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TRANSVERSALITY FOR PIECEWISE LINEAR MANIFOLDS 

M. A. ARMSTRONG and E. C. ZEEMAN 

(Received 12 September 1966) 

WE PROVE three transversality theorems in the piecewise linear category. For the standard 
definitions and properties of this category see [12]. All maps considered will be piecewise 
linear, all manifolds compact, and all submanifolds locally flat (which is always the case for 
codimension 2 3 by [l 11). We say M is a proper submanifold of Q if the boundary &l c 0 
and the interior ni c 0. 

The main result of this paper (Theorem 1) says that if M, P are proper submanifolds of 
Q then we can ambient isotop M until it is transversal to P. 

Perhaps we should straightway point out some inherent difficulties. We do not assume 
that P has a normal bundle in Q (or, equivalently, a normal microbundle). As yet the 
existence of normal bundles in the piecewise linear category is an open question. Haefliger 
and Wall [5] have proved that normal bundles exist in the stable range, but Hirsch [6] has 
shown that normal disc bundles do not always exist in the unstable range, and this gives 
weight to the conjecture that normal bundles also may not always exist. 

If P did have a normal bundle in Q, then one could slide M along the fibres until it was 
transversal. This essentially is the geometrical idea behind Thorn’s original transversality 
theorem [B] for smooth maps, and behind Williamson’s extension [IO] to piecewise linear 
maps. 

However, we are interested in the case where P may not have a normal bundle, and 
therefore we do not assume anything about normal bundles. Also we are primarily inter- 
ested in ambient isotoping embeddings to be transversal, rather than homotoping maps, 
although in Theorem 2 we do deduce a result about maps. 

Given M, P c Q, if we want to isotop M transversal to P, then the following method of 
attack at once suggests itself. Choose a triangulation K of Q in which M and P appear as 
subcomplexes. Let K* denote the dual cell complex of K, and attempt to isotop M into the 
m-skeleton of K *, where m is the dimension of M. But this is not always possible, because if 
it were one could infer that M always had a normal disc bundle in Q contradicting Hirsch’s 
result 161. 

Therefore we cannot isotop M into the m-skeleton of K*. Instead we have to isotop M 
step by step so as to be transversal to each simplex of K. In other words our proof is by bare 
hands-the subtlety lying in the interplay between the linear and the piecewise linear. If one 
uses only the piecewise linear structure, then one runs into a difficulty illustrated by the 
following example. 
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The folded disc. Let D be a folded disc crossing an interval I in Euclidean 3-space (E3) 
as shown in Fig. 1. 

FIG. 1. 

This picture is piecewise linearly homeomorphic to a standard linear disc in E3 together 
with a perpendicular line through its centre, consequently D and I are transversal in E3. If 
we now multiply by an extra dimension, we obtain D x I crossing I x I transversally in E4. 
However, on tilting I x I upwards a little keeping Z x 0 fixed the transversality is destroyed, 
since the intersection of D x I with I x I becomes three concurrent lines and is no longer a 
manifold. With this example in mind it is easy to manufacture the following more dis- 
heartening situation. Let A4 be a q-simplex and S”‘-I, Sp-’ spheres crossing transversally 

in its boundary. Let D”, Dp be discs formed by joining the spheres to two points in general 
position in the interior of Aq. Then D” and Dp may cross transversally at all interior points, 
yet fail to be transversal at their boundaries. 

So as not to meet with this kind of difficulty in the inductive step of our proof, we shall 
introduce the notion of M being transimplicial to the triangulation K of the ambient manifold 
Q. Being transimplicial is roughly the opposite of being a subcomplex. It is not a piecewise 
linear invariant, but rather is a technical device introduced for the purposes of proof; it uses 
not only the piecewise linear structure but also the local linear structure of K, and conse- 
quently is a stronger property than transversality. With this extra structure we are able to 
produce (transimplicial) Theorems 4 and 5 that have our main (transversality) result, 
Theorem 1, as a corollary. 

The same techniques are used in Theorem 2 to extend the result from embeddings to 
maps : any map f : A4 + Q is homotopic to a map g transversal to the submanifold P of Q, 
and the cobordism class of g-‘P depends only on the homotopy class off. It should be noted 
that in the analogous differential setting [8], the set of all transversal maps is open in the 
function space, whereas this is not true in piecewise linear theory (we have no derivatives 
to “control” local movement). This defect accounts for our more directly geometrical 
approach. 
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We should point out that although Theorem 5 is a relative transimplicial theorem, we 
have no corresponding relative transversality theorem. This omission is discussed at the end 
of the paper. 

Our third main result, Theorem 3, can be thought of as an existence theorem for 
quotient regular neighbourhoods (analogous to quotient vector bundles)-the inherent 
difficulty here being that in a regular neighbourhood there are no convenient fibres to play 
with. More precisely, given manifolds MC P t Q, we produce a fourth manifold N in Q 
that cuts P transversally along M. 

FIG. 2. 

At the end of the paper we show how this result can be used to construct induced regular 
neighbourhoods, and Whitney sums. However, we are unable to prove any uniqueness 
theorems for these constructions. 

We should like to acknowledge an unpublished paper by V. Poenaru and one of us, 
which contained incomplete proofs of some of the results below. 
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$1. THE MAIN THEOREMS 

Firstly we give a precise definition of what we mean by transversality. Let M, P be two 
proper submanifolds of the manifold Q. Denote by E” n-dimensional Euclidean space and 
by E”, the closed half space obtained by restricting the first coordinate to be non-negative. 

Definition 1. The submanifolds M, P are transversal at the point x E &f n P (respec- 
tively ni n p) if there is a coordinate neighbourhood h : E4 -+ Q (h : E4, -t Q) of x in Q such 
that h-‘M, h-‘P are two linear subspaces of E4 (E4,) in general position. 
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M and P are transversal if they are transversal at all points of M n P. 

It follows immediately that if M, P are transversal in Q, then M n P is a proper sub- 
manifold of dimension m + p - q, which is locally flat in both M and P. 

THEOREM 1. If Q is a manifold with proper submanifolds M and P, then M can be 
ambient isotoped transversal to P by an arbitrarily small ambient isotopy of Q. 

We want an analogous definition and theorem for maps. For simplicity we confine our- 
selves to closed manifolds, although there are similar results for bounded manifolds. 

