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Abstract

In connection with his counter-example to the fourteenth problem of Hilbert, Nagata formu
a conjecture concerning the postulation ofr fat points of the same multiplicity inP2 and proved it
whenr is a square. Iarrobino formulated a similar conjecture inP

d . We prove Iarrobino’s conjectur
whenr is adth power. As a corollary, we obtain new counter-examples modeled on those by N
 2004 Elsevier Inc. All rights reserved.

1. Introduction

What is the dimensionl(d, δ,µ1, . . . ,µr) of the sub-vector space ofk[X0, . . . ,Xd ]
containing the homogeneous polynomials of degreeδ that vanish at general poin
p1, . . . , pr ∈ P

d with orderµ1, . . . ,µr? This question remains open as soon asd � 2 and
has numerous consequences (see [1,3,6,9,10] for instance).

The question was raised by Nagata in connection with his answer to the four
problem of Hilbert [7]. He gave an example of a linear action on a finite-dimensional v
space such that the algebra of polynomial invariants is not finitely generated. The ke
in the proof, which Nagata called the “fundamental lemma,” is the equalityl(2,4m,m1 =
m, . . . ,m16 = m) = 0.

E-mail address:laurent.evain@univ-angers.fr.
0021-8693/$ – see front matter 2004 Elsevier Inc. All rights reserved.
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When the dimension of the ambiant projective space isd = 2 and the number of point
is r � 9, the dimensionl(d, δ,µ1, . . . ,µr) is well known [8]. As for the remaining case
r > 9, Nagata formulated the following conjecture:

l(2, δ,µ, . . . ,µ︸ ︷︷ ︸
r times

) = l
(
2, δ,µr

) = 0 if δ �
√

rµ,

and proved it whenr is a square. This conjecture is of particular interest since it crystal
the difficulties. Indeed, the expected dimensionl(2, δ,µr) is max(0, v(2, δ,µr)) where

v
(
2, δ,µr

) = (δ + 2).(δ + 1)

2
− r.

µ.(µ + 1)

2

is the so-called virtual dimension. With any known method, the hardest cases a
cases withr fixed, µ � r and the degreeδ is such that the virtual dimension is zer
An immediate estimate shows that the criticalδ for which the virtual dimension is zero
asymptotically equivalent to

√
rµ. It follows that the hardest cases correspond to Naga

conjecture. Nagata proved himself this conjecture whenr is a square.
Leaving the two-dimensional case for the general case, there is still a conjecture

dimensionl(d, δ,µ1, . . . ,µr), due to Iarrobino [4] (see also [5]). Facing the critical ca
too, he derived from his conjecture a generalization of Nagata’s conjecture:

Conjecture 1. Let (r, d) be a couple of integers with

• d � 2,
• r � max(d + 5,2d),
• (r, d) /∈ {(7,2), (8,2), (9,3)}.

If δ < d
√

rµ thenl(d, δ,µr) = 0.

In the 2-dimensional case however, this is not exactly Nagata’s conjecture. In
Nagata’s conjecture is very slightly stronger, since the condition onδ is δ � √

rµ, not
δ <

√
rµ, and this difference turned out to be very important in the applications (in

gata’s counter-example to the fourteenth problem of Hilbert, or in [1] for instance)
placing carelessly the strict inequality by a large inequality is not possible since the
(r, d) = (8,3) and(r, d) = (9,2) would obviously contradict the statement. Neverthele
excluding these cases, one can formulate the conjecture as follows:

Conjecture 2. Let (r, d) be a couple of integers with

• d � 2,
• r � max(d + 5,2d),
• (r, d) /∈ {(7,2), (8,2), (9,2), (8,3), (9,3)}.

If δ � d
√

rµ thenl(d, δ,µr) = 0.
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Let us call this conjecture the large critical conjecture in opposition to the conjectu
Iarrobino which we shall call the strict critical conjecture.

The goal of this paper is to prove that the large critical conjecture holds when the nu
of points is a power with exponent the dimension of the ambiant projective space:

Theorem 3. Let k be an algebraically closed field of characteristic zero. Letd � 2 be an
integer,r be an integer such thatr = sd for somes � 2. Suppose moreover that(r, d) /∈
{(4,2), (9,2), (8,3)}. Then:

l
(
d, δ,µr

) = 0 if δ � sµ.

