of a τ -slice algebra is exactly the BGP reflection of its Yoneda algebra. We also
discuss the Koszulity of the τ -slice algebras of a graded self-injective algebra.

2. Preliminaries

Throughout this paper, k is an algebraically closed field, all the algebras are basic k algebras and all
the modules are usually left modules. By a quiver we usually mean a bound quiver Q = (Q 0, Q 1,ρ),
that is, a quiver with the vertex set Q 0, the arrow set Q 1 and the relation set ρ . ρ is a set of linear
combinations of paths of length larger or equal to 2. We use the same notation Q for both the quiver
and the bound quiver, denote by kQ the path algebra of Q and by k(Q ) = kQ /(ρ) the algebra given
by the bound quiver Q , that is, the quotient algebra of the path algebra of Q modulo the ideal
generated by the relations. A path is called a bound path if its image in k(Q ) is nonzero.

An algebra Λ is called a graded algebra in this paper if Λ = Λ0 + Λ1 + Λ2 + · · · as a direct sum of
vector spaces, Λ0 is semi-simple basic algebra, a direct sum of |Q 0|-copies of k, and ΛiΛ j = Λi+ j for
all i, j � 0. By Gabriel’s theorem, Λ is given by its bound quiver Q = (Q 0, Q 1,ρ), that is, Λ � kQ /(ρ).
Write r = Λ1 +Λ2 +· · · . Let ei be the idempotent corresponding to the vertex i of Q , then {ei | i ∈ Q 0}
is a complete set of orthogonal primitive idempotents of Λ. We have that 1 = ∑

i∈Q 0
ei when |Q 0| is

finite. Let E(Λ) = ExtΛ(Λ0,Λ0) be its Yoneda algebra.
We now characterize the graded self-injective algebras using bound quivers. In this paper, a graded

self-injective algebra is a locally finite-dimensional graded algebra for which each indecomposable pro-
jective module is injective. We say that a bound quiver Q = (Q 0, Q 1,ρ) is homogeneous provided
that each of the paths appearing in a given linear combination of ρ has the same length. Two rela-
tion sets ρ and ρ ′ of a given quiver Q are said to be equivalent if they generate the same ideal in
the path algebra kQ . In this case, we also say that two bound quivers (Q 0, Q 1,ρ) and (Q 0, Q 1,ρ

′)
are equivalent. Clearly, equivalent bound quivers define isomorphic algebras.

Since path algebra is graded, we obviously have the following proposition.

Proposition 2.1. k(Q ) is a graded algebra if and only if Q is equivalent to a homogeneous bound quiver.

Fix an integer l � 1, a homogeneous bound quiver Q is said to be stable of Loewy length l + 1
if there is a permutation τ on the vertex set of the quiver, such that the following conditions are
satisfied.

1. The maximal bound paths of Q have the same length l;
2. For each vertex i, there is a maximal bound path from τ i to i;
3. There is no bound path of length l from τ i to j for any j �= i;
4. Any two maximal bound paths starting at the same vertex are linearly dependent.

The permutation τ is called the Nakayama translation of the stable bound quiver Q .
We have the following theorem characterizing the bound quiver of a graded self-injective alge-

bra.

Theorem 2.2. Let Λ = k(Q ) be the algebra given by a bound quiver Q , then Λ is a graded self-injective
algebra with Loewy length l + 1 if and only if Q is equivalent to a stable bound quiver of Loewy length l + 1.
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Proof. Assume that Λ = k(Q ) is the algebra given by a stable bound quiver Q of Loewy length l + 1
with Nakayama translation τ . r is its radical, and we have that rl+1 = 0 since maximal bound paths
in Q have the same length l. Let ei be the idempotent corresponding to the vertex i, and let Si be the
simple module corresponding to i, P (i) be its projective cover and I(i) be its injective envelope. For
a maximal bound path p, rp = 0, so they span the socle of Λ. Since maximal bound paths starting
at i end at τ−1i, and any two of them are linearly dependent, we see that the socle of Pi � Λei
is isomorphic to Sτ−1 i . So each indecomposable projective has a simple socle and soc Pi � Sτ−1 i =
Pτ−1 i/rPτ−1 i . By considering the maximal bound paths ending at i, one gets that indecomposable
injective has a simple top and Ii/rIi � Sτ i . This implies that Pi � Iτ−1 i for each i ∈ Q 0, and Λ is a
graded self-injective algebra of Loewy length l + 1.

Let Q = (Q 0, Q 1,ρ) be a bound quiver of a graded self-injective algebra Λ. We may assume that
Q is homogeneous. Let τ be the permutation of Q 0 induced by the Nakayama functor of modΛ.
Then τ sends each vertex i to the vertex τ i corresponding to the top of the injective envelope of the
simple Si . Since projectives have the same Loewy length, say l, by [15], so the maximal bound paths
of Q have the same length l. Since the indecomposable projective with top Si is the indecomposable
injective with socle Sτ−1 i for each vertex i, there is a maximal bound path from τ i to i which is
a multiple of each bound path of length l from τ i to i. We also see that there is no bound path
of length l from τ i to j for any j �= i. This shows that Q is a stable bound quiver of Loewy length
l + 1. �

So the Nakayama translation is induced by the Nakayama functor.
A walk from a vertex i to a vertex j in a quiver is a sequence of paths p1, . . . , pr in Q satisfies

the following conditions:

1. r is odd, the length l(pt) > 0 for t = 2, . . . , r − 1, (here we allow the length of p1 and pr to be
zero);

2. i is the starting vertex of p1 and j is the ending vertex of pr , p2t and p2t+1 have the same
starting vertex and p2t−1 and p2t have the same ending vertex.

When all the paths in a walk are bound paths, we call this walk a bound walk.
Now consider a stable bound quiver. By embedding a bound path in maximal ones, one sees that

for a bound path from vertex i to vertex j, there is a bound path from j to τ−1i and a bound path
from τ j to i. For a walk in a stable bound quiver with two nontrivial bound paths starting from
vertices i and i′ and ending at vertex j, there is a walk with two nontrivial bound paths from τ j to i
and i′ . Dually, for a walk with two nontrivial bound paths starting at vertex i and ending at vertices
j and j′ , there is a bound walk with two nontrivial bound paths from j and j′ to τ−1i. In a finite
connected stable bound quiver, τ is periodic, we have the following lemma.

Lemma 2.3. Let Q be a finite connected stable bound quiver. For each pair of vertices i and i′ which are
connected by a walk in the stable bound quiver, there is a (unbound) path in Q from i to i′ .

We will need the following results, see Lemma 2.1 of [6].

Lemma 2.4. Let Λ be a self-injective algebra, let Q be its bound quiver and τ be the Nakayama translation
on Q . Then for any i, j ∈ Q 0 if e jΛei �= 0, we have a non-degenerate bilinear form eτ−1 iΛe j ⊗ e jΛei → k
satisfying the multiplicative property, that is (xy, z) = (x, yz).

If Λ is graded with Loewy length l + 1, the bilinear form is restricted to a non-degenerate one on
eτ−1 iΛl−te j ⊗ e jΛtei → k for 0 � t � l, whenever e jΛtei �= 0.

So we have that eτ−1 iΛl−1e j � De jΛ1ei and e jΛ1ei � eτ jΛ1eτ i as vector spaces. As a corollary of
Lemma 2.4, we have the following corollary:

Corollary 2.5. Let Λ be a graded self-injective algebra with Loewy length l + 1 and Nakayama translation τ ,
let Q be its quiver. Then for any i, j in Q 0 , we have:
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1. The number of arrows from i to j is dimk eτ−1 iΛl−1e j ;
2. The number of arrows from i to j and the number of arrows from τ i to τ j are the same.

3. Nakayama translation and orbit algebra

Following [2], a k-additive category C is called locally bounded, if it satisfies the following condi-
tions:

1. For each object P in C , End(P ) is local;
2. For each pair P , P ′ of objects in C , dimk Hom(P , P ′) is finite;
3. Distinct objects in C are non-isomorphic;
4. For each object P in C , there are only finite many object P ′ in C such that Hom(P , P ′) �= 0 or

Hom(P ′, P ) �= 0.

Let C,D be locally bounded categories. A k-linear functor F : C →D is called a covering functor if,

1. F is surjective on objects.
2. For each object P in C , F ; induces isomorphisms

⊕
P ′∈F −1(Q )

Hom
(

P ′, P
) → Hom

(
Q , F (P )

)

and

⊕
P ′∈F −1(Q )

Hom
(

P , P ′) → Hom
(

F (P ), Q
)
.

If a group G of k-automorphisms on C acts freely on the objects and D is equivalent to its orbit
category, then we call the covering F regular (or Galois) and call G its group.

Let Λ and Λ′ be two k-algebras. If there are locally bounded categories C,D such that with the
naturally defined multiplications,

Λ �
⊕

P ,P ′∈C
Hom

(
P , P ′) and Λ′ �

⊕
D,D ′∈D

Hom
(

D, D ′)

as algebras and there is a covering functor F : C →D, then we say that F is a covering from Λ to Λ′ .
If F is regular with group G , we called covering from Λ to Λ′ regular with group G .

Let P be a small k-additive category. Let G be a group of autofunctors of P and let M be an object
in P . Assume that G acts freely on the objects. Define the orbit algebra O (G, M) of M with respect to
G to be the vector space

O (G, M) =
⊕
F∈G

Hom(F M, M)

with the multiplication defined as follows: For F , F ′ ∈ G , and for any f ∈ Hom(F M, M), g ∈
Hom(F ′M, M),

f · g = f ◦ F g.