Definition 2. (i) Let M, P, Q be closed manifolds, with P a submanifold of Q. Let 
f : M --+ Q be an embedding; we say that the embedding f is transversal to P if f M and P are 
transversal as submanifolds. 
(ii) Now suppose f : M + Q is an arbitrary piecewise linear map. We say that the map f is 

graph-transversal to P if its graph 

If: M+M x Q 

is transversal to M x P as an embedding. Two properties follow at once. 
(A) Iff: M -+ Q is an embedding that is transversal to P as an embedding, then it is graph- 
transversal to P as a map. In other words graph-transversality is a generalisation. 
(B) If f: M-t Q is a map that is graph-transversal to P then f-‘P is a locally-flat sub- 
manifold of M of codimension q - p. This is because the homeomorphism If: M + (Tf)M 
maps f-‘P onto (Tf)M n (M x P), which is a locally flat submanifold of dimension 
m + (m + p) - (m + q) by the remark above. 

THEOREM 2. Given closed manifolds M, P, Q with P c Q, and given a map f: M + Q, 
then there exists an arbitrarily close homotopic map g that is graph-transversal to P. The 
inverse image g -‘P is a locally Jlat submanifold of M of codimension q - p, and the cobordism 
class (g-‘P} depends only on the homotopy class [f]. 

Remark. All our results in this paper concern manifolds; a subsequent paper by one of 
us will deal with polyhedra [2]. In particular a stronger definition of transversality for maps 
will be given in [2], and a strengthened version of Theorem 2 proved. 

THEOREM 3. Given manifolds M c P c Q, both inclusions being proper, then there exists a 
fourth manifold N, contained in Q, that intersects P transversally in M. 

Remark. N will not be a proper submanifold of Q, because in general the boundary 
N Q Q. However it will be proper in the neighbourhood of M, and so the definition of 
transversality of N and P makes sense. 

We proceed now with the business of setting up sufficient machinery to prove Theorems 
1, 2 and 3. 

52. (p, q)-DISC FIBERINGS 

The ideas introduced in this section will be of fundamental importance throughout the 
rest of the paper. Let X, Y, 2 be polyhedra, and let D” denote a standard n-dimensional disc 
with centre 0. 
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Definition 3. A map g : Y -+ Z will be said to be locally a q-disc fibering at y E Y, or 

more briefly F(q) at y, if there exists a neighbourhood N of gy in Z and an embedding 
+ : N x Dq --t Y onto a neighbourhood of y, such that the diagram 

NxDqPtN 

+ 4 

y-2 # 

is commutative. Here pr denotes projection onto the first factor, and i the inclusion of N in 

Z. 
Definition 4. The pair of maps X s Y 5 Z is said to be locally a (p, q)-disc fibering at 

x E X, abbreviated to F(p, q) at x, if there exists a neighbourhood N of gf x in Z, embeddings 
rp : N x Dp + X, @ : N x Dq --, Y onto neighbourhoods of x, fx respectively, and a map 
k : Dp, 0 + Dq, 0 such that 

N x DP=N x 04&N 

i 

x I 

,$I Ii 
Yy---NZ 

commutes. 
Note: (i) We can choose cp so that cp(gfx, 0) = x. 

(ii) There is a natural generalisation to sequences of maps of greater length. 

(iii) If the pair XL Y%Z is F(p, q) at x E X, then the composition X% Z is F(p) at x. 
(iv) The same diagram shows that the pair,f; g is also F(p, q) at all points in some 

neighbourhood of x. 

We prove three basic lemmas. 

LEMMA 1. (Restriction). Suppose X-+ Y -+ Z is F(p, q) at x E X, where gfx E Z, , a 

subpolyhedron of Z. Let Y, = g-‘Z, , X0 = f -I Y, . Then X,,z Y, ?%. Z,, is also 

F& a) at x. 

Proof. By restriction. 

LEMMA 2. (Glueing). Given X s Y 5 Z, let Zi i = 1, . . , , t be subpolyhedra of Z, and 
suppose vi= 1 Zi is a neighbourhood of gf x in Z. Let Yi = g-‘Zi , gi = q 1 Yi , Xi = f -I Yi and 

fi=flXi. Then X~Y~ZisF(p,q)atxifandonIyifeach Xi~Yi~ZiiSF(p,q) at x. 

Proof. Given that X 5 Y 5 Z is F(p, q) at x, restriction shows each Xi 2 Y, 2 Zi to be 

F(P, q) at x. 
Conversely, suppose we are given for each i a neighbourhood Ni of gfx in Zi , embed- 

dingscpi:NixDP--tXi,~i:Ni~Dq-,Yiandamapki:DP,O~Dq,Osu~hthat 

commutes. 
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Triangulate Z so that gfx is a vertex and each Ni is a subcomplex. TLet K = z(gfx, Z), 
then each simplex A E K is contained in some N, . Consider a conewise expansion 

gfx = K,/“K,,?..,/^K, = K 

each Ki being a cone, vertex gfx. 

Let Ki,e denote the cone Ki shrunk by E, and D,“, 0: the discs Dp, Dq shrunk by E. 

We shall define, inductively on j, a number ~~ > 0, embeddings mj : Kj,,, x DC--f X, 
Yj : Kj,EJ x Df, --f Y and a map k : Dfj, 0 + Dz,, 0 such that 

Kj,Ej X Dfj 

i 

Ixk Kj,Ej X Db PL Kj,E, 

*j y’i 
I I 

C 

X / +Y--9-,Z 

commutes. 

Begin, for j = 0, with E. = 1 and Qo = ‘pi 1 gfx x D”, ‘f’,, = pi 1 gfx x Dq, k = ki, for 
some chosen i. 

(Without loss of generality we may assume k(D,P) c 0: for all E such that 0 s E s 1, for 
if not proceed as follows. Choose I, 0 < J 5 1, such that Df; is contained in the star of the 
origin in some triangulation of Dp with respect to which k is simplicial. Then k(Df;,) c 0: 
for all E E [0, 11. Let A : Dp + DS; be the shrinking map, and replace k, (It+, by kA and 
QD,(l x A) respectively.) 

Inductive step, j --) j + 1. 
Suppose Kj+ 1 = Kj u A, let L = Kj n A and p : A + L be a retraction. Choose r such that 
AcN,. Givena~A,u~DP,v~Dq,definecp,,~:DP-+Xand$,,,:Dq+Yby 

cp,,,(zl) = PPr(a, u) 

$,+X4 = $,(a, 4. 