As a corollary, we obtain new counter-examples to the fourteenth problem of Hi
Indeed, replacing the fundamental lemma of Nagata with our theorem, one can mim
by step the construction of Nagata (with a few minor and easy changes) to exhibit
example. In concrete terms, each couple(s, d) of the theorem gives a new fundamen
lemma and a new counter-example. The example associated with the couple(s, d) is an
action of the affine groupGsd−d−1

a on a vector space of dimension 2sd :

Theorem 4. Let aij (i = 0, . . . , d, j = 1, . . . , sd) be the coordinates ofsd generic points
of P

d . LetV be the vector space of dimensionsd andV ∗ ⊂ V be the set of vectors orthog
onal to thed + 1 vectors(ai1, . . . , aisd ). Let G be the set of linear transformationsσ of
Speck[x1, . . . , xsd , t1, . . . , tsd ] such that

• σ(ti) = ti ,
• σ(xi) = xi + biti

for some(b1, . . . , bsd ) ∈ V ∗. Then the algebra of elements ofk[x1, . . . , xsd , t1, . . . , tsd ]
invariant underG is not finitely generated.

As mentioned, the proof of Theorem 4 is a straightforward generalization of Nag
proof [9] and we refer to this paper for it.

Our method to prove Theorem 3 is an induction on the dimension of the ambiant p
tive space. The formulation of the theorem does not suggest such an induction; ho
using the notion of collision of fat points, we transform the statement of the theorem
combinatorial statement and we perform the induction on the combinatorial stateme
Remark 19).

Remark 5. It seems that Theorem 3 leaves the cases(r, d) = (4,2), (r, d) = (9,2)

and (r, d) = (8,3) untreated. However, these cases are completely understood. In
by [8] for (r, d) = (4,2) and (9,2), and by Proposition 20 for(r, d) = (8,3), we have
l(d, δ,µr) = max

(
0,

(
δ+d
d

) − r.
(
d+µ−1

d

))
.

If the characteristic of the base field is arbitrary, we can forget the parts of the
which use the hypothesis on the characteristic and we still have the strict critical conje
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Theorem 6. Let d � 2 be an integer and letr be a d th-power. If δ < d
√

rµ then
l(d, δ,µr) = 0.

2. Stratifications on the Hilbert scheme

In this section, we explain the strategy of the proof: we define locally closed subsch
C(E1, . . . ,Ei) of the Hilbert scheme Hilb(Pd) and we reduce the proof to an inciden
between these subschemes.

Monomial subschemes

A staircaseE in N
d is a subset whose complementaryN

d − E verifies

(
N

d − E
) + N

d ⊂ N
d − E.

A staircaseE being fixed, letIE ⊂ k[[x1, . . . , xd ]] (respectivelyIE ⊂ k[x1, . . . , xd ]) be
the ideal whose elements are the series (respectively the polynomials)

∑
cα1α2...αd

x
α1
1 x

α2
2 . . . x

αd

d =
∑

cαxα

verifying cα = 0 if α ∈ E. A zero-dimensional subschemeZ of P
d supported by a pointq

is said to be monomial with staircaseE if it is defined by the idealIE in a suitable forma
neighborhood Speck[[x1, . . . , xd ]] ↪→ P

d of q.
A fat point of multiplicity m is by definition a monomial subscheme defined by

regular staircaseRm:

Rm := {
(α1, . . . , αd) s.t.α1 + · · · + αd < m

}
.

Subschemes ofHilb(Pd)

If E1, . . . ,Ei are finite staircases inNd , we denote byC(E1, . . . ,Ei) the reduced
subscheme of HilbPd whose points parametrize the subschemesZ of P

d which are the
disjoint union of i distinct monomial subschemes with staircasesE1, . . . ,Ei . In sym-
bols Z = ∐

Zj , where Zj is monomial with staircaseEj . It is known by [2] that
C(E1, . . . ,Ei) ⊂ Hilb Pd is a locally closed irreducible subscheme. In particular it
a generic pointG, which parametrizes a subschemeZG whose ideal is denoted byIZG

.
We denote byl(d, δ,E1, . . . ,Ei) = h0(IZG

(δ)) the number of independent hypersurfac
of degreeδ in P

d containingZG.