O (G, M) is an associative k algebra. Clearly, O (G, P ) = End P when G is trivial.
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Let Λ be a self-injective algebra and let N be the Nakayama functor on modΛ. Let P = P(Λ) be
the category of projective Λ-modules, and let indP be the category with objects the non-isomorphic
indecomposable projective Λ-modules. N induces an automorphism on the category indP , denoted
it by the same N . N also induces an automorphism ν on the algebra Λ. Both are called Nakayama
automorphism.

Let G be the group generated by N , and assume that G acts freely on the objects in indP . An
object P of P is called basic G-orbit generator if its indecomposable summands are taken from differ-
ent orbits and we have that P = add G P for its orbit G P = {N t P | t ∈ Z}. Let P = ⊕

i∈I P i be a basic
G-orbit generator, with Pi indecomposable. Denote by ΛN = O (G, P ) the orbit algebra of P with
respect to G .

The following theorem tells us that N induces a covering from Λ to the orbit algebra ΛN =
O (G, P ).

Theorem 3.1. Assume that G acts freely on the indecomposable objects in P . Then N induces a regular cover-
ing N from Λ to ΛN with the group G, ΛN is a graded self-injective algebra whose Nakayama functor induces
trivial Nakayama translation on the bound quiver Q N of ΛN .

Proof. It follows directly from the definition and [1,4] that N induces a regular covering N from Λ

to ΛN with the group G . Since P = ∑
i∈I P i is a basic G-orbit generator of P(Λ), the object set of

indP is {N t P i | i ∈ I, t ∈ Z}.

HomΛ(Λ,Λ) =
⊕

N t ,N t′ ∈G

⊕
i, j∈I

HomΛ

(
N t P i,N t′ P j

)
.

Let D be the category with objects the G-orbits {[Pi] | i ∈ I} of indecomposable projective Λ-
modules, with hom-sets

Hom
([P j], [Pi]

) =
⊕

P ′′∈[P j ]
HomΛ

(
P ′′, Pi

)

=
⊕
N t∈G

HomΛ

(
N t P j, Pi

)
.

The composition of the morphisms is defined as follows

f · g = f ◦N t g

for f ∈ HomΛ(N t P j, Pi), g ∈ HomΛ(N t′ Pk, P j). Clearly, Hom([P j], [Pi]) � ⊕
N t∈G HomΛ(P j,N t P i).

Since the Z-grading of Λ is induced by the radical filtration, we have that for each pair P , P ′
of projectives, HomΛ(P , P ′) = ⊕

s∈Z HomΛ(P , P ′)s , here HomΛ(P , P ′)s is the subspace of degree s
homomorphism. Since N preserves the degree of homomorphism and Λ � HomΛ(Λ,Λ), we have
Λs � HomΛ(Λ,Λ)s .

ΛN = O(G, P ) �
⊕
i, j∈I

HomD
([P j], [Pi]

)

=
⊕

t

⊕
i, j∈I

HomΛ

(
N t P i, P j

)

=
l⊕

s=0

⊕
t

⊕
i, j∈I

HomΛ

(
N t P i, P j

)
s.

So the Z-grading of Λ induces a Z-grading on ΛN .
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Write eP for the identity of an object P , then P = ΛeP for an indecomposable projective Λ-
module P , and [P ] = ΛN e[P ] for an indecomposable object [P ] in D. Let HomΛ(P , P ′)s denote the
subspace of degree s homomorphisms. By Lemma 2.4, HomΛ(P ′, P )s = eP ′ΛseP � DeN P Λl−seP ′ =
D HomΛ(N P , P ′)l−s for any P , P ′ . For an indecomposable projective ΛN -module ΛN e[P ] ,

ΛN e[P ] = HomΛN
(
ΛN ,ΛN e[P ]

)
=

⊕
s

⊕
[P ′]

HomΛN
(
ΛN e[P ′],ΛN eP

)
s

=
⊕

s

⊕
v

⊕
P j

HomC(ΛeN v P ′ ,ΛeP )s

=
⊕

s

⊕
v

⊕
P j

D HomC(eN P Λ, eN v P ′Λ)l−s

� D
⊕

s

⊕
v

⊕
P j

HomC(eN P Λ, eN v P ′Λ)l−s

� D
⊕

s

⊕
v

⊕
P j

HomC(eN v+1 P Λ, eP ′Λ)l−s

= D
⊕

s

⊕
v

⊕
P j

HomD
(
e[N P ]ΛN , e[P ′]ΛN )

l−s

= De[N P ]ΛN .

Thus ΛN e[P ] is injective, so ΛN is self-injective of Loewy length l + 1. It also follows from this that
the Nakayama translation on the quiver Q N of ΛN is identity. �

We see that ΛN is a weakly symmetric algebra, and call it the weakly symmetric algebra of Λ. Now
we assume that the bound quiver of Λ is Q = (Q 0, Q 1,ρ). Assume that G acts freely on Λ, that is,
G acts freely on indP(Λ). Then Λ is a regular covering of ΛN with group G . The vertex set of the
quiver Q N of ΛN is the set of the orbits of vertices of Q 0 under the Nakayama translation τ . G can
be regarded as the group generated by τ . It follows from Lemma 2.4 that dimk Λ1ei = dimk Λ1eτ r i,

and dimk e jΛ1 = dimk eτ r jΛ1. So the number of arrows starting or ending at each vertex of Q and
its images in Q N are the same. We have the following description of the quivers.

Corollary 3.2. Assume that G acts freely on Λ. As quivers, Q is a regular covering of Q N with the group G
generated by the Nakayama translation of Q .

4. Smash product Λ # kZZZ∗ , separated directed quiver and special truncated quiver

Covering theory is very important in representation theory, especially in the study of self-injective
algebra [12,20,18]. In this section, we study a universal covering for a graded self-injective algebra Λ,
its smash product with the infinite cyclic group Z. We will describe the bound quiver of the smash
product and study its properties.

Starting with a stable bound quiver Q = (Q 0, Q 1,ρ) of Loewy length l + 1, say, of Λ, we construct
a directed quiver (Q 0, Q 1) as follows.

Vertex set:

Q 0 = {
(i,n)

∣∣ i ∈ Q 0, n ∈ Z
};
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Arrow set:

Q 1 = {
(α,n) : (i,n) → ( j,n + 1)

∣∣ α : i → j ∈ Q 1, n ∈ Z
}
.

If p = αs · · ·α1 is a path in Q , define p[n] = (αs,n + s − 1) · · · (α1,n) for each n ∈ Z. Define rela-
tions

ρ = {
ζ [n] ∣∣ ζ ∈ ρ, n ∈ Z

}
here ζ [n] = ∑

t at pt[n] for each ζ = ∑
t at pt ∈ ρ . Q = (Q 0, Q 1,ρ) is a locally finite bound quiver if

Q is so. We call Q the separated directed quiver of the stable bound quiver Q .
By the definition, one sees easily that the following holds.

Proposition 4.1. The quiver Q contains no oriented cycle.

We show that this bound quiver gives exactly the smash product of Λ with the infinite cyclic
group Z.

Let Λ = Λ0 + Λ1 + · · · + Λl be a graded self-injective algebra of Loewy length l + 1. Let Q be its
bound quiver. Recall that the smash product Λ # kZ∗ of Λ with Z is the free Λ module with basis
Z∗ = {δn | n ∈ Z}, and the multiplication is defined by

xδn yδm = xyn−mδm

for x, y ∈ Λ, y = ∑l
t=0 yt with yt ∈ Λt . This is an infinite-dimensional algebra without the unit.

Since δn centralize Λ0, if {ei | i ∈ Q 0} is a complete set of orthogonal primitive idempotents of Λ,
{eiδn | i ∈ Q 0, n ∈ Z} is a complete set of orthogonal primitive idempotents of Λ # kZ∗ .

Assume that 0 �= x ∈ e jΛtei , 0 �= y ∈ e j′Λt′ ei′ are homogeneous elements of degree t and t′ , respec-
tively, then yδmxδn = yxδn �= 0 if and only if j = i′ , 0 �= yx and m = n + t . Especially, if 0 �= x ∈ e jΛ1ei
is homogeneous element of degree 1 in Λ, then e j′δmxδm′ ei′δn = e j′ xei′δn �= 0 if and only if i = i′ ,
j = j′ , n = m′ and m = n + 1. We see that Λ # kZ∗ is a locally finite-dimensional algebra whenever Λ

is so. (Λ1 +· · ·+Λl)kZ∗ is a nil ideal of Λ#kZ∗ and Λ#kZ∗/(Λ1 +· · ·+Λl)kZ∗ is semi-simple. Write
eiδn as e(i,n) , and for a homogeneous element x ∈ Λt , write xδn as x[n]. We see that for α : i → j ∈ Q 1,
αδn = α[n] : (i,n) → ( j,n + 1) is an arrow in the quiver of Λ # kZ∗ . This shows that the Gabriel quiver
of Λ # kZ∗ is exactly (Q 0, Q 1).

Clearly, if αl · · ·α1 is a path in quiver Q , then αl[n + l − 1] · · ·α2[n + 1]α1[n] = αl · · ·α2α1[n] is
a path in quiver Q . Also, we have that

∑
s as ps = 0 for paths ps of Q and as ∈ k if and only if for

all n, we have
∑

s as ps[n] = 0 in Λ # kZ∗ . Thus, a path αl · · ·α1 is a maximal bound path of the
bound quiver Q if and only if for all n, αl[n + l − 1] · · ·α2[n + 1]α1[n] = αl · · ·α2α1[n] is a maximal
bound path of Q . So we see that a maximal bound path in Q starting at (τ i,n − l) ends at (i,n).
Especially, maximal bound paths starting at the same vertex end at the same vertex, and any two
of them are linearly dependent. Define τ (i,n) = (τ i,n − l), this is a permutation on the vertex set
of the quiver Q . This shows that Λ # kZ∗ is given by the relations ρ = {ζ [n] | ζ ∈ ρ, n ∈ Z}. And
Q = (Q 0, Q 1,ρ) is a stable bound quiver with the Nakayama translation τ . So we have the following
theorem.