Now cp,(L x Dp) is a neighbourhood of x in f -lg-lL, and moreover cDj maps 

i 
L,, x DC into f -‘g-‘L 

(gfx x 0 to x. 

Also $,(L x Dq) is a neighbourhood of fx in g_lL, and 

( 

Lzj x Dz, into g-‘L 

gfx x 0 to fx. 

Therefore there is a positive E, E s Ed, such that 

Yj maps 

Qj(L, x D$‘) t cp,(L x Dp) 

Yj(L, x 0;) t $,(L x Dq). 

t Let v be a vertex of a complex K; we denote the open, closed star of v in K by st(o, K) si(v, K), res- 
pectively. 
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Choose then .sj+r = E and define 

@j+l(z, u> = 
@j(Z, 24) on Kj,E X 0,” 

i cPr,zcPr;,',@jpi(Pz9 U) on 4 X 0:. 

yj+ lCz, v) = 
Y~(z, V) on Kj,E x 0,” 

$r,z’iJr;,‘,yj(PZ, v> on A, x D$ 

In both cases we have agreement on the overlap, because here pz = z. Our map aj+r is 
piecewise linear on A, x 0,” because it is the composition 

-1 
A, x DEp% A, x L, x D;2A, x X1x’p’+ A, x L x DPprojn A, x DP 3 J:. 

Similarly for Yj+r. 

We are left to show the commutativity of 

For the right hand square, if a E A,, v E D,“, then 

=a 

= h(a, 0). 
In the left hand square, for a G A,, u E Df, we have 

yj+ r(l X @(a, U) = ‘I’j+l(a, ku) = @~,,tir~~yli(pa, ku) 

= $,,,$[:‘I’&.1 X k)(pa, U) 

= $,,,t,b;~gf@j(pa, u) by inductive hypothesis 

= *r,a~~p!d~r,pa~‘r,ol~j+l (4 U) 

= I) k qP-‘Qj+l(a, zt) since Dp kr r,ll r r,11 - Dq commutes, 

‘Pr.po 
l-1 

JI r.p(I 

x/y 

=f@j+l(a, U) since Dp- kr D4 commutes 

4%. 
1-i 

*Vxz 

x,y 

This completes the inductive step j --) j + 1. 
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Eventually, at the end of the induction, we obtain a commutative diagram 

where E = E, . Since K, is a neighbourhoodof gfx inZ, this shows that X& Y52 is F(p, q) 
at x, and so completes the proof of Lemma 2. 

LEMMA 3. (Composition). Is XL Y5.Z is F(p, q) at x E X and Z-% W is F(n) at gfx, 

thenXSY%ZAWisF(n+p,n+q,n)atx. 

Proof. We have a neighbourhood N’ of gfx in Z, embeddings cp’, $’ and a map k which 
give rise to a commutative diagram- 

N’ x De- lxk N’ x D4aNN’ 

Choose a neighbourhood N of hgfx in W and an embedding e : N x D” + Z onto a neigh- 
bourhood of gfx in N’ such that 

N x D”=+N 

e I I c 

Z T_,W 

commutes. 

Define 

and 

II/:NxD”xDq-+Yby 

$(t, u, u) = $‘(e(t, u), 4 

cp:NxD”xDP-+Xby 

rp(t, u, 4 = cp’(e(t, a), 4. 

Then 

NxD”xDPIXlxkNxDnxDq=NxD-N n PI 

commutes as required. 

COROLLARY. With the same hypotheses, X 4 Y% W is F(n + p, n + q) at x. 
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$3. TRANSIMPLICIAL MAPS 

Let Q be a manifold, and K a triangulation of Q. If A is an a-dimensional simplex of K, 

let 

LA = z&l, K) 

denote the link of A in K. Then? AL* = Z(A, K). Let u be a vertex of A, and 

S* : AL*+ vL* 

denote the simplicial map defined as the join of A + v to the identity on I,*. 

Let A4 be another manifold, andf: A4 -+ Q be a map. Given a point x of M, let A be the 
unique simplex of K such that fx E A. 

Dejhition 5. We say that the map f is transimplicial to K at x if the pair 

f - ‘AL* s AL* 2 vL* 

is F(m + a - q, a) at x. If this is the case for all x E M, we say f is transimplicial to K. 

Note 1. Our definition is independent of the choice of v (by an application of the com- 
position lemma). 

Note 2. The restriction and glueing lemmas of the previous section show that equiva- 

lent to Definition 5 is : for every principal simplex AB E K, the pair f-‘AE $ AB 2 VII is 
F(112 + a - q, a) at x. 

Note 3. Often it will be convenient to use the idea of a submanifold (i.e. the image of an 
embedding rather than the embedding itself) being transimplicial to a triangulation. The 
definition is the obvious one. Given a manifold Q, submanifold M and triangulation K of Q, 
we say A4 is transimplicial to K at x E A4 if the pair 

M n AL*= AL*%L* 

is F(m + a - q, a) at x, where x E A, A E K, and we use the above notation. Therefore, if 

(D”, D mfa-q ) denotes an unknotted disc pair, we need a neighbourhood N of v in vL* and an 

embedding 

cp : N x D”, N x D”fa-q *AL*, M n ALA 

onto a neighbourhood of x, such that 

s A . . 
cp = projectron : N x Da--t N. 

Figure 4 illustrates the situation. 

Note 4. The concept is designed to cut out the folding phenomenon described in 
our introduction. We illustrate in Fig. 3 a non-transimplicial embedding of a 2-disc in 
3-dimensions. The disc lies in the star of a l-simplex, and has a fold running down to a point 
in the l-simplex. 

t We denote the join of two complexes K and L by IU. 
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FIG. 4. 

The embeddingffails to be transimplicial at x, because if it were, then the composition sAf 
would be P(O), i.e. would be an embedding; but it is not an embedding because it is three-to- 
one where the fold gets flattened down. 

Notice that if we move the fold point into the interior of a 3-simplex, then the embedding 
does become transimplicial. In fact this is the geometric idea behind our main proof. Given 
an embedding A4 -+ Q and a triangulation K of Q, we cannot isotop M into the m-skeleton of 
K* (by Hirsch’s result [6]), but nevertheless we shall show that we can push the worst fold 
and kink points into top dimensional simplexes, and so make M transimplicial to K. 