Iarrobino’s conjecture and incidence between strata

The theorem we want to prove can obviously be reformulated as:
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Theorem 7. Letr = sd andδ � sµ. Thenl(d, δ,

r times︷ ︸︸ ︷
Rµ, . . . ,Rµ) = 0 if (s, d) /∈ {(1, d), (2, d),

(3,2)} and if the characteristic of the base field is zero.

The following proposition reduces the proof of the theorem to the computation o
closure ofC(Rµ, . . . ,Rµ).

Proposition 8. Let E1, . . . ,Ei ⊂ N
d be staircases. Suppose that there exists a staircaF

with F ⊃ Rδ+1 andC(F) ⊂ C(E1, . . . ,Ei), thenl(d, δ,E1, . . . ,Ei) = 0.

Proof. By semi-continuity of the cohomologyl(d, δ,E1, . . . ,Ei) � l(d, δ,F ) and
l(d, δ,F ) � l(d, δ,Rδ+1) sinceF ⊃ Rδ+1. Since obviouslyl(d, δ,Rδ+1) = 0, the van-
ishing of l(d, δ,E1, . . . ,Ei) follows from the last two inequalities.�

3. Elementary incidences

The previous section explained that the theorems would follow from incidence
tween the various subschemesC(E1, . . . ,Ej ). The goal of this section is to exhibit suc
incidences.

Let E ⊂ N
d be a finite staircase andi ∈ {1, . . . , d} be an integer. There exists a uniq

“height” function

hE,i :Nd−1 → N

such that

(a1, . . . , ad) ∈ E ⇔ ai < hE,i(a1, . . . , ai−1, ai+1, . . . , ad).

Conversely, a functionh is the height function of some staircase if and only ifh(a + b) �
h(a) for any (a, b) ∈ N

d−1 × N
d−1. If E1, . . . ,Ej are staircases, the sum ofE1, . . . ,Ej

along theith coordinate is the staircaseSi(E1, . . . ,Ej ) characterized by its height functio

hSi(E1,...,Ej ),i =
j∑

k=1

hEk,i .

Proposition 9. Let E1, . . . ,Ej be staircases andk ∈ {1, . . . , j}. ThenC(E1, . . . ,Ej ) ⊃
C(Si(E1, . . . ,Ek),Ek+1, . . . ,Ej ).

Proof. This is a straightforward generalization of [2, Proposition 5.1.2].�
Let (a1, . . . , ad) ∈ (N∗)d and letE be a staircase. We denote by(a1, . . . , ad).E the

staircase “obtained fromE” by the linear map

(x1, . . . , xd) 	→ (a1x1, . . . , adxd).
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Concretely, this is the smallest staircase satisfying the relation:

(m1, . . . ,md) ∈ E ⇒ (
a1(m1 + 1) − 1, . . . , ad(md + 1) − 1

) ∈ (a1, . . . , ad).E.

This is a staircase of cardinala1.a2 . . . ad .#E. Denote bya.E the staircase(a, a, . . . , a).E.

Proposition 10. LetE,E1, . . . ,Ej be staircases. Then:

C(E, . . . ,E︸ ︷︷ ︸∏
ai times

,E1, . . . ,Ej ) ⊃ C
(
(a1, . . . , ad).E,E1, . . . ,Ej

)
.

Proof. By induction on the number ofai ’s which are not equal to one. If all theai ’s but
one are equal to one, the statement follows from the previous proposition since

(1, . . . ,1, ai,1, . . . ,1).E = Si(E, . . . ,E︸ ︷︷ ︸
ai times

).

For the general case, one can suppose by symmetry thata1 �= 1. Applying several times—
namelya2a3 · · ·ad times—this first step, we get

C(E, . . . ,E︸ ︷︷ ︸∏
ai times

,E1, . . . ,Ej ) ⊃ C
(
(a1,1, . . . ,1).E, . . . , (a1,1, . . . ,1).E︸ ︷︷ ︸

a2···ad times

,E1, . . . ,Ej

)

and, by induction,

C((a1,1, . . . ,1).E, . . . , (a1,1, . . . ,1).E︸ ︷︷ ︸
a2···ad times

,E1, . . . ,Ej )

contains

C
(
(1, a2, . . . , ad).(a1,1, . . . ,1).E,E1, . . . ,Ej

) = C
(
(a1, . . . , ad).E,E1, . . . ,Ej

)
.