Theorem 4.2. If Λ is a graded self-injective algebra of Loewy length l + 1 with bound quiver Q . Then:

1. Λ # kZ∗ is a self-injective algebra of Loewy length l + 1 with the bound quiver Q = (Q 0, Q 1,ρ).
2. The Nakayama translation τ of Q is defined by τ (i,n) = (τ i,n − l).
3. Q is a locally finite stable bound quiver of Loewy length l + 1 if Q is so.
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We will write τ for τ when no confusion appears.
The quiver of Q is different from the usual quiver ZQ used in representation theory of algebras,

and it is usually not connected. Assume that the lengths of minimal oriented cycles in Q are l1, . . . , lr ,
and let d = gcd(l1, . . . , lr) be their greatest common divisor. The number of connected components of
Q is given below.

Proposition 4.3. Let Q be a finite connected stable bound quiver. Then Q has d connected components.
If Q contains a loop, then Q is connected.

The proposition follows easily from the following lemma.

Lemma 4.4. For any vertex j of Q , ( j,m′) and ( j,m′′) are in the same connected component of Q if and only
if m′ − m′′ ≡ 0 mod d.

Proof. If both ( j,m′) and ( j,m′′) are in the same connected component, then by Lemma 2.3, there is
some vertex (i,n) such that there is a path from (i,n) to ( j,m′) and a path from (i,n) to ( j,m′′), and
there is a path from ( j,m) to (i,n) for some integer n,m. Clearly, m < n < min{m′,m′′}. We see that
the paths from ( j,m) to ( j,m′) and ( j,m′′) are got from oriented cycles of Q , hence d|m′ − m and
d|m′′ − m, so d|m′ − m′′ and m′ − m′′ ≡ 0 mod d.

Now assume that m′ −m′′ ≡ 0 mod d, we may assume that m′ −m′′ = ∑r
t=1 stlt for integers st ∈ Z.

We can choose a vertex it from each minimal oriented cycle qt and a path pt from j to it in Q . The
walk

p−1
r qsr

r pr · · · p−1
2 qs2

2 p2 p−1
1 qs1

1 p1

in Q gives rise to a walk in Q from ( j,m′′) to ( j,m′), so ( j,m′) and ( j,m′′) are in the same connected
component of Q . �

Taking a vertex i ∈ Q 0, denote by (Q , i) the connected component of Q containing the vertex
(i,0). If there exist paths p,q of the same length from i and i′ , respectively, to the same ending
vertex j, then (Q , i) = (Q , i′). If there is an arrow α : i0 → j0 in Q , then we have an isomorphism
from (Q , i0) to (Q , j0) sending (i′′,n) to (i′′,n − 1). Since Q is connected, we have the following
proposition.

Proposition 4.5. All the connected components of Q are isomorphic.

Fix a connected component (Q , i0), we now study its truncations with respect to the Nakayama
translation.

The bound quiver obtained by taking the vertex set

(
Q N , i0

)
0 = {

( j,n) ∈ (Q , i0)
∣∣ 0 � n � l − 1

}
together with all the arrows in (Q , i0) among these vertices and the induced relations is called a
specially truncated quiver of Q with i0 as a source and is denoted by (Q N , i0).

Note that for all t , we have that (Q N , i0) � (Q N , τ t i0). Let d be the greatest common divisor of
the lengths of the oriented cycles of Q . Take a path i1 → i2 → ·· · → id of length d − 1 in Q , then for
any vertex j of Q , we have that (Q N , j) � (Q N , it) for some 1 � t � d. So the union

⋃
1�t�d(Q N , it)

is independent of the choice of the path. The full subquiver Q N of Q with the vertex set

Q N
0 = {

(i,n)
∣∣ i ∈ Q 0, 0 � n � l − 1

}
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is called the total specially truncated quiver of Q . We use the same notations (Q N , i0) and Q N for the
bound quivers with induced relations. Clearly the following proposition holds.

Proposition 4.6. Q N is isomorphic to a disjoint union of specially truncated quivers

Q N �
⋃

1�t�d

(
Q N , it

)
,

for any path i1 → i2 → ·· · → id of length d − 1 in Q .

The following is obvious.

Proposition 4.7. For any vertex ( j,0) of (Q , i0), we have (Q , i0) = (Q , j) and (Q N , i0) = (Q N , j).

Write P = P(Λ # kZ∗) for the category of finitely generated indecomposable projective Λ # kZ∗-
modules. Let Pi,n = Λ # kZ∗e(i,n) be the indecomposable projective Λ # kZ∗-modules corresponding to
the vertex (i,n). k(Q N , i0) = EndP

⊕
(i,n)∈(Q N ,i0)0

Pi,n is given by the bound quiver (Q N , i0). Clearly,

for all t , k(Q N , i0) � k(Q N , τ t i0). The algebra k(Q N , i0) is called a specially truncated algebra. If Q is
the bound quiver of a graded self-injective algebra Λ, we also call this algebra a specially truncated
algebra of Λ.

Fix a path i1 → i2 → ·· · → id of length d − 1 in Q , write

ΛN =
⊕

1�t�d

k
(

Q N , it
)
,

then up to isomorphism, ΛN is independent of the choice of the path, and it is given by the bound
quiver Q N . We call this algebra the total specially truncated algebra.

Example 4.8. The following stable bound quiver (Q ,ρ) defines a graded self-injective algebra Λ of
Loewy length 4. The quiver Q :

1

α1
β1

2

α2
β2

γ1

3

α3

γ2

,

and relation set

ρ = {
α2

i

∣∣ i = 1,2,3
} ∪ {β2β1, γ1γ2}

∪ {βiαi − αi+1βi, γiαi+1 − αiγi β1γ1 − γ2β2 | i = 1,2},

with trivial Nakayama translation, τ i = i for i = 1,2,3. Its separated directed quiver Q has only one
connected component:
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(1,−1)

(α1,−1)

(β1,−1)

(2,−1)

(α2,−1)

(β2,−1)(γ1,−1)

(3,−1)

(α3,−1)

(γ2,−1)

(1,0)

(α1,0)

(β1,0)

(2,0)

(α2,0)

(β2,0)(γ1,0)

(3,0)

(α3,0)

(γ2,0)

(1,1)

(α1,1)

(β1,1)

(2,1)

(α2,1)

(β2,1)(γ1,1)

(3,1)

(α3,1)

(γ2,1)

(1,2)

(α1,2)

(β1,2)

(2,2)

(α2,2)

(β2,2)(γ1,2)

(3,2)

(α3,2)

(γ2,2)

(1,3) (2,3) (3,3)

with relation set:

ρ = {
(αi,n + 1)(αi,n)

∣∣ i = 1,2,3; n ∈ Z
} ∪ {

(β2,n + 1)(β1,n), (γ1,n + 1)(γ2,n)
∣∣ n ∈ Z

}
∪ {

(βi,n + 1)(αi,n) − (αi+1,n + 1)(βi,n),

(γi,n + 1)(αi+1,n) − (αi,n + 1)(γi,n)
∣∣ i = 1,2; n ∈ Z

}
.

The Nakayama translation is defined by τ (i,n) = (i,n − 3) for i = 1,2,3 and n ∈ Z. Its specially trun-
cated quiver Q N = (Q N ,1) is

(1,0)

(α1,0)

(β1,0)

(2,0)

(α2,0)

(β2,0)(γ1,0)

(3,0)

(α3,0)

(γ2,0)

(1,1)

(α1,1)

(β1,1)

(2,1)

(α2,1)

(β2,1)(γ1,1)

(3,1)

(α3,1)

(γ2,1)

(1,2) (2,2) (3,2)

with relation set

ρN = {
(αi,n + 1)(αi,n)

∣∣ i = 1,2,3; n = 0,1
} ∪ {

(β2,n + 1)(β1,n), (γ1,n + 1)(γ2,n)
∣∣ n = 0,1

}
∪ {

(βi,n + 1)(αi,n) − (αi+1,n + 1)(βi,n),

(γi,n + 1)(αi+1,n) − (αi,n + 1)(γi,n)
∣∣ i = 1,2; n = 0,1

}
.
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5. The Beilinson algebra, its trivial extension and repetitive algebra

In [5], Chen introduces the Beilinson algebra and shows that the category of graded modules of
a well graded self-injective algebra is equivalent to the category of the graded modules of the trivial
extension of its Beilinson algebra. We now describe the Beilinson algebra of a graded self-injective al-
gebra, its trivial extension and its repetitive algebra, using algebras and the bound quivers introduced
in the last section.

Let Λ = Λ0 + Λ1 + · · · + Λl be a basic graded self-injective algebra. The Beilinson algebra of Λ,
defined in [5], is the algebra the form

b(Λ) =

⎛
⎜⎜⎜⎜⎝

Λ0 Λ1 · · · Λl−2 Λl−1
0 Λ0 · · · Λl−3 Λl−2
...

...
. . .

...
...

0 0 · · · Λ0 Λ1
0 0 · · · 0 Λ0

⎞
⎟⎟⎟⎟⎠ .