Note 5. To prove the theorems in this paper we need only consider transimplicial 
embeddings rather than transimplicial maps. However, maps are just as easy to handle as 
embeddings at this stage, and several of the more general results that we prove for maps will 
be useful in [2]. 

LEMMA 4. (Openness). 1ff is transimplicial to K at x E M, then f is transimpiicial to K at 
each point in some neighbourhood of x. 

Proof. Using the previous notation, the pair 

f-‘ALA-S,ALA”/tvLA 

is F(m + a - q, a) at x. By the openness of disc fiberings, there is a neighbourhood U of x 
in M such that this pair is F(m + a - q, a) at all points of U. Let y E U and suppose fy E & 
B E K; then A is a face of B and consequently BLB c ALA; let B = AC. By restriction the 

pair f -‘BLBABL%vCLB is F(m + a - q, a) at y. But s”’ : vCLB --) vLB is F(b - a) at sAfy, 
and YcsA = sB : BLB + vLB. Therefore by the corollary to Lemma 3 

f -lBLBL BLBsB- vLB 

is F(m + b - q, b) at y, completing the proof. 
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LEMMA 5. For any subdivision K’ of K, f transimplicial to K’ imples f transimplicial to K. 

Proof. Given x E M, suppose fx E A’, where A’ E K’ and A’ c A, A E K. Let v’ be a 
vertex of A’, v a vertex of A, L’ = Ik(A’, K’) and L = Ik(A, K). Then sA : AL -+ vL induces a 
linear (i.e. each simplex is mapped linearly) map 1: v’L’ + VL which makes the following 
diagram commute 

-iA’L’LA’r’ SA’,v,L_! 

n n 1 i. 
j-‘AL s AL 5 vL. 

Since f is transimplicial to K’ the pair f - ’ A'L' + A’L’ + v’L’ is F(m + a’ - q, a’) at x. 

If we show that 1 is F(a - a’) at v’, then f -‘AL + AL -+ vL is F(m + a - q, a) by com- 
position, and so the lemma follows. Therefore it remains to show that I is F(a - a’) at v’. 

K is contained in some Euclidean space E. Let F be the decomposition space of E 
consisting of all a-planes parallel to A, and let g : E -+ F be the natural map. Then g embeds 
VL in F because A is joinable to L. Similarly g’ embeds v’L’ in F’, where g’ : E + F’ is the 
natural map onto the decomposition space of all a’-planes parallel to A’. We have a com- 
mutative diagram 

V’C A VL 

0’ I I B 

F’ -51F 

where .U is the natural map. Since p is linear it is F(a - a’) everywhere. 

Let N = g(vL), N’ = g’(v’L’). Then N’ is a neighbourhood of g’v’ in P-IN because A’L’ 
is a neighbourhood of x in AL. Therefore p : N’ + N is F(a - a’) at g’v’ by restriction. 
Therefore I : v’L’ + vL is F(a - a’) at v’, and the proof of Lemma 5 is complete. 

Let P be a proper submanifold of Q, and let K be a triangulation of the pair Q, P; in 
other words K is a triangulation of Q in which P appears as a subcomplex KI. 

LEMMA 6. (Consistency). If M is aproper submanifold of Q that is transimplicial to K, 
then M is transversal to P. 

Proof. Given x E M IT P, suppose x E A, A E KI. Let L = Ik(A, K), L1 = lk(A, KI) and 
v be a vertex of A. 
mutative diagram: 

Since M is transimplicial to K we have, with the usual notation, a com- 

N x D 1 xk ,N x D* projection, N 

where D = Dm+n-q and D, = D”. Let N1 = N n vL,. Since Q, P is a locally flat manifold 
pair, we can choose N such that N, N1 is an unknotted ball pair. The above left hand square 
can be rewritten: 



TRANSVERSALITY FOR PIECEWISE LINEAR MANIFOLDS 445 

NxD=NxD, 

Since M is locally flat in Q, we know that N x kD is locally flat at (v, 0) in Nx D*, and 
therefore that kD is locally flat at 0 in D* . Meanwhile IV1 is locally flat at v in N. Therefore 
N x kD and IV1 x D, are transversal at (0, 0) in N x D,. Taking the image under $ we 
deduce that M and P are transversal at x in Q. This is true for all x E M n P, and so M, P are 
transversal. 

We shall require triangulations of our manifolds that possess a certain local linearity 
property. 

Dejinition 6. A combinatorial manifold K, of dimension q, is called Brouwer if: 
(i) For each A E& there is a linear embedding &I, K) -+ Eq. 

(ii) For each A E& there is a linear embedding $A, K), $A, R) -+ ET, Eq-‘. 
Notes : 1. If only (ii) holds we say K is Brouwer at the boundary. 

2. Not every combinatorial manifold is Brouwer, see Cairns [4]. 
3. Any subdivision of a Brouwer manifold is Brouwer. 

The following lemma is due, in a sharpened form, to Whitehead [9]. 

LEMMA 7. (a) Any combinatorial manifold K has a Brouwer subdivision K’. 
(b) If K is already Brouwer at the boundary, we can choose K’ such that k ’ = I(. 

Proof. (a) Choose an atlas of q-simplexesh : A + K, 1 5 i s r, that cover Kin the sense 
that every point has some fi A as a closed neighbourhood. Now produce K’ by subdividing 
so that all the fi are simultaneously simplicial (using [12], Theorem 11. 
(b) If K is already Brouwer at the boundary, we can confine our attention to a subatlas not 
meetingR that covers every simplex not meeting& In order to make the subatlas simplicial, 
it is not necessary to subdivide any simplex on the boundary. 

The main burden of this paper will be to prove the following two theorems. 

THEOREM 4. Iff : M + Q is an embedding between closed manifolds, and K any triangula- 
tion of Q, then f can be ambient isotoped, by an arbitrarily small ambient isotopy, to an embed- 
ding g that is transimplicial to K. This theorem is in fact true for maps (see [2]). We now give 
a relative version. 

TKEOREM 5. Let P be a proper submanifold of Q, and J a Brouwer triangulation of the 
boundary 0, p. Let f : M -+ Q be a proper embedding such that f 1 & is transimplicial to J. 
Then there exists an extension of J to a Brouwer triangulation K of Q, P, and an arbitrarily 
small ambient isotopy keeping &ixed carrying f into an embedding g that is transimplicial to K. 