The expected inclusion follows immediately.�
In particular, whena1 = a2 = · · · = ad = s, we get:

Proposition 11. LetE,E1, . . . ,Ej be staircases. Then:

C(E, . . . ,E︸ ︷︷ ︸
sd times

,E1, . . . ,Ej ) ⊃ C(s.E,E1, . . . ,Ej ).

Definition 12. Let ∆ = (δ1, . . . , δd) be a primitive vector inZd such that there existi, j
satisfyingδiδj < 0. LetE ⊂ N

d be a subset. We denote by∆(E) ⊂ N
d the unique subse

verifying the following two conditions:
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• for any lineL in R
d with direction∆, the setsE ∩ L and∆(E) ∩ L are equipotent,

• ∀i ∈ N, ∀(n,p) ∈ (Nd)2, n ∈ ∆(E) andp = n + i∆ ⇒ p ∈ ∆(E).

To be more explicit, the setL∩Nd is finite by hypothesis on∆. If m1 < m2 < · · · < mj

are its elements, ordered by the relation

mi1 < mi2 ⇔ ∃i ∈ N, mi1 = mi2 + i∆, (<)

then∆(E) ∩ L = {m1, . . . ,mk}, wherek = #(E ∩ L).

Proposition 13. Let∆ = (δ1, . . . , δd) ∈ Z
d be a vector such that

• ∃i, δi = 1,
• ∀k, k �= i ⇒ δk � 0,
• ∃j �= i, δj �= 0.

Then for every staircaseE, ∆(E) is a staircase. Moreover, we have in characteristic z
the incidence:

C(E) ⊃ C
(
∆(E)

)
.

Proof. Suppose by symmetry thatδ1 = 1. Let

Φ : k[x1, . . . , xd ] → k[x1, . . . , xd ]
[
t,

1

t

]
x1 	→ tx1 + x

−δ2
2 x

−δ3
3 . . . x

−δd

d

xi 	→ xi if i �= 1.

The ideal

I (t) = k[x1, . . . , xd ]
[
t,

1

t

]
Φ

(
IE

)
defines a subscheme

F ⊂ (
A

1 − {0}) × A
d

whose fiber over eacht ∈ A
1−{0} is a monomial subscheme with staircaseE. In particular,

F is flat overA1 − {0}. The closureF ⊂ A
1 × A

d is defined by the idealJ (t) = I (t) ∩
k[x1, . . . , xd, t] and it is flat overA1.

We want to prove the equalityJ (0) = I∆(E), using a natural graduation.
Let ϕ1, . . . , ϕd−1 :Zd → Z be independent linear forms which vanish on∆. Consider

the multi-graduationD defined by:
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D : Monomials ofk[x1, . . . , xd ] → Z
d−1

xα 	→ (
ϕ1(α), . . . , ϕd−1(α)

)
.

The conditions on∆ imply that, for all z = (z1, . . . , zd−1) ∈ Z
d−1, the sub-vector spac

k[x1, . . . , xd ]z ⊂ k[x1, . . . , xd ] containing the elements of degreez has finite dimension
Note thatJ (t) is a graded ideal, i.e.,

J (t) =
⊕

z∈Zd−1

Jz(t)

where

Jz(t) = J (t) ∩ k[x1, . . . , xd ]z[t].

In particular, to computeJ (0) = limt→0 J (t), it suffices to compute the limit of it
graded parts in the GrassmanniansG(l, k[x1, . . . , xd ]z), wherel = dimJz(t), t �= 0. Let
m1 < · · · < mk be the monomials ofk[x1, . . . , xd ]z, where the order is given by the rel
tion (<) above. Let us admit temporarily the inclusion

mk−l+1,mk−l+2, . . . ,mk ∈ Jz(0). (∗)

Then Jz(0) is the vector space generated bymk−l+1,mk−l+2, . . . ,mk for dimensional
reasons andJ (0) = I∆(E) since these two graded ideals have the same graded pa
particularJ (0) is an ideal generated by monomials and the set∆(E) of monomials which
are not inJ (0) is a staircase. Moreover, replacing the coordinatesx1, . . . , xd of A

d by any
local system of coordinates, one shows by the same computation that any closed p
C(∆(E),E1, . . . ,Ej ) is a limit of points which are inC(E,E1, . . . ,Ej ). This gives the
incidence between the strata.