We have the following theorem.

Theorem 5.1. Let Q be the bound quiver of a graded self-injective algebra Λ. Then Q N is the bound quiver of
its Beilinson algebra.

Proof. Since Λ is naturally graded by the lengths of paths, Λ0 is a vector spaces with the primitive
idempotents (trivial paths) as its basis, and Λt has a basis consisting of paths of length t .

So we have that

b(Λ) = b(Λ)0 + b(Λ)1 + · · · + b(Λ)l−1,

with

b(Λ)t =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0 Λt · · · 0
· · · · · · · · · ·
0 · · · 0 0 · · · Λt

0 · · · 0 0 · · · 0
· · · · · · · · · ·
0 · · · 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ ,

for t = 0,1, . . . , l − 1. The Jacobson radical

rb(Λ) = b(Λ)1 + · · · + b(Λ)l−1,

b(Λ)/rb(Λ) �

⎛
⎜⎜⎝

Λ0 0 · · · 0
0 Λ0 · · · 0
...

...
. . .

...

0 0 · · · Λ0

⎞
⎟⎟⎠ ,

rb(Λ)/r2b(Λ) �

⎛
⎜⎜⎝

0 Λ1 · · · 0
...

...
. . .

...

0 0 · · · Λ1
0 0 · · · 0

⎞
⎟⎟⎠ .
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Let ψ be the map from the path algebra kQ N to b(Λ) sending the path p[n] of length t of Q N to
the matrix of a single path p of Λ at the (l + 1 −n + t, l + 1 −n) position. Then ψ(e(i,n)) is the matrix
with a single idempotent ei of Λ at the (l+1−n, l+1−n) position, for n = 1, . . . , l, and ψ(α,n) = α[n]
is the matrix with a single arrow α of Λ at the (l + 1 − (n + 1), l + 1 −n) position, for n = 1, . . . , l − 1.
We see easily that ψ defines an epimorphism from kQ N to b(Λ). Clearly

∑
t atψ(pt[n]) = 0 in b(Λ)

if and only if
∑

t at pt = 0 in Λ. So the relations of b(Λ) are identified with those of the bound
quiver Q N . This shows that a bound quiver of b(Λ) is exactly the same as the total specially truncated
quiver Q N . �

This also shows that b(Λ) � ΛN .
Consider the category indP = indP(Λ # kZ∗). Let G be the group generated by the Nakayama

automorphism N , G acts freely on the objects of indP . For any positive integer r, let G(r) = (N r) be
the subgroup of G generated by N r , Gr acts freely on the objects of indP , too. Let Pr be a finitely
generated basic Gr -orbit generator. Let ΛT ,r = O (Gr, Pr) be the orbit algebra. Similar to Theorem 3.1,
we see that ΛT ,r is a graded self-injective algebra of Loewy length l + 1 and Λ # kZ∗ is a Galois
covering of ΛT ,r with the group Gr . The Nakayama automorphism of indP(ΛT ,r) acts freely and has
order r. Let Q T ,r be the bound quiver of ΛT ,r . Let ΛT = ΛT ,1 and Q T = Q T ,1, then ΛT = k(Q T ). By
Theorem 3.1, we have

Proposition 5.2. ΛT ,r is a regular covering of ΛT with the group Z/rZ.

Clearly ΛT ,r is an intermediate covering of ΛT for r > 1. The vertex set of Q T ,r is the set of
the orbits of the vertices of Q with respect to the group generated by the rth power of Nakayama
translation. It follows from Corollary 2.5 that the number of arrows from i to j is the same as the
number of the arrows from τ i to τ j, so we may extend τ to a bijective map on the arrows, and τ
is extended to a quiver automorphism of Q . The arrows of Q T ,r are regarded as the orbits of the
arrows under τ r . So the quiver of Q T ,r is the orbit quiver of Q , obtained from the separated directed
quiver Q by identifying the vertices and arrows in a τ r -orbit, respectively. So the vertices ( j,m) and
(τ−rt j,m + rtl) of Q are identified in Q T ,r for all integers t .

We now turn to the r = 1 case. The following proposition follows easily from Corollary 2.5.

Proposition 5.3. Each connected component of the quiver Q T is obtained from a connected component of a
specially truncated quiver by adding an arrow from ( j, l) to (i,0) for each member in a maximal set of linearly
independent bound paths from (i,0) to ( j, l).

Example 5.4. For the stable bound quiver Q in Example 4.8, the quiver Q T and relations are as
follows

(1,0)

(α1,0)

(β1,0)

(2,0)

(α2,0)

(β2,0)(γ1,0)

(3,0)

(α3,0)

(γ2,0)

(1,1)

(α1,1)

(β1,1)

(2,1)

(α2,1)

(β2,1)(γ1,1)

(3,1)

(α3,1)

(γ2,1)

(1,2)

(α1,2)

(β1,2)

(2,2)

(α2,2)

(β2,2)(γ1,2)

(3,2)

(α3,2)

(γ2,2)

(1,0) (2,0) (3,0)

and



22 J.Y. Guo / Journal of Algebra 355 (2012) 9–34
ρT = {
αi,n + 1)(αi,n)

∣∣ i = 1,2,3; n ∈ Z/3Z
}

∪ {
(β2,n + 1)(β1,n), (γ1,n + 1)(γ2,n)

∣∣ n ∈ Z/3Z
}

∪ {
(βi,n + 1)(αi,n) − (αi+1,n + 1)(βi,n),

(γi,n + 1)(αi+1,n) − (αi,n + 1)(γi,n)
∣∣ i = 1,2; n ∈ Z/3Z

}
.

Let Λ be an algebra and M be a Λ-bimodule. Recall the trivial extension Λ� M of Λ by M is the
algebra defined on the vector spaces Λ ⊕ M with the multiplication defined by

(a, x)(b, y) = (ab,ay + xb),

for a,b ∈ Λ and x, y ∈ M . A trivial extension Λ � M is always graded by taking (Λ � M)0 = Λ and
(Λ � M)1 = M (see [5,8]). So Λ is a subalgebra of Λ � M . Assume that Λ = Λ0 + Λ1 + · · · + Λl
is a graded algebra, and M = M0 + · · · + Ml is graded and generated at degree 0. By taking
(Λ� M)t = Λt + Mt−1 for t = 0, . . . , l + 1, Λ� M becomes a graded algebra such that the degrees of
the homogeneous elements of Λ are preserved.

Trivial extension of Λ by its dual DΛ is called the trivial extension of Λ and we denote it by
ι(Λ) = Λ� DΛ.

Let σ be an automorphism of Λ. Let M be a Λ-bimodule. Define the twist Mσ of M as the bimod-
ule with M as the vector space. The left multiplication is the same as M , and the right multiplication
is twisted by σ , that is, defined by xb = xσ(b) for all x ∈ Mσ and b ∈ Λ. Define the twisted trivial
extension ισ (Λ) = Λ� DΛσ to be the trivial extension of Λ by the twisted Λ-bimodule DΛσ .

Let Q be a stable bound quiver of Loewy length l + 1 and let Q be its separated directed quiver.
Let Q ′ = (Q N , i0) be a specially truncated quiver of Q , and let Q T (i0) be a connect component of
Q T containing (i0,0). Let Λ′ = k(Q ′) and ΛT ′ = k(Q T (i0)).

Lemma 5.5. Λ′ is a subalgebra of ΛT ′
.

Proof. We observe that Q T (i0) is obtained from Q ′ by adding certain arrows from vertices (i, l−1) to
( j,0) and relations with paths containing the new arrows. Since the relations added does not concern
any path in Q ′ , Λ′ = k(Q ′) is a subalgebra of k(Q T (i0)). �

Regard Q ′ as a bound subquiver of Q T (i0) with the same vertex set, index the vertices as ( j,m)

with 0 � m � l − 1. ΛT ′
is a graded self-injective algebra with Loewy length l + 1. Write ΛT ′ =

ΛT ′
0 + ΛT ′

1 + · · · + ΛT ′
l−1 + ΛT ′

l , where ΛT ′
t is the homogeneous component of degree t .

Let Λ′ = Λ′
0 + Λ′

1 + · · · + Λ′
l−1, where Λ′

t is the homogeneous component of degree t . Let ι(Λ′)
be the trivial extension of Λ′ . By Lemma 5.5, Λ′ is subalgebra both of ι(Λ′) and of ΛT ′

. Clearly,
Λ′

0 � ι(Λ′)0 � ΛT ′
0 is semi-simple algebra, and we identify them with Λ′

0. Write e(i,t) for the primitive
idempotent corresponding to the vertex (i, t).

For any vertices (i, t1), ( j, t2) ∈ Q T (i0)0 with 0 � t1 < t2 � l − 1, we have

e( j,t2)ι
(
Λ′)

t2−t1
e(i,t1) = e( j,t2)Λ

′
t2−t1

e(i,t1) = e( j,t2)Λ
T ′
t2−t1

e(i,t1).

The vertex set of Q T (i0) is the same as that of Q ′ , decompose ΛT ′
accordingly,

ΛT ′ =
⊕

(i,t1),( j,t2)∈Q T (i0)0, t1�t2

e( j,t2)Λ
T ′
t2−t1

e(i,t1) ⊕
⊕

(i,t1),( j,t2)∈Q T (i0)0, t1�t2

e(i,t1)Λ
T ′
l+t1−t2

e( j,t2)

= Λ′ ⊕
⊕

(i,t ),( j,t )∈(Q N ,i ) , t �t

e(i,t1)Λ
T ′
l+t1−t2

e( j,t2).
1 2 0 0 1 2
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Let

M =
⊕

(i,t1),( j,t2)∈(Q N ,i0)0, t1�t2

e(i,t1)Λ
T ′
l+t1−t2

e( j,t2).