Remark. Let K be an arbitrary extension of J to a Brouwer triangulation of Q, P. Then 
although f 1 Id is transimplicial to J, it may well happen that f is not transimplicial to K at 
points of ni. For example, let D be a disc properly embedded in a tetrahedron T as shown in 
Fig. 5. Then b is transimplicial to i: but the fold ensures that D is not transimplicial to Tat 
the boundary point x. 
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FIG. 5. 

In our proof of Theorem 5, we get round this difficulty by using a collaring technique to 
construct a particular extension K relative to which such folds are straightened out. 

Before proving these transimplicial results, we give applications in the form of proofs of 
our transversality theorems. 

?$4. PROOF OF THEOREM 1 

We are given proper submanifolds M, P of Q, and have to ambient isotop M transversal 
to P. 

By Lemma 7, it is possible to choose a Brouwer trianghlation of the pair 0, P. Apply 
Theorem 4 to ambient isotop &f transimplicial to J, and extend this ambient isotopy from 0 
to the whole of Q by [7] Addendum (2.2). Suppose the effect of this isotopy has been to 
move M to M’i c Q, then &fl is transimplicial to J. We are now in a position to apply 
Theorem 5. This provides: 
(a) an extension of J to a Brouwer triangulation K of the pair Q, P. 

(b) an arbitrarily small ambient isotopy which moves Mi transimplicial to K whilst keeping 
Q fixed. 

Reference to Lemma 6 shows that the composition of our two isotopies produces the required 
result. 

$5. PROOF OF THEOREM 2 

We are given closed manifolds M, and P c Q, together with a map f : M + Q which we 
want to homotop graph-transversal to P. The graph lYf: M + M x Q is an embedding. 
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Choose Brouwer triangulations K1 of M and K2 of Q, P, and let K3 be a subdivision ofthe cell 
complex K1 x K2 triangulating M x Q, M x P. Using Theorem 4, ambient isotop Tfinto 
an embedding F that is transimplicial to K3 . 

LEMMA 8. We can choose F so that the composition 

M5M x Q%M 

is a homeomorphism, where p1 is the projection. 

The proof of this lemma is postponed, it can be found directly following the proof of 
Theorem 4. 

Meanwhile, let e = (pl F)-‘, the inverse homeomorphism. Define G = (e x l)F: 
M+ M x Q, and let g denote the composition 

M%MxQf”Q. 

Then g is homotopic to f and G = rg, the graph of g. 

The triangulation K3 of M x Q is really a homeomorphism t : K3 -+ M x Q. Let K 
denote the triangulation 

(e x l)t:K,-+M x Q. 

Then since e x 1 maps M x P to itself, Kis also a triangulation of M x Q, M x P. Now Fis 
transimplicial to the triangulation K3, and since we have applied the homeomorphism e x 1 
to both embedding and triangulation, we deduce that G is transimplicial to K. Therefore by 
Lemma 6 we know G is transversal to M x P. Hence g is graph-transversal to P, because 
l-g = G, and consequently g-‘P is a locally flat submanifold of M of codimension q - p. 

It remains to show the invariance of the cobordism class {g-‘P}. There were two 
choices involved in the above construction, namely those of triangulation and isotopy. Let 
K* , g* arise from different choices. Then g, g* are connected by a homotopy h : M x Z + Q 
say. 

The graph 
Th:Mxl-+MxlxQ 

is a proper embedding, whose restriction to the boundary 

rg u rg, : z(M X I) -+ i?(M X 1 X &) 

is transimplicial to the Brouwer triangulation K u K* of J(M x Z x Q). By Theorem 5 
extend K u K* to a triangulation of M x Z x Q, M x Z x P and ambient isotop Th, keeping 
the boundary fixed, to a transimplicial embedding H, say. 

By Lemma 6 H is transversal to M x Z x P, and so H-l(M x Z x P) is an 
(m -I- 1 +p - q)-dimensional submanifold of M x Z with boundary g-‘P u (-g;‘P), the 
minus sign referring to orientation. In other words g_lP and g*lP are cobordant. If fn is 
homotopic to f then the same g will do for both, and so the cobordism class (g-‘P} depends 
only upon the homotopy class [f]. 

Remark. There is a small but subtle point here. If f happened to be already graph- 
transversal to P we could not infer thatf-‘P E (g-‘P}, becausefmight not be transimplicial 
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to any triangulation, and so we could not use the relative transimplicial Theorem 5, as in the 
proof above. Nor do we have a relative transversal theorem to use instead (see the end of the 

paper). 

$66. PROOF OF THEOREM 3 

We are given manifolds A4 c P c Q, with both inclusions proper, and need to construct 
a “perpendicular” manifold N. Begin as for Theorem 1, combining the results of Theorems 4 
and 5 to obtain a triangulation J of P and an ambient isotopy of P moving M to M,, where 
Ml is transimplicial to J. By [7] Corollary (2.3) extend the ambient isotopy of P to give an 
ambient isotopy of the whole of Q. Extend J to a triangulation K of Q, this is possible since P 

is proper and locally flat in Q (see [3]). Let K’ denote a first derived of K mod J. 

For each simplex A E J, let 

Define 

LA = {simplexes BE K’ : ABE K’ and B n J = a). 

X = u (A n M&A, 
Ad 

the joins being made linearly inside the simplexes of K. Note firstly that the dimension of X 
is m i- q - p. Xneed not be a manifold, however we shall show that it is a manifold “near” 

MI. 

FIG. 6. 

For x E Ml, suppose x E A, A E J, and write Lp = lk(A, J), LQ = lk(A, K’). Let v be a 
vertex of A. Since Ml is transimplicial to J, the pair 

Ml n ALP c ALp”A--vL!’ 
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is F(m f a -p, a) at x. This implies that 

X n ALQ c ALQ”A-vL Q 

is also F(m + a -p, a) at x. So as not to interrupt the main line of argument, we ask the 
reader to temporarily accept this implication; a proof will be given following Lemma 12. We 
have therefore a neighbourhood Dq-’ of v in vLe and an embedding of 

D4-” x Dm+a-P = Dm+q-P 

onto a neighbourhood of x in X. Consequently there is a neighbourhood N1 of MI in X (for 
example take a second derived neighbourhood) which is an (m + q - p)-manifold and tran- 
simplicial to K’. By Lemma 6 NI is transversal to P in Q. By construction Nr n P = A4 

Now reverse the original ambient isotopy of Q to obtain the required manifold N. 