It remains to show(∗). Let n1 = xα(1), . . . , nl = xα(l) be the monomials ofIE ∩
k[x1, . . . , xd ]z, whereα(i) = (α1(i), . . . , αd(i)). The idealI (t) contains the monomials

Φ(ni) = (
tx1 + x

−δ2
2 x

−δ3
3 . . . x

−δd

d

)α1(i)x
α2(i)
2 . . . x

αd(i)
d .

Since the degree ofmi in x1 is k − i, this equality can be rewritten as:

Φ(ni) =
α1(i)∑
j=0

(
α1(i)

j

)
tjmk−j =

k−1∑
j=0

(
α1(i)

j

)
tjmk−j

with the usual convention
(
α1(i)

j

) = 0 if j > α1(i). If N andM are the column matrice
whose entries are respectivelyΦ(ni), i ∈ {1, . . . , l}, andtjmk−j , j ∈ {0, . . . , k −1}, if P is
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the matrix whose coefficientPij is
(
α1(i)

j

)
, the above equality writes downN = PM . Take

the firstl columns ofP to get a square matrix

Q =
( 1 α1(1)

(
α1(1)

2

)
. . .

(
α1(1)
l−1

)
. . . . . .

1 α1(l)
(
α1(l)

2

)
. . .

(
α1(l)
l−1

)
)

.

Since the coefficients in the third column are polynomials of degree 2 inα1, one can replac
the third column by a linear combination of the first three columns so that theith element
in the third column becomesα1(i)

2. Similarly, after suitable operations on the columns,
ith element in the fourth, fifth column. . . becomesα1(i)

3, α1(i)
4, . . . . The resulting matrix

is a Van Der Monde matrix in theα1(i)’s. In characteristic zero, its determinant is not z
since theα1(i)’s are distinct. In particularQ is invertible.

The idealI (t) contains the elements which are the coefficients of the matrixQ−1N =
Q−1PM . Using that the identity is a submatrix ofQ−1P by construction, theith element
in this column matrix isci(t) = t i−1mk−i+1 + R whereR is a polynomial dividable byt i .
Thus, ci (t)

t i−1 ∈ J (t) and, as expected,J (0) containsci (t)

t i−1 (0) = mk−i+1 for i ∈ {1, . . . , l}. �
If we have a finite set of monomial subschemes, we can specialize the first on

leave the remaining subschemes unchanged. Thus, we get as a corollary of the p
proposition:

Proposition 14. Let∆ = (δ1, . . . , δd) ∈ Z
d be a vector such that

• ∃i, δi = 1,
• ∀k, k �= i ⇒ δk � 0,
• ∃j �= i, δj �= 0.

Then for every set of staircasesE,E1, . . . ,Ej , we have in characteristic zero the incidenc:

C(E,E1, . . . ,Ej ) ⊃ C
(
∆(E),E1, . . . ,Ej

)
.

3.1. Combinatorial properties of∆

We give here some combinatorial properties of the mapE 	→ ∆(E) that we will use
later on.

Lemma 15. Let E andF be two subsets ofNd and∆ = (δ1, . . . , δd) ∈ Z
d be a direction

satisfying the properties of the preceding proposition. Suppose that for every lineL with
direction∆, we have the inequality on cardinals:

#{E ∩ L} � #{F ∩ L}

then∆(E) ⊃ ∆(F).
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Proof. We must show for every lineL the inclusion∆(E)∩L ⊃ ∆(F)∩L. This is obvious
since, using themi ’s introduced after Definition 12,∆(E) ∩ L = {m1, . . . ,m#{E∩L}} and
∆(F) ∩ L = {m1, . . . ,m#{F∩L}}. �

Applying this lemma to the followingE and toF = Rµ, noticing that∆(Rµ) = Rµ, we
get:

Lemma 16. LetRµ be a regular staircase,m ∈ Rµ, P ⊂ N
d a subset such thatP ∩Rµ = ∅

andE = Rµ ∪ P − {m}. If there existsi ∈ Z such thatm + i∆ ∈ P , then∆(E) ⊃ Rµ.