Lemma 5.6. M is a Λ′-bimodule and ΛT ′
is a trivial extension of Λ′ by M.

Proof. Clearly, M is a Λ′-bimodule.
Since for any i, j, each bound path in Q T (i0) passes through the arrows from (i, l − 1) to ( j,0) at

most once and each path in M passes through some arrow from (i, l − 1) to ( j,0) at least once. So
for any elements x, y ∈ M , we have xy = 0 in ΛT ′

. Hence ΛT ′
is a trivial extension of Λ′ by M . �

Lemma 5.7. M is isomorphic to DΛ′σ for some automorphism σ of Λ′ .

Proof. By Theorem 3.1, ΛT ′
is self-injective. From its proof we see that all the projectives of ΛT ′

have the same Loewy length as those of Λ # kZ∗ , which is the same as the Loewy length of the
projectives of Λ. So ΛT ′

is well graded in the sense of [5], and the lemma follows from Lemma 2.5
of [5]. �

So we get the following theorem immediately.

Theorem 5.8. Let Λ′ be the algebra given by the bound quiver Q ′ = (Q N , i0) and let ι(Λ′) be the trivial
extension of Λ′ . Let ΛT ′

be the orbit algebra of a connected component of Λ # kZ∗ containing e(i0,0) with
respect to the Nakayama functor. Then there is an automorphism σ of Λ′ such that

ΛT ′ � ισ
(
Λ′).

As a corollary, we have that ΛT � ισ (ΛN ) for some automorphism σ of ΛN .
Note that I = {(i,n) | i ∈ Q 0, n ∈ Z} is the index set of a complete set of orthogonal primitive

idempotents in Λ#kZ∗ . Set I[s] = {(i,n) | i ∈ Q 0, sl � n < (s+1)l} for s ∈ Z. Let eI[s] = ∑
(i,n)∈I[s] e(i,n) ,

and let

M[s, t] = eI[s]Λ # kZ∗eI[t] =
∑

(i,n)∈I[s]

∑
( j,m)∈I[t]

e(i,n)Λ # kZ∗e( j,m)

for all s, t ∈ Z. By Theorem 4.2, maximal bound path in Λ # kZ∗ has length l, and each path of length
larger than l is zero. Since e( j,n)Λ # kZ∗e(i,m) is spanned by paths of length n − m, thus e( j,n)Λ #
kZ∗e(i,m) = 0 if n − m < 0 or n − m > l. This leads to the following lemma.

Lemma 5.9. Λ # kZ∗ = ⊕
s,t∈Z M[s, t] as vector spaces.

M[s, t] = 0 if s �= t, t + 1.
M[s, t]M[s, t] = 0 for all s �= t.

Let Γ [s] = M[s, s] = eI[s]Λ # kZ∗eI[s] , it is an algebra and it has the unit eI[s] if Λ is finite-
dimensional. It follows easily that
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Lemma 5.10.

Λ # kZ∗ �

⎛
⎜⎜⎜⎜⎜⎝

. . . 0
Γ [s + 1] M[s + 1, s]

Γ [s] M[s, s − 1]
Γ [s − 1]

0
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

Let Q [s] be the bound quiver with vertex set I[s] and induced relations. Then Q [s] is a shift of
Q [0] = Q N and Γ [s] = k(Q [s]). The shifts induce isomorphisms

ψs,t : Γ [s] → Γ [t]

between these algebras, and M[s, t] is a Γ [s]–Γ [t]-bimodule. Using Lemma 2.4, similar to the argu-
ment in the proof of Theorem 3.1, we have

Lemma 5.11. M[s + 1, s] � DΓ [s] as right Γ [s]-module and M[s + 1, s] � DΓ [s + 1] as left Γ [s + 1]-
module.

Now identify Γ [s] with Γ [0] = ΛN for all s, using the above isomorphisms, then M[s + 1, s] are
identified with DΛN , for all s. The following theorem follows from Lemma 5.10.

Theorem 5.12. Λ # kZ∗ � Λ̂N is the repetitive algebra of ΛN .

Since ΛN = ⊕
i(Λ

N , i), where i runs over the vertices of a path of length d − 1. So we have

Λ # kZ∗ = (
⊕

i(Λ
N , i))̂= ⊕

i (̂Λ
N , i). Obviously, (̂ΛN , i) is an algebra with bound quiver (Q , i) for

each i, so these direct summands of Λ # kZ∗ are isomorphic. Since Q has d connected components,
so we have that.

Proposition 5.13. Λ # kZ∗ = ⊕
i (̂Λ

N , i) is a direct sum of d isomorphic algebras.

It follows from Lemma 2.1 of [5] that Λ,ΛT and ι(Λ′) have equivalent categories of graded mod-
ules. We have the following theorem from Lemma 5.10.

Theorem 5.14. Let Λ be a finite-dimensional graded self-injective algebra over k. Then we have equivalences
among the following triangulated categories:

1. Db(ΛN ), the bounded derived category of the category mod ΛN of finitely generated ΛN -modules.
2. gr ι(ΛN ), the stable category of finitely generated graded ι(ΛN )-modules.
3. grΛ, the stable category of finitely generated graded Λ-modules.
4. mod Λ # kZ∗ , the stable category of finitely generated Λ # kZ∗-modules.

Proof. Since in our case, the degree 0 part of the algebra Λ, Λ0 is semi-simple and hence of finite
global dimension, the equivalence of the first three categories follows from Lemma 2.1 and Theo-
rem 1.1 of [5]. The equivalence of the first and the last categories follows from Theorem 5.12 and
Theorem II 4.9 of [8]. �
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6. τ -Slices, τ -slice algebras and τ -mutations

In the last section, we discuss the Beilinson algebra defined in [5] using bound quiver and
Nakayama translation. Beilinson algebra is a solution to the problem of finding algebras of finite
global dimension whose derived categories are equivalent to the stable category of a given graded
self-injective algebra. Now we give a systematical way of finding algebras with this property, and
investigate the interrelation among these algebras.

Let Q be a stable bound quiver with only finite many τ -orbits, and let (Q , i0) be a separated
directed quiver of Q . Let Q ′ be a full bound subquiver of (Q , i0). Q ′ is called a τ -slice of Q if it has
the following property:

(a) For each vertex v of (Q , i0), the intersection of the τ -orbit of v and the vertex set of Q ′ is a
single-point set.

A τ -slice Q ′ is called a path complete τ -slice, if it also satisfies the following property:

(b) Q ′ is path complete in the sense that for each path p : v0 → v1 → ·· · → vt of (Q , i0) with v0
and vt in Q ′ , the whole path p lies in Q ′ .

Path complete τ -slice is a generalization of complete slice introduced in [10,12]. By Theorem 6.6, it
will also be called complete τ -slice (see definition below).

Let Q be a directed stable bound quiver of Loewy length l + 1 with Nakayama translation τ , let
v ∈ Q 0. We define the τ -hammock H v starting at v as the full subquiver with the vertex set

H v
0 = {u ∈ Q 0 | there is a bound path from v to u}.

Dually we define the τ -hammock H v ending at v . H v is the support of the projective cover of the
simple corresponding to the vertex v and H v is the support of the injective envelope of the simple
corresponding to the vertex v of the algebra k(Q ). The τ -hammock starting at τ v coincides with the
τ -hammock ending at v , that is

Hτ v = H v .

A vertex v of a τ -slice Q ′ is called τ -initial provided that Q ′
0 ∩ H v

0 = H v
0 \ {τ−1 v} for the vertices.

A vertex v is called τ -terminal provided that Q ′
0 ∩ H v,0 = H v,0 \ {τ v} for the vertices.

A τ -slice Q ′ in (Q , i0) is called a complete τ -slice of Q if it has the following properties:

1. Each source of Q S is τ -initial;
2. Each sink of Q S is τ -terminal;
3. Assume that v → u is an arrow in (Q , i0). If v is a vertex of Q S , then either u or τu is a vertex

of Q S ; and if u is a vertex of Q S , then either v or τ−1 v is a vertex of Q S .

We prove that the path complete τ -slice is the same as the complete τ -slice, when there is only
finite many τ -orbits in Q . We first prove that a path complete τ -slice is a complete τ -slice.

Proposition 6.1. Let Q be a stable bound quiver. If a full subquiver Q S of (Q , i0) is a path complete τ -slice,
then it is a complete τ -slice.

Proof. Assume that Q S is a path complete τ -slice. Let v be a source of Q S . For any vertex u, if there
is an arrow u → v in (Q , i0), then u is not a vertex of Q S . By (a), there is some t such that τ t u
is a vertex of Q S . If t � 0, there is a path τ t u → ·· · → u → v in (Q , i0), so u is a vertex of Q S ,
a contradiction. So t < 0, and we have τ−1u is a vertex of Q S by (b). All the vertices in H v except
for τ−1 v lie in the paths from v to τ−1u for some u with an arrow u → v in (Q , i0). It follows from
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(b) again, that we have that all the vertices in H v except for τ−1 v are in Q S . So (1) holds for a path
complete τ -slice.