$7. THE r-SHIFT OF AN EMBEDDING 

For the proof of Theorem 4 we shall use a sequence of special local moves (first intro- 
duced in [12] Chapter 6) called t-shifts. The parameter t concerns dimension, and the 
construction involves choice of local coordinate systems (i.e. replacing the piecewise linear 
structure by local linear structures) and choices of points in general position. 

Suppose f: A4 + Q is a proper embedding between manifolds. By Lemma 7, we can 
find triangulations K,, K, of M, Q such that f: Kl --f K2 is simplicial and K2 Brouwer. If 
K:“, K$” denote the barycentric second derived complexes of K,, K2, then f: Ki2’ + K$” 

remains simplicial. 

Let TX be a t-simplex of Kl such that f’ CA?, and let T2 = fTl. Take a simplicial 
neighbourhood of T2 modulo its boundary in Ki2’ (i.e. this consists of all closed simplexes of 
K$” which meet the interior of T,) and call the resulting q-ball B, . Let Bl = f -lB2, this is 
an m-ball (it is in fact the corresponding simplicial neighbourhood of Tl mod ?’ in K:‘)). 

For i = 1, 2 let pi denote the barycentre of Tz, and let Si =Bi. Then the polyhedron 
lBil = lpi Sil , although of course as a complex Bi is a subdivision of pi Si . 

Denote by fT : Bl + B, the restriction off. Thus fT is the join of the two maps ?‘I + pz, 
s, -+ s2. The idea is to construct another embedding gT : B, --f B2 that agrees with fT on 
the boundary &, and is ambient isotopic to f,. keeping the boundary B, fixed. We shall give 
the explicit construction below; it will be apparent that gT can be chosen arbitrarily close to 
fT , and the ambient isotopy made arbitrarily small. 

Define a new embedding of M in Q by 

fonM-B, 
9= 

i gT on BI. 

Then g is ambient isotopic to J We call the move f -+ g a local t-shift with respect to the 
triangulation K, . 

Construction of the local shift. Choose a linear embedding h of si(T, , K,) in Eq (this is 
possible since K, is Brouwer), then h embeds B, linearly in Eq. 
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Let X denote the combinatorial q-ball hB,, Y = 2, and v = hf2, Choose a point 
u’ E Eq near v which satisfies: 
(i) w E st(u, X) 

(ii) w and Y are joinable 
(iii) w is in general position with respect to the vertices of X. 
Define a homeomorphism j : X-, X as the join of the identity on Y to the map v + w. 
Thus h-‘jh is a homeomorphism of the ball B2 which keeps its boundary fixed. Define 
gr = h-ljhf, . Then gT is ambient isotopic to fT keeping & fixed in view of: 

ALEXANDER’S LEMMA. Any homeomorphism of a ball keeping the boundary fixed is 
isotopic to the identity keeping the boundaryjxed. 

Suppose we now let T, run over a sequence of “interior” t-simplexes of K,, then the 
corresponding balls {B,} overlap only in their boundaries, on which the {gr) agree withf, and 
therefore with each other. Consequently the resulting embeddings, and ambient isotopies, 
may be combined to give an embedding g ambient isotopic to f. We call f + g a global 
t-sh$t or, more briefly, a t-shift. 

We shall want to perform a succession of t-shifts, one for each value oft, dim X1 2 t 2 0. 
But after the first shift the resulting embedding will no longer be simplicial with respect to 
K,, K, . However, in the construction of a shift, our initial assumption that f be simplicial 
was a luxury rather than a necessity, and the construction can be adapted as follows. Sup- 
pose r > t, e : Kl + K, simplicial, and that we perform an r-shift e -$ Then given a 
t-simplex Tl E Kl : 
(a) f maps Tl linearly onto a t-simplex T, E K2. 
(b) If B2 is as above, and if B1 =f-lB, , then B, is an m-ball and f -‘l$ =I$. 
(c) fT : B, + Bz is the join of B, +B, to p1 --f p2. 
Property (a) is satisfied because the r-shift does not move the (r - 1) -skeleton, and properties 
(b) and (c) follow from property (i) of w in each local r-shift. 

With the amount of structure contained in (a), (b) and (c) we can construct a local 
t-shift f + g exactly as before. Only one minor modification is needed, and that is in property 
(iii) for the point w: for this choose subdivisions such that B; + B; is simplicial, let X’ be the 
corresponding subdivision of X, and choose w in general position with respect to the vertices 
of X’. The remainder of the construction is unaltered. 

In this way we can construct t-shifts for all t, m = dim K1 2 t 2 0, in descending order, 
because for each t-simplex, the preceding higher dimensional shifts preserve the structure 

(a), (b) and (c). 

$8. PROOF OF THEOREM 4 

Let X be a combinatorial q-ball, with boundary Y, linearly embedded in Eq, and S”‘- ’ an 
(m - 1)-sphere in Y. Suppose that Y is joinable to the interior point w of X; in other words 
X and w Y have the same underlying polyhedron. We have the following two lemmas. 

LEMMA 9. IfSm-l is transimplicial to Y at y, then wS’“-l is transimplicial to X at y. 
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LEMMA 10. Zf S”- ’ is a subcomplex of Y, and if w is in generalposition with respect to the 

vertices of X, then wS”‘-l is transimplicial to X at all interior points of X. 

Proof of 9. Suppose y E A, A E Y. Let v be a vertex of A, L = Ik(A, X), L, = Zk(A, Y) 

and sthe simplicialmap AL --t vL. We know that S”-l nAL1cALIGvL1isF(m+a-q,a) 

at y: i.e. there is a neighbourhood NI of v in vL, and a commutative diagram 

N1 x DT+“-q lx= .N1 x D’;_!++&$ 

Ql 

I QII 

Sm-’ n AL, AAL, ’ 
, I- 

vL, 
where q+ embeds NI x D;l, Nl x DT+a-q as neighbourhoods of y in AL,, Sm-’ n AL1 res- 
pectively. Since w is joinable to Y, every ray radiating from w meets Y in a unique point. 
The same is true for points near u’. Thus any ray near wy and parallel to IVY aZso meets Y 

in a unique point. Therefore given a neighbourhood V of y in Y, there exists a neighbour- 
hood U of y in X such that projection parallel to wy gives a map r : U --+ K Now choose V, 
U sufficiently small so that V c qI(N, x 0:) and U t AL. Define 6 : U -+ 0; as the com- 
position 

L.J*rp,(N, x 0;) +?%N1 x &!!!!%&‘I. 