Lemma 17. Let (s, d) be a couple of integers withd � 2, s � 2, and(s, d) /∈ {(2,2), (2,3),

(3,2)}. Then there exists(∆d, . . . ,∆1) ∈ (Zd)d such that

• ∀i, ∆i verifies the conditions of Proposition13,
• ∀µ > 0, ∆d(∆d−1(. . . (∆1(s.Rµ)))) ⊃ Rsµ+1.

Remark 18. More precisely, it will follow from the proof that the choice of the∆i depend
on s in the following way.

• s > 3: ∆1 = (0, . . . ,0,1,−s + 1), ∆2 = (0, . . . ,0,−s + 2,1), ∆i = (0, . . . ,0,1,−1,

−1,0, . . . ,0) for i � 3, where the 1 is on the position of index 1+ d − i.
• s = 3: ∆1 = (0, . . . ,0,1,−2,0), ∆2 = (0, . . . ,0,−3,0,1), ∆3 = (0, . . . ,0,0,1,−2),

∆i = (0, . . . ,0,1,−1,−1,0, . . . ,0) for i � 4.
• s = 2: ∆1 = (0, . . . ,0,1,−1,−1,−1), ∆2 = (0, . . . ,0,−1,1,−1,0), ∆3 = (0, . . . ,0,

−1,0,1,−1), ∆4 = (0, . . . ,0,−1,−1,0,1), ∆i = (0, . . . ,0,1,−1,−1,0, . . . ,0) for
i � 5.

Proof. We proceed by induction ond . Considering the couples(s, d) involved in the
proposition, we have to initialize the induction with the cases(s > 3, d = 2), (s = 3, d = 3)

and(s = 2, d = 4).

Initial cases. If d = 2, s > 3, then one can take∆1 = (1,−s + 1) and∆2 = (−s + 2,1).
Whens = 3, d = 3, we must find∆1,∆2,∆3 such that

∆3
(
∆2

(
∆1(3.Rµ)

)) ⊃ R3µ+1.

The (µ+1)(µ+2)
2 elements of the difference

R3µ+1 − 3.Rµ = {
(3x,3y,3z), x + y + z = µ

}
are shown in Fig. 1 withµ = 2. Taking∆1 = (1,−2,0), we have:

R3µ+1 − ∆1(3.Rµ) = {
(0,3y,3z), y + z = µ

}
.
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Finally, taking∆2 = (−3,0,1) and∆3 = (0,1,−2),

∆3
(
∆2

(
∆1(3.Rµ)

)) ⊃ R3µ+1,

as expected.
Consider now the last initial case(s = 2, d = 4). By definition,

2Rµ = {
(x, y, z, t) s.t.[x/2] + [y/2] + [z/2] + [t/2] < µ

}
,

where[ ] stands for the integral part. IfP ⊂ N
4 is a subset, we denote byP i the subse

of P containing the elements(x, y, z, t) such thati elements among(x, y, z, t) are odd
and we putSm = Rm+1 − Rm. With these notations, easy considerations on the paritie
(x, y, z, t) give the equality:

2Rµ = R2µ � (
S2µ \ S0

2µ

) � S3
2µ+1 � S4

2µ+2.

To compute∆(2Rµ), we note that we can define∆ on subsets in such a way that ifE =∐
Ei is a disjoint union, then∆(E) = ∐

∆(Ei). Indeed, by construction of the map∆, if
L is a line inR

d with direction∆, thenE ∩L and∆(E)∩L are two totally ordered sets o
the same finite cardinality, hence there is a unique increasing one-to-one correspo
betweenE ∩ L and∆(E) ∩ L. If e ∈ E andL is the line with direction∆ passing through
e, ∆(e) is the image ofe through this correspondence. We let∆(Ei) = ⋃

ei∈Ei
∆(ei).

Let ∆1 = (1,−1,−1,−1). To compute the image∆1(e) of an elemente, we make the
following observation. IfE ⊂ N

4 can be written as a disjoint union

E = Rj+1 � Ej+1 � Ej+2 � · · ·Ej+k, with El ⊂ Sl

and if∆1 = (∆x,∆y,∆z,∆t ) satisfies−2(∆x + ∆y + ∆z + ∆t) � k, then

∆1(e) =
{

e + ∆1 if e + ∆1 ∈ N
4 \ E,
e otherwise.
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This observation leads to the equality

∆1(2Rµ) = R2µ � (
S2µ \ S0

2µ

) � S3
2µ+1 � ∆1

(
S4

2µ+2

)
.