Similar argument shows that (2) also holds for a path complete τ -slice.
Now assume that v → u is an arrow in (Q , i0). Assume that v is a vertex of Q S . There is an

integer t such that τ t u is a vertex of Q S , by (a). Since there is always a path from τ t u to τ t′ u
whenever t > t′ , so t = 0 or 1. This proves the first assertion of (3), the second assertion is proved
similarly. �

Assume that Q S is a complete τ -slice in (Q , i0). Let r be an integer. The full bound quiver Q S(r)
with the vertex set

Q S(r)0 = {
( j,m − r)

∣∣ ( j,m) ∈ Q S
0

}
is a complete τ -slice in (Q , i′0) for some vertex i′0 and it is isomorphic to Q S as quivers. We call
Q S (r) a shift of Q S . So we see that up to shift, a complete τ -slice is independent of the choice of the
component of Q . The number d(Q S ) = max{n | (i,n) ∈ Q S} − min{n | (i,n) ∈ Q S} is called the depth
of Q S . If Q is finite, then Q S is finite and contains no oriented cycle, we may shift it in Q such that
min{n | (i,n) ∈ Q S} = 0.

We have that d(Q S )� l − 1, and when d(Q S ) = l − 1, we call Q S an initial τ -slice. Clearly, we have
the following proposition by shifting.

Proposition 6.2. Q S is an initial complete τ -slice if and only if Q S � (Q N , i0) for some vertex i0 .

Let Q S be a complete τ -slices in (Q , i0) and let (i,m) be a sink of Q S . Define the τ -mutation
s−

i (Q S ) of Q S at i as the full bound subquiver in (Q , i0) obtained by replacing the vertex (i,m) by
its Nakayama translation (τ i,m − l). Dually, for a source ( j,m) of S , we define the τ -mutation s+

j (Q S )

of Q S at j as the full bound subquiver of (Q , i0) obtained by replacing the vertex ( j,m) by its inverse
Nakayama translation (τ−1 j,m + l).

Example 6.3. The following are some τ -hammocks of the directed stable bound quiver Q in Exam-
ple 4.8.

H (1,0) = H(1,3): H (2,0) = H(2,3): H (3,0) = H(3,3):
(1,0)

(α1,0)

(β1,0)

(1,1)

(α1,1)

(β1,1)

(2,1)

(α2,1)

(γ1,1)

(1,2)

(α1,2)

(2,2)

(γ1,2)

(1,3)

(2,0)

(α2,0)

(β2,0)(γ1,0)

(1,1)

(α1,1)

(β1,1)

(2,1)

(α2,1)

(β2,1)(γ1,1)

(3,1)

(α3,1)

(γ2,1)

(1,2)

(β1,2)

(2,2)

(α2,2)

(3,2)

(γ2,2)

(2,3)

(3,0)

(α3,0)

(γ2,0)

(2,1)

(α2,1)

(β2,1)

(3,1)

(α3,1)

(γ2,1)

(2,2)

(β2,2)

(3,2)

(α3,2)

(3,3)

We remark that the arrow (αt ,1) annihilates the elements in the indecomposable projective module
which the τ -hammock Ht,0 supports. When such arrows are remove, the second hammock becomes
a cube, and the first and the third became halves of cubes, with the Nakayama translation sends the
vertices (1,3), (2,3) and (3,3) to the other vertices of the diagonals of the cubes from them. Some
τ -mutations of Q N are as follows
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s−
1 Q N : s+

3 s−
1 Q N :

(1,−1)

(α1,−1)

(β1,−1)

(1,0)

(α1,0)

(β1,0)

(2,0)

(α2,0)

(β2,0)(γ1,0)

(3,0)

(α3,0)

(γ2,0)

(1,1)

(β1,1)

(2,1)

(α2,1)

(β2,1)

(3,1)

(α3,1)

(γ2,1)

(2,2) (3,2)

(1,−1)

(α1,−1)

(β1,−1)

(1,0)

(α1,0)

(β1,0)

(2,0)

(α2,0)

(β2,0)(γ1,0)

(1,1)

(β1,1)

(2,1)

(α2,1)

(β2,1)

(3,1)

(α3,1)

(γ2,1)

(2,2)

(β2,2)

(3,2)

(α3,2)

(3,3)

Clearly, we have the following lemma.

Lemma 6.4. A τ -mutation of a complete τ -slice in (Q , i0) is again a complete τ -slice in (Q , i0).
If (i,m) is a sink of S, then s+

i s−
i Q S = Q S , and if (i,m) is a source of Q S , then s−

i s+
i Q S = Q S .

The following lemma follows easily from induction on the depth of the complete τ -slices and on
the number of pairs of vertices which reach the maximal depth.

Lemma 6.5. Let Q be a stable bound quiver with finitely many τ -orbits, and let Q S be a complete τ -slice
of Q . Then there is a sequence σ1, . . . , σr of τ -mutations such that σr · · ·σ1 Q S is an initial complete τ -slice
(Q N , i0).

Now we prove that complete τ -slice coincides with path complete τ -slice.

Theorem 6.6. Let Q be a stable bound quiver with only finite many τ -orbits. Then τ -slice is complete τ -slice
if and only if it is path complete τ -slice.

Proof. By Proposition 6.1, a path complete τ -slice is a complete τ -slice. We need only to prove that
a complete τ -slice is a path complete one.

It is obvious that a complete τ -slice is path complete if and only if its τ -mutation is so.
Let Q S be a complete τ -slice. Assume that p : v1 → ·· · → vr is a path in (Q , i0) with v1, vr

in Q S . If not all the vertices of p are in Q S , we may assume that there are t1, t2 with 1 < t1 � t2 < r,
such that vt1−1 and vt2+1 are in Q S , but vt is not in Q S for t1 � t � t2.

We prove by induction on t2 − t1 that this will lead to a contradiction. If t1 = t2 = t , then by
the property (3) of complete τ -slice, both τ vt and τ−1 vt are in Q S , this leads to a contradiction to
property (a) of a τ -slice. Assume that t2 − t1 > 0. Since (Q , i0) is directed and it has only finitely
many τ orbits, we may assume that v1 is a source of Q S , by taking τ -mutations if necessary. By
property (3) of a complete τ -slice, τ vt1 is a vertex of Q S , and by taking τ -mutations if necessary, we
may assume that τ vt1 is initial, and take τ vt1 as v1. Let v1 = (i,m), the τ -mutation σ+

i Q S of Q S is
also a complete τ -slice. p′ : v2 → ·· · → vr is a path in (Q , i0) with v2, . . . , vt1 , vt2+1 in σ+

i Q S , but
vt are not vertices of σ+

i Q S for t1 + 1 � t � t2. Since t2 − (t1 + 1) < t2 − t1, it follows from induction
that this leads to a contradiction.

This proves that for any path p : v1 → ·· · → vr in (Q , i0) with v1, vr in Q S , all the vertices of p
are in Q S . Thus Q S is a path complete τ -slice. �
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A complete τ -slice in (Q , i′0) is a bound quiver with the relations induced from the relations of
(Q , i′0). The algebra defined by a complete τ -slice is called a τ -slice algebra of Q . If Q is the bound
quiver of a finite-dimensional graded self-injective algebra Λ. A τ -slice algebra of a complete τ -slice
in Q is also called a τ -slice algebra of Λ.

Since a separated directed quiver contains no oriented cycle, so does its subquiver. The following
proposition follows from the path completeness of a complete τ -slice.

Proposition 6.7. A τ -slice algebra of Λ is subalgebra of Λ # kZ∗ of finite global dimension.

Let Q S be a complete τ -slice and let σ be a τ -mutation defined on Q S . If Λ′ and Λ′′ are τ -slice
algebras defined by Q S and σ Q S , respectively, Λ′′ is called a τ -mutation of Λ′ , and write it as

Λ′′ = σΛ′.

The following theorem asserts that the trivial extensions of τ -slice algebras are invariant under
the τ -mutations.

Theorem 6.8. The trivial extensions of all the τ -slice algebras of a finite stable bound quiver are isomorphic.

Proof. Let Q S be a complete τ -slice of a stable bound quiver Q . Then by Lemma 6.5, there is a
sequence σ1, . . . , σr of τ -mutations such that Q S = σrσr−1 · · ·σ1(Q N , v) for an initial complete τ -
slice Q ′ = (Q N , v).

Let Q t = σt · · ·σ1(Q N , v) and let Λt = k(Q t) be the algebra given by the bound quiver Q t .
Let Λ′ = k(Q ′), and let ΛE = ι(Λ′) be its trivial extension. Let Q E be the bound quiver of ΛE .

We use the same notation for the vertex of Q ′ and Q E . Take the second indices for vertices of Q t

from Z, and second indices for the vertices of Q E from Z/lZ.
Our theorem follows immediately from the following lemma.

Lemma 6.9. For t = 0,1, . . . , r, Q t is a full bound subquiver of Q E , Q E is obtained from Q t by adding an
arrow (i,n) to ( j,n + 1 − l) for each member in a maximal set of linearly independent bound paths of length
l − 1 from ( j,n + 1 − l) to (i,n), and

ι
(
Λt) = ι

(
k
(

Q t)) � k
(

Q E) = ΛE .

Proof. We prove this lemma by induction on t . Clearly, Q E is obtained from Q 0 = Q ′ by adding an
arrow from vertices (i, l −1) to ( j,0) for each member in a maximal set of linearly independent paths
of maximal length from ( j,0) to (i, l − 1). So the lemma holds when t = 0.

Assume that 0 < t � r and the lemma holds for t − 1.
We may assume that σt = s−

i0
, the other case is proved similarly. There is a vertex (i0,m) such that

Q t is obtained from Q t−1 by removing the vertex (i0,m) with all the arrows ending at (i0,m) and
adding the vertex (τ i0,m − l) together with all the arrows starting from (τ i0,m − l) in Q .

