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Abstract

In connection with his counter-example to the fourteenth problem of Hilbert, Nagata formulated
a conjecture concerning the postulation-dat points of the same multiplicity if2 and proved it
whenr is a square. larrobino formulated a similar conjecturB4nWe prove larrobino’s conjecture
whenr is adth power. As a corollary, we obtain new counter-examples modeled on those by Nagata.
0 2004 Elsevier Inc. All rights reserved.

1. Introduction

What is the dimensiom(d, 8, 1, ..., u,) of the sub-vector space &fXo, ..., X4]
containing the homogeneous polynomials of degéethat vanish at general points
P, ..., pr € P4 with orderpus, ..., u,? This question remains open as sood gs2 and
has numerous consequences (see [1,3,6,9,10] for instance).

The question was raised by Nagata in connection with his answer to the fourteenth
problem of Hilbert [7]. He gave an example of a linear action on a finite-dimensional vector
space such that the algebra of polynomial invariants is not finitely generated. The key point
in the proof, which Nagata called the “fundamental lemma,” is the equalttylm, m1 =
m,...,mpeg=m)=0.
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When the dimension of the ambiant projective spacé=s2 and the number of points
is r <9, the dimensiot(d, 8, 1, ..., i) is well known [8]. As for the remaining cases
r > 9, Nagata formulated the following conjecture:

12,8, s, ) =1(2,8, ") =0 if s <ru,
[ —
r times

and proved it when is a square. This conjecture is of particular interest since it crystallizes
the difficulties. Indeed, the expected dimensi@) §, u”) is max0, v(2, §, u")) where

_ B+2.64+1) . w.(u+1)

U(2,3,Mr) > >

is the so-called virtual dimension. With any known method, the hardest cases are the
cases withr fixed, u > r and the degreé is such that the virtual dimension is zero.
An immediate estimate shows that the critiédbr which the virtual dimension is zero is
asymptotically equivalent tq¢/r u. It follows that the hardest cases correspond to Nagata's
conjecture. Nagata proved himself this conjecture whiesma square.

Leaving the two-dimensional case for the general case, there is still a conjecture for the
dimension(d, 8, u1, ..., ur), due to larrobino [4] (see also [5]). Facing the critical cases
too, he derived from his conjecture a generalization of Nagata’'s conjecture:

Conjecture 1. Let (r, d) be a couple of integers with

o d=>2,
e r >maxd +5,29),
o (rd)¢1{(7,2),(8,2),(9 3)}.

If § < &rutheni(d,s, u") =0.

In the 2-dimensional case however, this is not exactly Nagata's conjecture. Indeed,
Nagata’s conjecture is very slightly stronger, since the conditiod @§ < «/ru, not
8 < /ru, and this difference turned out to be very important in the applications (in Na-
gata’s counter-example to the fourteenth problem of Hilbert, or in [1] for instance). Re-
placing carelessly the strict inequality by a large inequality is not possible since the cases
(r,d) = (8,3) and(r, d) = (9, 2) would obviously contradict the statement. Nevertheless,
excluding these cases, one can formulate the conjecture as follows:

Conjecture 2. Let (r, d) be a couple of integers with
o d=>2,
o r >maxd +5,29),
o (r,d) ¢{(7,2),(8,2),(9,2),(873),(9,3)}.

If § < Yrptheni(d, s, ") =0.
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Let us call this conjecture the large critical conjecture in opposition to the conjecture by
larrobino which we shall call the strict critical conjecture.

The goal of this paper is to prove that the large critical conjecture holds when the number
of points is a power with exponent the dimension of the ambiant projective space:

Theorem 3. Letk be an algebraically closed field of characteristic zero. et 2 be an
integer,r be an integer such that= s? for somes > 2. Suppose moreover thét, d) ¢
{(4,2),(9,2),(8,3)}. Then

l(d,S,,ur)zo if § <su.