If P ⊂ N
4, we defineP(1,∗, �= 0, e) ⊂ P to be the subset containing the eleme

(x, y, z, t) with x = 1, y any number,z �= 0 andt even. There are obvious generalizatio
of this notation. With this notation, we have:

∆1(2Rµ) = R2µ � (
S2µ \ S0

2µ

) � S3
2µ+1 � S0

2µ(�= 0,∗,∗,∗)

= R2µ � (
S2µ \ S0

2µ(0,∗,∗,∗)
) � S3

2µ+1

= R2µ � (
S2µ \ S0

2µ(0,∗,∗,∗)
) � S3

2µ+1(1,∗,∗, e)

� S3
2µ+1(1,∗, e,∗) � S3

2µ+1(1, e,∗,∗) � S3
2µ+1(�= 1,∗,∗,∗).

Let ∆2 = (−1,1,−1,0), ∆3 = (−1,0,1,−1), ∆4 = (−1,−1,0,1). Then,

∆2 ◦ ∆1(2Rµ) = R2µ � (
S2µ \ S0

2µ(0,∗,∗,∗)
) � ∆2

(
S3

2µ+1(1,∗,∗, e)
)

� S3
2µ+1(1,∗, e,∗) � S3

2µ+1(1, e,∗,∗) � S3
2µ+1(�= 1,∗,∗,∗)

= R2µ � (
S2µ \ S0

2µ(0,∗,∗,∗)
) � S0

2µ(0, �= 0,∗,∗)

� S3
2µ+1(1,∗, e,∗) � S3

2µ+1(1, e,∗,∗) � S3
2µ+1(�= 1,∗,∗,∗)

= R2µ � (
S2µ \ S0

2µ(0,0,∗,∗)
)

� S3
2µ+1(1,∗, e,∗) � S3

2µ+1(1, e,∗,∗) � S3
2µ+1(�= 1,∗,∗,∗),

∆3 ◦ ∆2 ◦ ∆1(2Rµ) = R2µ � (
S2µ \ S0

2µ(0,0,∗,∗)
)

� S3
2µ+1(1,∗, e,∗) � ∆3

(
S3

2µ+1(1, e,∗,∗)
)

� S3
2µ+1(�= 1,∗,∗,∗)

⊃ R2µ � (
S2µ \ S0

2µ(0,0,0,∗)
)

� S3
2µ+1(1,∗, e,∗) � S3

2µ+1(�= 1,∗,∗,∗),

∆4 ◦ ∆3 ◦ ∆2 ◦ ∆1(2Rµ) ⊃ R2µ � (
S2µ \ (0,0,0,2µ)

)
� ∆4

(
S3

2µ+1(1,∗, e,∗)
) � S3

2µ+1(�= 1,∗,∗,∗)

⊃ R2µ � S2µ � S3
2µ+1(�= 1,∗,∗,∗).

We have obtained the required inclusion∆4 ◦ ∆3 ◦ ∆2 ◦ ∆1(2Rµ) ⊃ R2µ+1.
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Step fromd − 1 to d . As we will proceed by induction on the dimensiond , we precise
our notations and we denote byRi(d) the regular staircaseRi in N

d . Let Ti be the “ith
slice” of s.Rµ(d), i.e.,

Ti := {
m ∈ N

d−1 s.t.(i,m) ∈ s.Rµ(d)
}
.

ThenTi = s.Rν(i)(d − 1) with ν(i) = max(0,µ − [ i
s
]). When i < sµ, ν(i) > 0 and we

can apply the induction toTi . Using moreover thatsν(i) � sµ − i, we get element
γ1, . . . , γd−1 ∈ N

d−1 such that,

T ′
i = γd−1

(
. . .

(
γ1(Ti)

)) ⊃ Rsν(i)+1(d − 1) ⊃ Rsµ+1−i (d − 1).

Let ∆i = (0, γi) ∈ N
d . Theith slice of the staircase

F = ∆d−1
(
. . .