Both Q t−1 and Q t have the same set of vertices as Q E (after identifying i with τ i and taking the
image of their second indices in Z/lZ). So we may identify the degree zero part

Λt
0 = Λt−1

0 = ΛE
0 .

The arrows of the two subquivers are the same except those concerning the vertices (τ i0,m − l)
and (i0,m). (τ i0,m − l) is a source in Q t and (i0,m) is a sink in Q t−1. Let Q t−1,′ and Q t,′ be
the full bound quiver obtained from Q t−1, and respectively Q t , by removing the vertex (i0,m), and
respectively (τ i0,m − l). Then Q t−1,′ = Q t,′ , denote it by Q ∗ .
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By induction, ΛE = k(Q E ) � ι(Λt−1), and Q E is obtained from Q t−1 by adding an arrow from
(i,n) to ( j,n − l + 1) for each member in a maximal set of linearly independent bound paths of
length l − 1 from ( j,n − l + 1) to (n, i).

Let Λ∗ = k(Q ∗) be the algebra defined by the bound quiver Q ∗ , it is a subalgebra of both Λt−1

and Λt . Denote by Λ̃ = k(Q , v) the algebra of the bound quiver (Q , v). It is a direct summand of
Λ # kZ∗ , so it is locally finite-dimensional self-injective algebra of Loewy length l + 1. Λ∗,Λt−1 and
Λt are embedded in Λ̃ as subalgebras.

For the arrows ending at (i0,m) in ι(Λt), by Lemma 2.4, we have that for any ( j,m − 1)

e(τ i0,m−l)ι
(
Λt)

1e( j,m−1) � De( j,m−1)Λ
t
l−1e(τ i0,m−l) � e(i0,m)Λ̃1e( j,m−1) = e(i0,m)Λ

t−1
1 e( j,m−1)

= e(i0,m)ι
(
Λt−1)

1e( j,m−1) � e(i0,m)Λ
E
1 e( j,m−1),

as Λt
0-bimodules. Note that Λt

0 = ΛE
0 . By identifying the vertex (i0,m) of Q t−1 with the vertex

(τ i0,m − l) of Q t , this implies that the number of the arrows from ( j,m − 1) to (i0,m) in the quiver
of ι(Λt) is the same as that of Q E , and it equals the number of linearly independent bound paths
of length l − 1 of Q t from (τ i0,m − l) to ( j,m − 1). Since e(i,n)Λ

t
l−1e( j,n+1−l) = e(i,n)Λ

t−1
l−1 e( j,n+1−l)

for other pair ( j,n + 1 − l), (i,n) of vertices. It follows from induction that Q E is obtained from Q t

by adding an arrow (i,n) to ( j,n + 1 − l) for each member in a maximal set of linearly independent
bound paths of length l − 1 from ( j,n + 1 − l) to (i,n).

Denote by M the sub-Λ∗-bimodule of ι(Λt) generated by De( j,m−1)Λ
t
l−1e(τ i0,m−l) , it is isomorphic

to
⊕

( j,n)∈Q ∗
0

e(i0,m)Λ̃e( j,n) � e(i0,m)Λ
t−1. Thus Λt−1 is isomorphic to a trivial extension

Λt−1 � (
Λ∗ + e(i0,m)ι

(
Λt)

0e(i0,m)

)
� M,

and the right-hand side is a subalgebra of ι(Λt).
Since Λt−1 and Λt are graded algebras whose maximal bound paths having the same length l − 1.

Λt
l−1 = Λ∗

l−1 + e(i0,l)Λ
t−1
l−1 and Λt−1

l−1 = Λ∗
l−1 + Λt−1

l−1 e(τ i0,0) , DΛt−1 is generated by DΛt−1
l−1 as Λt−1-

bimodule, and DΛt is generated by DΛt
l−1 as Λt -bimodule.

ΛE � ι
(
Λt−1) = Λt−1 + DΛt−1

as Λt−1-bimodule with multiplication defined naturally (as the trivial extension). So one gets

ι
(
Λt) = Λ∗ + Λte(τ i0,m−l+1) + DΛ∗ + DΛte(τ i0,m−l+1)

as Λ∗-bimodule. Note that Λ∗ + DΛte(τ i0,m−l+1) is a subalgebra and

Λ∗ + DΛte(τ i0,m−l+1) � Λ∗ + e(τ i0,m−l+1)DΛt
l e(τ i0,m−l+1) + M

� (
Λ∗ + e(i0,m)ι

(
Λt)

0e(i0,m)

)
� M

� Λt−1,

and Λte(τ i0,m−l+1) + DΛ∗ is a (Λ∗ + e(i0,m)ι(Λ
t)0e(i0,m))� M-bimodule. Identify the above isomorphic

algebras, we get a Λt−1-bimodule isomorphism

Λte(τ i0,m−l+1) + DΛ∗ � DΛt−1.

The multiplication of ι(Λt) defines a trivial extension of (Λ∗ +e(i0,m)ι(Λ
t)le(i0,m))�M by its bimodule

Λte(τ i0,m−l+1) + DΛ∗ . Thus
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ι
(
Λt) = ((

Λ∗ + e(i0,m)ι
(
Λt)

0e(i0,m)

)
� M

)
�

(
Λte(τ i0,m−l+1) + DΛ∗)

� Λt−1 � DΛt−1 = ι
(
Λt−1) = ΛE .

This shows that our lemma holds by induction. �
Denote by Λ(i) the specially truncated algebra defined by the bound quiver (Q N , i). As a corollary,

we have the following theorem.

Theorem 6.10. ι(Λ(i)) are isomorphic for all i ∈ Q 0 .

According to [8,5], we have an equivalence between the bounded derived categories Db(Λ′) of the
τ -slice algebra Λ′ and the stable category gr ι(Λ′) of the finite-dimensional graded modules over its
trivial extension.

Let Λ be a graded self-injective algebra. As a corollary of Theorem 6.8 and Corollary 1.2 of [5], we
get:

Corollary 6.11. Let Λ be a finite-dimensional graded self-injective algebra. Then all the τ -slice algebras of
Λ have equivalent bounded derived categories, and they are all equivalent to the stable category of graded
Λ-modules.

Let Q S be a complete τ -slice in (Q , i) and let I S [r] = {(τ r i,n − lr) | (i,n) ∈ Q S
0 } for r ∈ Z. Let

eI S [s] = ∑
(i,n)∈I[s] e(i,n) , and let

M S [s, t] = eI S [s]Λ # kZ∗eI S [t] =
∑

(i,n)∈I S [s]

∑
( j,m)∈I S [t]

e(i,n)Λ # kZ∗e( j,m)

for all s, t ∈ Z. Let Γ S [s] = M S [s, s]. Then Γ S [s] are isomorphic to the τ -slice algebra ΛS = k(Q S ).
M S [s + 1, s] are Γ S [s + 1]–Γ S [s]-bimodules and M S [t, s] = 0 for t �= s, s + 1, and M[s, t]M[s, t] = 0
when s �= t .

Similar to the proofs of Theorem 5.12 and Proposition 5.13, we see that

⎛
⎜⎜⎜⎜⎜⎝

. . . 0
Γ S [s + 1] M S [s + 1, s]

Γ S [s] M S [s, s − 1]
Γ S [s − 1]

0
. . .

⎞
⎟⎟⎟⎟⎟⎠

is the direct summand of Λ # kZ∗ corresponding to the component (Q , i). Clearly it is isomorphic to
the repetitive algebra Λ̂S . So we have the following theorem.

Theorem 6.12. The repetitive algebra of a τ -slice algebra is a direct summand of Λ # kZ∗ .
All the τ -slice algebras have isomorphic repetitive algebras.

Recall that a subcategory T of a triangulated category C is called a tilting subcategory if it generates
C and we have Hom(T ,T [i]) = 0 for all i �= 0. According to [19], two algebras Λ′ and Λ′′ of finite
global dimension are derived equivalent if and only if there is a tilting subcategory T = add T of DΛ′
for some objects T and Λ′′ = End T . Now let σ1, . . . , σr be a sequence of τ -mutations. If Λ′ is a τ -
slice algebra, then σr · · ·σ1Λ

′ is also a τ -slice algebra and we have that ι(Λ′) � ι(σr · · ·σ1Λ
′). Thus

Db(Λ′) and Db(σr · · ·σ1Λ
′) are equivalent as triangulated category. Hence by [19] there is a tilting

object T in gr ι(Λ′) such that σr · · ·σ1Λ
′ � End T . So we get:
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Corollary 6.13. Let Λ′ and Λ′′ be τ -slice algebras of a graded self-injective algebra Λ, then there is a tilting
object T in grΛ, such that Λ′ � End T .

7. Koszul duality and τ -mutations

It is natural to investigate the relationship between our τ -mutation and the BGP reflection. They
are not related directly, as is shown in the following example. Consider the case l = 2. Let Λ be
a self-injective algebra with vanishing radical cube whose quiver Q is the double quiver of A5. It
follows from [7] that this quiver is a stable bound quiver of Loewy length 3 with trivial Nakayama
translation. Its separated directed quiver Q is two copies of ZA5, with the total special truncation
Q N = (Q N ,1) ∪ (Q N ,2), where

(
Q N ,1

) : (1,0) → (2,1) ← (3,0) → (4,1) ← (5,0),(
Q N ,2

) : (1,1) ← (2,0) → (3,1) ← (4,0) → (5,1).