As a corollary, we obtain new counter-examples to the fourteenth problem of Hilbert.
Indeed, replacing the fundamental lemma of Nagata with our theorem, one can mimic step
by step the construction of Nagata (with a few minor and easy changes) to exhibit a new
example. In concrete terms, each couplgl) of the theorem gives a new fundamental
lemma and a new counter-example. The example associated with the ¢auplés an

action of the affine grouy:i;‘;d‘d‘1 on a vector space of dimensios’2

Theorem 4. Leta;; (i =0,...,d, j=1,...,5% be the coordinates of’ generic points
of P4, LetV be the vector space of dimensighand V* c V be the set of vectors orthog-
onal to thed + 1 vectors(a;1, ..., a;.). Let G be the set of linear transformatioras of
Sped[x1, ..., Xy, 1, ..., ta] such that

o o(t;) =1,
e o(x;)=x; + bit;

for some(by, ...,bu) € V*. Then the algebra of elements Kifxy, ..., xw, 11, ..., 1]
invariant underG is not finitely generated.

As mentioned, the proof of Theorem 4 is a straightforward generalization of Nagata’s
proof [9] and we refer to this paper for it.

Our method to prove Theorem 3 is an induction on the dimension of the ambiant projec-
tive space. The formulation of the theorem does not suggest such an induction; however,
using the notion of collision of fat points, we transform the statement of the theorem into a
combinatorial statement and we perform the induction on the combinatorial statement (see
Remark 19).

Remark 5. It seems that Theorem 3 leaves the caged) = (4,2), (r,d) = (9,2)

and (r,d) = (8, 3) untreated. However, these cases are completely understood. Indeed,
by [8] for (r,d) = (4,2) and (9, 2), and by Proposition 20 fo¢r, d) = (8, 3), we have

1(d, 8, ) =max0, (*5) — r.(**Hh).

If the characteristic of the base field is arbitrary, we can forget the parts of the proof
which use the hypothesis on the characteristic and we still have the strict critical conjecture:
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Theorem 6. Let 4 > 2 be an integer and let be a dth-power. If § < ¢ru then
I(d,s,u")=0.

2. Stratificationson the Hilbert scheme

In this section, we explain the strategy of the proof: we define locally closed subschemes
C(Ez1, ..., E;) of the Hilbert scheme Hil@??) and we reduce the proof to an incidence
between these subschemes.

Monomial subschemes
A staircaser in N is a subset whose complement& — E verifies
(N —E)+N?c N/ — E.

A staircaseE being fixed, let’£  k[[x1, ..., x4]] (respectivelyl £ C k[x1, ..., x4]) be
the ideal whose elements are the series (respectively the polynomials)

a1 o g _ o
E Cogap..oqXy Xo - X" = E CaX’

verifying ¢, =0 if « € E. A zero-dimensional subschernzeof P4 supported by a poin
is said to be monomial with staircaggif it is defined by the ideal £ in a suitable formal
neighborhood Spéd([x1, ..., x4]] < P? of 4.

A fat point of multiplicity m is by definition a monomial subscheme defined by the
regular staircase,, :

R, = {(al,...,ad) Star+---+ay <m}.
Subschemes bfilb (P9)

If Eq,...,E; are finite staircases iV, we denote byC(Eq,..., E;) the reduced
subscheme of HilB¢ whose points parametrize the subschemesf P? which are the
disjoint union ofi distinct monomial subschemes with staircaggs..., E;. In sym-
bols Z = [[Z;, where Z; is monomial with staircaseé;. It is known by [2] that
C(E1,...,E;) C HilbP4 is a locally closed irreducible subscheme. In particular it has
a generic poiniG, which parametrizes a subschetfig whose ideal is denoted by, .

We denote by (d, s, E1, ..., E;) = hO(IZG (8)) the number of independent hypersurfaces
of degrees in P4 containingZg.

larrobino’s conjecture and incidence between strata

The theorem we want to prove can obviously be reformulated as:
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r times
s m—

Theorem 7. Letr = s ands < su. Then/(d, 8, Ry,..., R,:) =0if (s,d) ¢ {(1,d), (2,d),
(3, 2)} and if the characteristic of the base field is zero.