Thens x 0 : U + vL x 04 is piecewise linear and onto a neighbourhood of v x 0 in VL x 0;. 

Moreover, s x 9 is an embedding, for suppose u,, 24, have the same image under s x 0. Since 
sul = su2 the interval u1 u2 is parallel to A. Therefore the interval (ru1)(ru2) is also parallel to 
A and of the same length, consequently the points ‘prlruI, q;‘ruz have the same first CO- 
ordinate in NI x Df . Since Bu, = t&2, they also have the same last coordinate. Therefore 
they are equal, giving ru, = ru2, and so U, = u2. Thus s x B is an embedding as required. 

Choose neighbourhoods N of v in vL, D” of 0 in 0: , Dmin-q of 0 in D;n+a-q such that 

N x D” c (s x f?)U, and 

D m+a-q ,= D”. 

Define cp : N x D” + AL by cp = (S x O)-’ 1 N x D”. By construction 
N x Dm+N-q lxc ,N x Da PrOjn ,N 

Q 

wS”-~ n AL 
I 

AAL ’ 

commutes, showing wSmml transimplicial to X at y. 

Proaf of 10. (See Fig. 7). Since w is in general position it must lie in the interior of a 
principal simplex of X, hence trivially wS”-’ is transimplicial to Xat w. Given an interior 
point x of WSm-l, x # w, suppose that x E 2% where A.is a simpIex of X (we may assume 
dim A -C q, otherwise the lemma is again trivial). Let L = Ik(A, X). We need to show that 

wsm-1 nALcAL~vL 
is Ir(m + a -4, a) at x. Denote by [A] the linear subspace of E4 spanned by A. Then 
w g [A], by the general position of w. Let [wx] meet Yin y, where y E C, C E Y. Again using 
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the general position of w, we infer that [A] and [q together span E4. Therefore [wA] n C is 
a convex linear cell, containing y in its interior, of dimension (a + 1 + c - q). Call this cell E. 

FIG. 7. 

Let L, = Ik(C, SmF1), L, = Zk(C, Y). Then EL,, EL, are respectively m -I- a - q, 
a - balls. 

Let p : C --, [E] denote orthogonal projection, and V be the neighbourhood (p-lE)L, of 
y in Y. Let i5 : V-t EL, be the join of p to the identity on Lz. As in the proof of the 
previous lemma any ray parallel and sufficiently close to wx meets Yin a unique point, and 
therefore there exists a neighbourhood U of x in X such that projection parallel to wx 
gives a map I : U --) V. We can choose U sufficiently small so that U c AL. Let 8 be the 
composition 

UI, VAEL?. 

Then 0 is a projection in a direction complementary to the projection 

U-SALAvL. 

Therefore the product 

is a piecewise linear embedding onto a neighbourhood of v x y in VL x EL,. Choose 
neighbourhoods N of v in vL, Dm’a-q of y in EL,, D” of y in EL,, such that D”‘a-q c D” 
and N x D” c (s x f3)U. Define $ : N x D” +ALby$=(s x O)-‘INx D”. Byconstruc- 
tion we have a commutative diagram 

N x Dm+a--qa N x Da rrojn ,N 

wSI”-l n AL AAL ’ 

and therefore the proof of Lemma IO is complete. 

We shall also need: 

LEMMA 11. Let M, Q be closed manifolds, andf : M -+ Q an embedding. Suppose Bz is a 
q-ball contained in Q such that (Bz , Bz n f M) is a (q, m)-ballpair. Let Bi = f -l(Bz n f M), 
and let K be a triangulation of Q, B, . Then ifx is a point of 8, such that both 
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IB, : B,--tB,, and 

f/M-8, :M-&+Q--I& 

are transimplicial to K at x, then f is transimplicial to K at X. 

Proof. A straightforward application of the glueing lemma. (Of course in saying 
f 1 Bl : Bl + B2 is transimplicial to K, we mean that it is transimplicial to the subcomplex of 
K triangulating Bz; similarly for the statement about f [ A4 - I?,. Where no confusion can 
arise this abbreviation will be constantly used.) 

Inductive proof of Theorem 4. Recall the statement of Theorem 4. We are given an 
embedding f : M -+ Q between closed manifolds, together with a triangulation K of Q, and 
we have to ambient isotop f to g such that g is transimplicial to K. 

Choose a triangulation Kl of M and a subdivision K2 of K so that f : Ki --f K2 is simpli- 
cial and K2 is Brouwer. Let Ki denote the t-skeleton of K,, and KJ2’ the barycentric second 
derived of K2. We shall produce inductively a sequence of embeddings of M in Q 

such that 
(i) gt is transimplicial to KS” at points of Kl - K:-‘, and 
(ii) gt is ambient isotopic to g,+l by an arbitrarily small ambient isotopy. 
Application of Lemma 5 shows that the final embedding g is transimplicial to K. 

Beginning of induction. Apply a local m-shift to f, with respect to K,, for each m- 
simplex of Ki. Define gm to be the embedding which results from the global m-shift. Then 
(ii) is satisfied. Let AI be an m-simplex of Kl and A, = fA,. It is sufficient to show that g,,, 
is transimplicial to KY’ at points of A,. Recall the local m-shift process. Using the notation 
of the previous section, we have 

9m = h-‘jhf: A,&-YA^,S,. 

By Lemma 10, jhfA, is transimplicial to X at all interior points. Therefore, since the pro- 
perty of being transimplicial is preserved under an isomorphism, g,,,A1 is transimplicial to 
Ki2) at points of g,lg, as required. 

Inductive step. Assume that, as a result of r-shifts for m 2 r > t, we have 

satisfying (i) and (ii). 

Apply a local t-shift to gt+l, with respect to K, , for each t-simplex of K,, and define gt 
as the embedding resulting from the global t-shift. Again (ii) is immediately satisfied, and in 
proving (i) it is sufficient to examine the effect of a local shift, say that associated with 
Tl E Ki. We again use the notation of the previous section. Then: 

Sr = St+1 on M - 8,, and 

gt = h-ljhg,+I : B, *Bz. 