Let ΛS be the τ -slice algebra of Q S = (Q N ,1). Then its τ -mutation s−
(2,1)Λ

S is given by the bound
quiver

s−
(2,1)

Q S : (1,0) ← (2,−1) → (3,0) → (4,1) ← (5,0)

with a single relation (2,−1) → (3,0) → (4,1). If we do BGP reflection for the quiver Q S = (Q N ,1)

at vertex (2,1), one gets the same quiver without relation.
Note that the above algebras ΛS and s−

(2,1)Λ
S are both Koszul, and we can look at their Koszul du-

als, which are just the path algebras of Q S and s−
(2,1) Q S , respectively. So we see that our τ -mutation

coincides with the BGP reflection when applied to the Koszul duals of the τ -slice algebras. This is
true in general.

Assume that Λ is a self-injective algebra with vanishing radical cube whose bound quiver is Q . In
this case l = 2. Let Q S be a complete τ -slice, and let ΛS be the τ -slice algebra with bound quiver Q S .
ΛS is an algebra with vanishing radical square, so are its τ -mutations. Q S is a directed quiver, so
its orientation is admissible. Since Λ # kZ∗ is a self-injective algebra with vanishing radical cube,
its bound quiver Q is a stable translation quiver [7] with τ as the translation. Now let (i,m) be
a sink in Q S , then τ (i,m) = (τ i,m − 2) is not a vertex of Q S . We have that H(i,m) forms a mesh
in Q ,

( j1,m − 1)

β1

(τ i,m − 2)

αr

α1

... (i,m)

( jr,m − 1)

βr

with β1, . . . , βr arrows in Q S and α1, . . . ,αr not in Q S . The τ -mutation s−
(i,m)

Q S is obtained from

Q S by replacing (i,m) with (τ i,m − 2) and each βt with αt . The BGP reflection acts on a quiver Q at
its sink by just reverse all arrows to this vertex. When we identify the vertex (i,m) with (τ i,m − 2),
this is exactly the BGP reflection of quiver Q S at the sink (i,m). Same argument also works when
(i,m) is a source.
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Since algebra with radical squared zero is Koszul whose Yoneda algebra is hereditary when its
quiver does not contain oriented cycle. Thus their Yoneda algebras E(ΛS ) and E(s−

(i,m)
ΛS ) are heredi-

tary algebras, with the quiver Q S and s−
(i,m)

(Q S), respectively, without relation.

Use the same notations s−
(i,m)

, and respectively s+
(i′,m′) for the BGP reflections on a path algebra at

a sink (i,m), and respectively at a source (i′,m′) of the quiver. We gave the following observation.

Proposition 7.1. Assume that Λ is a self-injective algebra with vanishing radical cube and ΛS be a τ -slice
algebra of Λ. Then the Yoneda algebra of a τ -mutation of ΛS at a vertex (i,m) is the BGP reflection of the
Yoneda algebra of ΛS at the same vertex. That is

E
(
s±(i,m)ΛS) = s±(i,m)E

(
ΛS).

We remark that in the case of Dynkin quivers, the graded self-injective algebras we starting with
are not Koszul, but all the τ -slice algebras are Koszul since they have vanishing radical square.

Let Q be the bound quiver of a graded self-injective algebra Λ and Q be its separated directed
quiver. Now consider the orbit algebra ΛT ,h = O ((N h), P ) where h is a positive integer, (N h) is
the group generated by N h , and P is a basic (N h)-orbit generator of P(Λ # kZ∗). It follows from
Proposition 5.2 that ΛT ,h is a finite regular covering of ΛT . It is proved in [22] that a finite regular
covering of a Koszul self-injective algebra is also Koszul. So we have the following proposition.

Proposition 7.2. If ΛT is a Koszul algebra, so is ΛT ,h.

Assume that ΛT is Koszul, we are going to prove that all the τ -slice algebras are also Koszul. We
need some preparation.

Let h > 0 be an integer. A subset U of the vertex set Q 0 of a stable bound quiver Q is called
h-convex provided that for any (i,m), ( j,n) ∈ U , if there is a bound path of length � h from (i,m) to
( j,n) in Q such that all its vertices are in U , then for any bound path of length � h from (i,m) to
( j,n), its vertices are all in U . A full subquiver Q ′ of Q is called h-convex if its vertex set is h-convex
in Q . Clearly if Q is h-convex, then it is h′-convex for any h′ � h.

Lemma 7.3. Let Q ′ be a bound subquiver of a bound quiver Q , and suppose that the length of each path
appearing in the relation of Q is less or equal to h. If Q ′ is h-convex, then k(Q ′) is a subalgebra of k(Q ).

Proof. Clearly, we have an embedding of path algebras i : kQ ′ → kQ . Since Q ′ is h-convex, and the
length of each path appearing in the relation of Q is less or equal to h, a relation of Q is either a
relation of Q ′ or its terms contain no paths in Q ′ . Thus i induces an embedding from k(Q ′) into
k(Q ), and our assertion holds. �

The following proposition follows from the path completeness of a complete τ -slice.

Proposition 7.4. A complete τ -slice is h-convex in Q for any h.

Theorem 7.5. If Λ is a finite-dimensional self-injective algebra such that ΛT is Koszul. Then each of it’s τ -slice
algebra is a Koszul algebra with finite global dimension.

Proof. Let ΛS be a τ -slice algebra with the bound quiver Q S . We may assume that min{n | (i,n) ∈
Q S

0 } = 0, by shifting suitably. Assume that the depth of Q S is d = max{n | (i,n) ∈ Q S
0 }. Take a suf-

ficient large positive integer r > 1 with 3 max{d, l} + 1 < rl. Embed Q S into Q T ,r as a full bound
subquiver.

By Proposition 7.4, Q S is h′-convex in Q for any h′ , so it is h′-convex in Q T ,r for h′ �
(r − 1)max{d, l} − 1. By Proposition 7.2, ΛT ,r is Koszul, so relations of Q T ,r is quadratic. Let eS =
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∑
(i,n)∈Q S

0
e(i,n) , then by Lemma 7.3, ΛS = eSΛT ,reS � ΛT ,r/ΛT ,r(1 − eS)ΛT ,r is both a subalgebra and

a quotient algebra of ΛT ,r .
Let M be a finitely generated ΛS -module which is Koszul as ΛT ,r -module, and let

· · · ft+1−−→ P (t) ft−→ · · · f1−→ P (0) f0−→ M → 0

be a minimal projective resolution of M as a ΛT ,r -module. Then P (t) is finitely generated in degree t .
Apply the functor HomΛT ,r (ΛT ,reS , ), then we get an exact sequence

· · · → HomΛT ,r

(
ΛT ,reS , P (t0)

) → HomΛT ,r

(
ΛT ,reS , P (t0−1)

) → ·· ·
→ HomΛT ,r

(
ΛT ,reS , P (0)

) → M → 0.

Denote by Pm the direct sum of m-copies of P . Assume that

P (t) =
⊕

(i,n)∈Q T ,r
0

(
ΛT ,re(i,n)

)mt (i,n)
,

for 0 � mt(i,n) ∈ Z. We have that m0(i,n) �= 0 implies (i,n) is in Q S since M is a ΛS mod-
ule, hence 0 � n � d. mt(i,n) �= 0 implies that t � n � d + t since M is Koszul as a ΛT ,r -module,
and there is a path of length t from (i,n) to some (i′,n′) with m0(i′,n′) �= 0. Take t0 = d + 1,
then mt0 (i,n) = 0 for 0 � n � d and 2d + 1 < n < rl. So HomΛT ,r (ΛT ,reS , P (t0)) = 0. Note that
HomΛT ,r (ΛT ,re(i,n),Λ

T ,re(i′,n′)) �= 0 implies that there is a path of length � l from (i,n) to (i′,n′)
in Q T ,r . If HomΛT ,r (ΛT ,reS ,ΛT ,re(i,n)) �= 0 and mt(i,n) �= 0 for 0 � t � t0, then t < d < (r − 2)l. The l +
d-convexity of Q S implies that (i,n) is in Q S . So for 0 � t � t0, HomΛT ,r (ΛT ,reS , (ΛT ,re(i,n))

mt (i,n)) = 0
for (i,n) /∈ Q S

0 , and we see that

HomΛT ,r

(
ΛT ,reS , P (t)) = HomΛT ,r

(
ΛT ,reS ,

⊕
(i,n)∈Q T ,r

0

(
ΛT ,re(i,n)

)mt (i,n)
)

=
⊕

(i,n)∈Q T ,r
0

HomΛT ,r

(
ΛT ,reS ,

(
ΛT ,re(i,n)

)mt (i,n))

=
⊕

(i,n)∈Q S
0

HomΛT ,r

(
ΛT ,reS ,

(
ΛT ,re(i,n)

)mt (i,n))

�
⊕

(i,n)∈Q S
0

(
eSΛT ,re(i,n)

)mt (i,n)
.

Thus we have an exact sequence:

0 →
⊕

(i,n)∈Q S
0

(
eSΛT ,re(i,n)

)mt0−1(i,n−1) → ·· ·

→
⊕

(i,n)∈Q S

(
eSΛT ,re(i,n)

)m0(i,n) → M → 0.
0



34 J.Y. Guo / Journal of Algebra 355 (2012) 9–34
This is a projective resolution of M as a ΛS -module, since eSΛT ,reS � ΛS . The projective module⊕
(i,n)∈Q S

0
(eSΛT ,re(i,n))

mt (i,n) is generated at degree t . This shows that M is Koszul as a ΛS -module.

Especially ΛS is a Koszul algebra when ΛT is so. �
We also have the following corollary.

Corollary 7.6. Let Λ be a graded self-injective algebra Λ of Loewy length l + 1 with ΛT Koszul. Then specially
truncated algebra of Λ are all Koszul algebras of global dimension l − 1.
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