The following proposition reduces the proof of the theorem to the computation of the
closure ofC(Ry, ..., Ry).

Proposition 8. Let E1, ..., E; c N be staircases. Suppose that there exists a stairéase
with F D Rsy1 andC(F) Cc C(Ey, ..., E;),thenid,§, E1, ..., E;) = 0.

Proof. By semi-continuity of the cohomology(,$, E1,...,E;) < 1,8, F) and

ld,$,F) <l1d,§, Rs+1) since F D Rsy1. Since obviouslyl(d, §, Rs+1) = 0, the van-
ishing ofl(d, 8, E1, ..., E;) follows from the last two inequalities. O

3. Elementary incidences

The previous section explained that the theorems would follow from incidences be-
tween the various subschemés¢Ey, ..., E;). The goal of this section is to exhibit such
incidences.

Let £ c N be a finite staircase arice {1, ..., d} be an integer. There exists a unique
“height” function

hei N1 N
such that
(ai,...,ag) e E & a;<hgi(as,...,ai-1,0i41,...,a4q).
Conversely, a function is the height function of some staircase if and onlg @ + b) <

h(a) for any (a,b) e N“=1 x N1 If E4,..., E; are staircases, the sum Bf, ..., E;
along theith coordinate is the staircasg(Ey, . .., E;) characterized by its height function

Proposition 9. Let Ey, ..., E; be staircases and € {1, ..., j}. ThenC(Ey,..., E;) D
C(Si(E1,..., E), Exy1, ..., Ej).

Proof. This is a straightforward generalization of [2, Proposition 5.1.2].

Let (a1, ...,aq) € (N*)¢ and letE be a staircase. We denote bwa, ..., aq).E the
staircase “obtained frorB” by the linear map

(x1,...,xq) — (a1x1,...,aq4xq).
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Concretely, this is the smallest staircase satisfying the relation:
(m1,....mg) €E = (ar(mi+1) —1,....,a4(mg+1) —1) € (a1....,aq).E.
This is a staircase of cardin@l.a> . ..a; #E. Denote byu. E the staircaséa, a, ..., a).E.

Proposition 10. LetE, Ey, ..., E; be staircases. Then

C(E,...,E,E1,...,Ej)) DC((a1,...,a4).E, E1, ..., Ej).
N —

[Tai times

Proof. By induction on the number af;’s which are not equal to one. If all the’s but
one are equal to one, the statement follows from the previous proposition since

(1,...,1,61,’,1,...,1).E=S,'(E,...,E).
——

a; times

For the general case, one can suppose by symmetrytbat. Applying several times—
namelyaoas - - - a; times—this first step, we get

CE,....E E1,....Ep>C(a1,....).E, ..., (a1, 1,...,1).E, E1, ..., E})
\q/—/

[Tai times az--aq times

and, by induction,

C(a,1,....1).E,.... (a1, L,....1.E, E1,.... E))

az---ag times

contains

C((,az,....a0).(a1,1,... ., 1).E, E1,...,Ej)=C((a1, ..., aq).E, E1, ..., Ej).
The expected inclusion follows immediatelyo

In particular, whemiy =ap =--- =ay = s, we get:

Proposition 11. LetE, E, ..., E; be staircases. Then

C(E,...,E,E1,...,E;)DC(s.E, E1, ..., E}).
———
s4 times
Definition 12. Let A = (81, ..., 84) be a primitive vector irZ¢ such that there exist j

satisfyings;6; < 0. LetE C N be a subset. We denote by E) c N¢ the unique subset
verifying the following two conditions:
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e forany lineL in R with directionA, the sets£ N L andA(E) N L are equipotent,
e VieN,Vin,p)e N2 ne A(E)andp=n+iA= p e A(E).