(
∆1

(
s.Rµ(d)

)))
is T ′

i . Summing up, fori < sµ, the ith slice of F strictly contains theith slice
Rsµ+1−i (d − 1) of Rsµ+1(d). In particular,F contains all thed-tuples whose sum i
sµ except(sµ,0,0, . . . ,0).

It remains to find∆d such that∆d(F ) ⊃ Rsµ+1(d) by an application of Lemma 16.
Note that

Tsµ−1 = s.R1(d − 1) ⊃ K = R2(d − 1) ∪ (1,1,0, . . . ,0).

It follows that

T ′
sµ−1 ⊃ γd−1

(
. . .

(
γ1(K)

)) = K

and that the elementz = (sµ − 1,1,1,0, . . . ,0) is in F . Let ∆d = (1,−1,−1,0, . . . ,0).
Applying Lemma 16 withm = (sµ,0,0, . . . ,0), E = F , P = F − Rsµ+1(d), ∆ = ∆d ,
sµ + 1 instead ofµ, m + i∆ = z, we get the expected inclusion∆d(F ) ⊃ Rsµ+1(d). �

4. Conclusion of the proofs

4.1. Proof of Theorems 3 and 6

Let us denote the stratumC(E1, . . . ,E1, . . . ,Er, . . . ,Er) by C(E
n1
1 , . . . ,E

nr
r ) where

ni is the number of copies ofEi . According to Proposition 8, to conclude the proof
Theorem 3 (respectively of Theorem 6), we must show that, fors � 2, d � 2 and(s, d) /∈
{(2,2), (2,3), (3,2)} (respectively fors � 1, d � 2) C(Rsd

µ ) ⊃ C(E) for some staircaseE
containingRsµ+1 (respectively containingRsµ). By Proposition 11,

C(Rsd

µ ) ⊃ C(s.Rµ).
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Sinces.Rµ ⊃ Rsµ, this concludes the proof of Theorem 6. As for Theorem 3, taking foE

the staircase∆d(∆d−1(. . .∆1(s.Rµ))) constructed in Lemma 17, we have

C(s.Rµ) ⊃ C(E)

by Proposition 13. The required inclusionC(Rsd

µ ) ⊃ C(E) follows immediately from the
last two displayed inclusions.

Remark 19. The above proof relies heavily on Lemma 17, which is the key point. This
lemma is proved by an induction on the dimension.

4.2. The caser = 8, d = 3

The goal of this section is to compute the postulation of 8 fat points of multipliciµ

in P
3, stated in Remark 5:

Proposition 20. Let r = 8, d = 3 andv(d, δ,µr) = (
δ+d
d

) − r
(
d+µ−1

d

)
. Then:

l
(
d, δ,µr

) = max
(
0, v

(
d, δ,µr

))
.

Proof. If ZG is the generic union of 8 fat points of multiplicityµ, the vector spac
H 0(IZG

(δ)) being the kernel of the restriction morphism:

H 0(OPd (δ)
) → H 0(OZG

(δ)
)
,

its dimensionl(d, δ,µr) is at least

v
(
d, δ,µr

) = h0(OPd (δ)
) − h0(OZG

(δ)
)
.

Let ∆ = (1,−1,−1) andE = ∆(2Rµ).
To prove the reverse inequalityl(d, δ,µr) � max(0, v(d, δ,µr)), sinceC(R2d

µ ) ⊃ C(E)

by Proposition 11 and Proposition 13, it suffices by semi-continuity to exhibit a subsc
Z in C(E) such that

h0(IZ(δ)
) = max

(
0, v

(
d, δ,µr

))
for all δ. Let A

d = Speck[x1, . . . , xd ] ⊂ P
d be an affine space andZ be the subscheme o

Ad whose ideal isIE . By dehomogenization, the vector spaceH 0(OPd (δ)) is in bijection
with the subspaceSδ ⊂ k[x1, . . . , xd ] containing the polynomials of degree at mostδ, and
H 0(IZ(δ)) corresponds toIE ∩Sδ . Now, dimIE ∩Sδ is the number of monomials inRδ+1
which are not inE. Since

R2µ ⊂ E ⊂ R2µ+1,

this number is 0 ifδ � 2µ − 1 andh0(OPd (δ)) − #E if δ � 2µ. �
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