To be more explicit, the sdt NN is finite by hypothesis om. If m1; <mp < --- < m;
are its elements, ordered by the relation

mijy <mj, < JdieN my=m,+iA, (<)
thenA(E)NL ={m1,...,my}, wherek =#(ENL).
Proposition 13. Let A = (81, ..., 84) € Z¢ be a vector such that
e 1i,5;, =1,
o Vk, k#i= 8 <0,
e 3j#i,8; #0.

Then for every staircasg, A(E) is a staircase. Moreover, we have in characteristic zero
the incidence

C(E) D C(A(E)).

Proof. Suppose by symmetry thét = 1. Let

1
@:k[xl,...,xd]—>k[xl,...,xd]|:t, ;]

5 —8 -5
X1 x4 x, 2xg 2 x

xi—>x; ifi#£L

The ideal
1 E
1(1) =k[xq, ... ,xd][t, ;](D(I )

defines a subscheme
Fc(A'—{0}) x A?

whose fiber over eache A —{0} is a monomial subscheme with staircasen particular,
F is flat overA® — {0}. The closureF c Al x A? is defined by the ideal (r) = I(t) N
k[x1,...,xq,t] and itis flat overal.

We want to prove the equality(0) = 714 using a natural graduation.

Let g1, ..., pq_1:7Z¢ — Z be independent linear forms which vanish anConsider
the multi-graduatiorD defined by:
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D :Monomials ofk[x1, ..., x4] — Z¢71

x4 (01, ... pa-1(@)).

The conditions omA imply that, for allz = (z1, ..., z4—1) € Z%~1, the sub-vector space
klx1,...,xql; C klx1, ..., xq] containing the elements of degreéas finite dimension.
Note thatJ () is a graded ideal, i.e.,

In= @ Lo

éezd—l
where
Jg(t) =J@) Nkl[xy,..., xd]g[t].

In particular, to compute/(0) = lim;_.oJ(¢), it suffices to compute the limit of its
graded parts in the Grassmannia®d, k[x1, ..., xq4];), wherel = dimJ,(¢),t # 0. Let
m1 < --- < my be the monomials of[x1, ..., x4];, where the order is diven by the rela-
tion (<) above. Let us admit temporarily the inclusion

M1, Mk—142, ..., mg € J-(0). (*)

Then J,(0) is the vector space generated tay_; 1, my—;y2,...,my for dimensional
reasons and (0) = I4(E) since these two graded ideals have the same graded parts. In
particularJ (0) is an ideal generated by monomials and thessgt) of monomials which
are not inJ (0) is a staircase. Moreover, replacing the coordinages. ., x; of A¢ by any
local system of coordinates, one shows by the same computation that any closed point of
C(A(E), Eq, ..., E}) is a limit of points which are irC(E, Ey, ..., E;). This gives the
incidence between the strata.

It remains to show(x). Let n1 = x¢@, ... n; = x2® be the monomials of £ N
k[x1,...,xq];, wherea (i) = (@1(i), ..., ag(i)). The ideall () contains the monomials

@ (nj) = (tx1+ x2_52x3_53 .. .xd_sd)al(i)xgza) .. .xgd(i).
Since the degree at; in x1 is k — i, this equality can be rewritten as:
W (@),  (a®)
o= Y (M ety = 55 (7 Yoo
j=o 7 =0~ 7

with the usual conventio(]“lj?i)) =0if j > a1(i). If N andM are the column matrices
whose entries are respectivan;),i € {1,...,1},andt/my_;, j € {0, ..., k—1},if Pis
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the matrix whose coefficierf;; is ("‘11.(")), the above equality writes dows = P M. Take
the first/ columns of P to get a square matrix

(1 a® () . (°;1_‘?)>
o=\... .. )
1oea) (%) . (1)

Since the coefficients in the third column are polynomials of degree2, imne can replace
the third column by a linear combination of the first three columns so thathreement
in the third column becomes, (i )2. Similarly, after suitable operations on the columns, the
ith element in the fourth, fifth column. .. becomesi)3, a1(i)%, .... The resulting matrix
is a Van Der Monde matrix in the, (i)’s. In characteristic zero, its determinant is not zero
since thex1(i)’s are distinct. In particula@ is invertible.

The ideall () contains the elements which are the coefficients of the mariky =
0~1PM. Using that the identity is a submatrix ¢f~1 P by construction, théth element
in this column matrix is;; (r) = ' “my_; 1 + R whereR is a polynomial dividable by'.

Thus,j;if’f € J(t) and, as expected,(0) containsfjif’l) ) =myp_jpaforie{l,....l}. O

If we have a finite set of monomial subschemes, we can specialize the first one and
leave the remaining subschemes unchanged. Thus, we get as a corollary of the previous
proposition:

Proposition 14. Let A = (81, ...,84) € 74 be a vector such that
e di,6, =1,
o Vk, k#i= & <0,
e Jj#i,8; #0.
Then for every set of staircasgs Eq, . .., Ej, we have in characteristic zero the incidence
C(E,E1,...,Ej) DC(A(E), E1, ..., Ej).

3.1. Combinatorial properties oh

We give here some combinatorial properties of the miap> A(E) that we will use
later on.

Lemma 15. Let E and F be two subsets df¢ and A = (81, ..., 84) € Z¢ be a direction
satisfying the properties of the preceding proposition. Suppose that for everk livith
direction A, we have the inequality on cardinals

#HENL)>#FNL)

thenA(E) D A(F).
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Proof. We must show for every ling the inclusionA(E)NL > A(F)N L. Thisis obvious
since, using then;’s introduced after Definition 12A(E) N L = {my, ..., m#Eenry} and
A(F)NL ={my,...,myrnry}. O

Applying this lemma to the followingZ and toF = R,,, noticing thatA(R,,) = R, we
get:

Lemma16. Let R, be aregular staircasen € R,,, P C N¥ asubset such that N R, =0
andE = R, U P — {m}. If there exists € Z such thatn 4+-iA € P, thenA(E) D R,,.

Lemma 17. Let(s, d) be a couple of integers with> 2, s > 2, and(s, d) ¢ {(2, 2), (2, 3),
(3,2)}. Then there exist&y, ..., A1) € (Z9)9 such that

e Vi, A; verifies the conditions of Propositidr8,
o V>0, Ag(Ag-1(... (A1(s-Ri))) D Rypupa.

Remark 18. More precisely, it will follow from the proof that the choice of the depend
ons in the following way.

e s>3:4=(,...,0,1,—s+1),A4,=(,...,0,—s+2,1), 4, =(0,...,0,1, -1,
-1,0,...,0) fori > 3, where the 1 is on the position of index1d — i.

e s=34=(,...,0,1,-2,0), 4,=(0,...,0,-3,0,1), A3=(0,...,0,0,1, —2),
Ai=(0,...,0,1,-1,-1,0,...,0) fori > 4.

e s=2:41=(0,...,0,1,-1,-1,-1),4,=(0,...,0,-1,1,-1,0), A3= (0, ..., 0,
-1,0,1,-1), A,=(0,...,0,-1,-1,0,1), 4,=(0,...,0,1,-1,-1,0,...,0) for
i>5.

Proof. We proceed by induction od. Considering the couple§, d) involved in the
proposition, we have to initialize the induction with the cages 3,d =2), (s =3,d = 3)
and(s =2,d =4).

Initial cases. If d =2,5s > 3,thenone cantakd; = (1, —s + 1) and Ay = (—s + 2, 1).
Whens = 3,d = 3, we must findA1, Az, Az such that

A3(A2(A1(B.Ry))) D Rau1.
The &tD{42 elements of the difference
R3ut1—3.R,={(Bx,3y,3), x+y+z=pu}
are shown in Fig. 1 withe = 2. TakingA1 = (1, —2, 0), we have:

R3/»L+l - Al(aRﬂ) = {(0’ 3)’, 32)7 y +Z = H’}
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Fig. 1.
Finally, takingA, = (—3,0,1) andAz = (0, 1, —2),

A3(A2(A1(3.Ru))) D R3uq1,

as expected.
Consider now the last initial cage = 2, d = 4). By definition,

2Ry ={(x, y,z,0) S.Ix /21 + [y/21 + [2/2] + [1/2] < e},

where[ ] stands for the integral part. P ¢ N* is a subset, we denote ¥ the subset

of P containing the elements, y, z, t) such that elements amongy, y, z,¢) are odd

and we putS,, = R,,+1 — R,,. With these notations, easy considerations on the parities of
(x,y,z,t) give the equality:

0 3 4
2R, =Rp, (SZM \ SZM) 1 Szu+1 85,10

To computeA(2R,,), we note that we can defing on subsets in such a way thatAf=
11 E; is a disjoint union, them\(E) =] [ A(E;). Indeed, by construction of the map if
L is aline inR¢ with directionA, thenE N L andA(E) N L are two totally ordered sets of
the same finite cardinality, hence there is a unique increasing one-to-one correspondence
betweenE N L andA(E)N L. If e € E andL is the line with directionA passing through
e, A(e) is the image ot through this correspondence. We IetE;) = Ue,—eEi A(e;).
Let A1 = (1, -1, -1, —1). To compute the imagea(e) of an element, we make the
following observation. If£ ¢ N* can be written as a disjoint union

E=Rj1UE; nHUEjp0---Ejy, with E; C §;

andif Ay = (A, Ay, A, Ay) satisfies—2(A, + A, + A, + Ay) > k, then

otherwise
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This observation leads to the equality
A1(2R,,) = Ry 11 (S2,\ 89,) L1 S5, 1 1T A1(S3,,, ).

If P c N% we defineP(1, % # 0,¢) C P to be the subset containing the elements
(x,y,z,t) with x =1, y any numberz # 0 andr even. There are obvious generalizations
of this notation. With this notation, we have:

A1(2R),) = Ry 1 (S, \ 89,) L1 S5, 4 L1 SY (0, , %, %)
= Ry L1 (S, \ 89,0, 5,5, %)) L1 S3, 4
= Roy LI (S2, \ 85, (0., %, %)) LS5, 1 (1%, %, )

LS5, (Lox e, x) IS5 (Le s #) LSS, (1% %, %),

LetAy=(=1,1,-1,0), A3=(-1,0,1,—1), As= (-1, —1,0,1). Then,

A0 A1(2Ry) = Ry 1 (S \ 89, (0, %, %, %)) LT Ap(S5, 1 (1, %, %, e))
LS5, Lok e x) IS5 1 (Le s #) IS5, (1% % %)
= Roy LI (S2 \ 89,0, %, %, %)) LI 55, (0, # 0, , %)
L83, 1 (Lox e #) LS5, g (Le s %) LSS, (1%, %)
= Roy L1 (S, \ $9,(0.0. %, %))

LS5, Lok e #) S5 (e s+ ISS 1L * % %),

A30 Ago A1(2R,) = Ry 1 (S, \ 89,0, 0, , %))
LS5, (L% e, %) L A3(S5, 1 (1 e, %, %))
il SSMH(;A 1, %, *, %)
D Roy LI (S, \ 55,(0,0,0, %))

LS5, 1 (Lox e, %) LS5 1 (1%, %, %),

Ago Azo Ao A1(2R,) D Roy U (S2,\ (0,0,0, 21))
L Ag(S3, (L%, %)) LIS, 1 (F 1%, %, %)

D Roy LI S, 1S3, 1 (£ 1%, %, ).

We have obtained the required inclusida o Az o Az 0 A1(2R,,) D Roy+1.
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Step fromd — 1tod. As we will proceed by induction on the dimensighwe precise
our notations and we denote R/ (d) the regular staircasg; in N¢. Let 7; be the ‘th
slice” of s.R,(d), i.e.,

Ti:i={meN""tst.(i,m) es.Ru(d)}.

ThenT; = 5.R,()(d — 1) with v(i) = max©, u — [£]). Wheni < su, v(i) > 0 and we
can apply the induction td;. Using moreover thatv(i) > su — i, we get elements
Y1 ..., va—1 € N1 such that,

T =ya-1(... (v1(T)) D Revi)+1(d — 1) D Rypq1-i(d — 1).
Let A; = (0, y;) € N?. Theith slice of the staircase

F=A4-1(...(A1(s-Ru(d))))

is T/. Summing up, fori < su, the ith slice of F strictly contains theith slice
Rsut1-i(d — 1) of Ry, 11(d). In particular, F contains all thed-tuples whose sum is
su except(su, 0,0, ...,0).

It remains to findA, such thatd,; (F) D Ry,+1(d) by an application of Lemma 16.

Note that
Tsp-1=5.R1(d—1)DK=Rxd—-1)U(,10,...,0.
It follows that
Ti—1 D va-1(--- (n(K))) =K

and that the element= (su — 1,1,1,0,...,0)isin F. Let A; =(1,-1,-1,0,...,0).
Applying Lemma 16 withvn = (sit,0,0,...,0), E=F, P =F — Ryu+1(d), A = Ay,
spu +1instead ofu, m + i A =z, we get the expected inclusiaty (F) D Ryu+1(d). O
4. Conclusion of the proofs
4.1. Proof of Theorems 3 and 6

Let us denote the stratu@(Ex, ..., E1, ..., E,, ..., E;) by C(E7*, ..., E/") where

n; is the number of copies of;. According to Proposition 8, to conclude the proof of
Theorem 3 (respectively of Theorem 6), we must show thats fer2, d > 2 and(s, d) ¢

{(2,2), (2,3), (3,2)} (respectively fos > 1,d > 2) C(Rff) D C(E) for some staircas€
containingR;,,+1 (respectively containings,,). By Proposition 11,

C(R) D C(s.Ry).
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Sinces.R,, D Ry, this concludes the proof of Theorem 6. As for Theorem 3, taking:for
the staircasels(Ag—1(... A1(s.R,))) constructed in Lemma 17, we have

C(s.R,) D C(E)

by Proposition 13. The required inclusio}“(Rff) D C(E) follows immediately from the
last two displayed inclusions.

Remark 19. The above proof relies heavily on Lemma 17, which is the key point. This key
lemma is proved by an induction on the dimension.

4.2. Thecase=8,d =3

The goal of this section is to compute the postulation of 8 fat points of multiplicity
in P3, stated in Remark 5:

Proposition 20. Letr =8,d = 3andv(d, §, ') = (*19) — r(“*%71). Then
l(d, S, ,ur) = max(O, v(d, S, u')).

Proof. If Z¢ is the generic union of 8 fat points of multiplicity, the vector space
HO(IZG (8)) being the kernel of the restriction morphism:

HO(Opa(8)) = H%(0z,(®)).
its dimensiori(d, §, u") is at least
v(d, 8, 1") = hO(Opa(8)) — h°(Oz (8)).
LetA=(1,—1 —1)andE = A(2R,). .
To prove the reverse inequaliti, 5, ") < max©0, v(d, 8, u")), sinceC(Rf[’) D C(E)

by Proposition 11 and Proposition 13, it suffices by semi-continuity to exhibit a subscheme
Z in C(E) such that

h0(12(8)) = max0, v(d, 8, u"))

for all §. Let A = Spedk([xy,...,x4] C P4 be an affine space arlbe the subscheme of
A4 whose ideal ig £. By dehomogenization, the vector spaé&(Op. (8)) is in bijection
with the subspac§; C k[x1, ..., x4] containing the polynomials of degree at mésand
HO(17(8)) corresponds ta£ N Ss. Now, dimZ £ N S is the number of monomials iR 1
which are not inE. Since

Ry, CE C Ryy11,

this number is 0 i < 2. — 1 andh®(Opa (8)) —#E if § >2u. O
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