We claim that gt is transimplicial to Ki2’ at points of 
(a) KI - Ki, and 

(b) z!. 
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By the inductive hypothesis and restriction, 

g,:M-Ij,+Q-8, 

is transimplicial to KJ*) at points of Kl - Ki. It remains to show 

St:&--,&? 

transimplicial to K, “) at all points except those of ?“. 

For then (b) is automatically taken care of, and (a) follows at once by application of 
Lemma 11. Our aim is accomplished using Lemmas 9 and 10. By Lemma 10, jhg,+, B, is 
transimplicial to X’, and therefore to X, at all interior points. Consequently 

h-‘j@,+, B, = gt B, 
is transimplicial to K, t2) at all points in its interior. Before the move we see by restriction that 
hg,+,B, is transimplicial to Y except at points of hg t + 1 i;. Therefore, since j keeps Y fixed, 
Lemma 9 shows jhg,,, B, transimplicial to X at all points of jhg,,, (B, - T1). Conse- 
quently gtB1 c B, is transimplicial to Ki2’ at points of g,(& - i;), and the induction is 
complete. 

Proof of Lemma 8. Let us recall and simplify the statement of Lemma 8. We are given 
two closed manifolds M, Q. Let d denote the set of embeddings e : M + M x Q with the 
property that the composition 

M--e,M x Q Proj"+M 
is a homeomorphism. In particular iff: M + Q is an arbitrary map, then its graph IYf E 8. 
Let K,, K2 be Brouwer triangulations of M, Q and let K3 be a simplicial subdivision of the 
convex linear cell complex Kl x K, . Then Lemma 8 follows from: 

LEMMA 8*. Given e E I, there exists e’ E 6 transimplicial to K, and ambient isotopic to e. 

Proof. By Theorem 4 we can ambient isotop e to e’ transimplicial to K3 . The only thing 
left is to make sure e’ E b, and this is achieved by taking care over the t-shifts. The ambient 
isotopy e to e’ consists of a finite sequence of local shifts. 

e-+e1--,e2-+...+e, = e’. 

We proceed by induction on the number of local shifts. This begins trivially since e E 6’. 
Suppose we have managed to ensure ei E b, and consider the local shift ei + e,,,. It takes 
place inside a ball AL, where A E K; , K; some subdivision of KS, and L = Ik(A, K;). Since 
K; is a subdivision of Kl x K2, there exist simplexes Al E K,, A2 E K2 such that 

AL c st(A,, K,) x st(A2, K,). 

Also, since K,, K2 are both Brouwer, we can choose linear embeddings hl : st(A,, &) --) E”, 
hZ : st(A, , K2) --t E4. We shall use the linear embedding 

h = h, x h,: AL-+E” x Eq 

in order to construct the shift. 

In detail, if X = h(AL) and v = h& then X = vs. Choose w in general position in 8 
sufficiently near u such that X = wX. Define j : X + X by mapping v + w, keeping X fixed, 
and joining linearly. Use h-‘jh : AL + AL to define the shift ei + ei+l. 
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Now let MO = e;‘(AL) c M, and let Z=he,M,. Then 2 is an m-cell, and 2 c X, 
i c 8, Z = vi. Let n : E” x Eq --t E” denote the projection. Then since e, E 8, n embeds Z 
as an m-cell in E”, and 

nz = (nv)@). 

We now choose ~1 sufficiently close to v such that 

712 = (nw)(rci). 

AS a consequence, although ei MO # ei+l MO, nevertheless the projection M x Q + M will 
map both ei MO and ei+l MO homeomorphically onto the same m-cell in M. Then ei+l E 6, 
and the inductive step is complete. 

We end this section by filling the gap left in the proof of Theorem 3. For this we need : 

LEMMA 12. Let E be a simplex, F a principal face of E, v the vertex opposite F, and W a 
submanifold of F. If W is transimplicial to Fat a point x, then v W is transimplicial to E at x. 

Proof. By exactly the same technique as was used for Lemma 9. 

COROLLARY. Let F, C be simplexes, and W a submanifold of F. If W is transimplicial to 

F, then CW is transimplicial to CF at points of W. 

Proof. Join successively to the vertices of C, applying the lemma at each step. 

Recall the proof of Theorem 3. With the previous notation, we needed to show that for 

any point x E M,, 

X n ALQ c ALQ s, vLQ 

is F(m + a -p, a) at x. 

Given B EL”, write AB = CF where F = AB n J and C is the face of AB opposite F. 
Since M1 is transimplicial to J, we have by restriction Ml n F transimplicial to F. But 

X n AB = C(M, n F) and so by the Corollary above X n AB is transimplicial to AB at x. 
In other words 

XnABcAB4vB 

is F(m + a - p, a) at x. Therefore by glueing (Lemma 2) over all B E L”, we have the desired 
result. This completes the proof of Theorem 3. 

$9. PROOF OF THEOREM 5 

It is necessary to do a considerable amount of preparatory work. 

Collars. Let Q be a manifold with boundary. A collar cQ of Q is an embedding 

cQ:QxI+Q 

such that c(x, 0) = x for all x E Q. Any compact manifold has a collar, and any two collars 
are ambient isotopic keeping the boundary fixed ([12], Theorem 13). 

Given a proper embedding f: M --+ Q then by [12], Lemma 24 we can choose collars 
cM, cQ of M, Q that are compatible with f, that is to say the following diagram commutes 
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MxI’MM 

In particular if P is a proper submanifold of Q, then we can choose compatible collars, that is 
tosaycP=ce]PxZ. 

Suppose we are now given a collar co of Q and a triangulation .Z of the boundary Q. If 
Q, denotes the image of ca, then we can extend J to a triangulation of the collar Q,, in a 
canonical way, as follows. J x I is a convex linear cell complex, which has a canonical 
simplicial subdivision, (.Z x I)’ say, obtained by starring in order of decreasing dimension 
all simplexes A x 1, A E J. The resulting triangulation 

(J x I)‘-& x Z&Q, 

is called the canonicaZ extension of J to the collar. The canonical extension is functorial in 
the following sense. Let P be a proper submanifold of Q, and suppose we are given compa- 
tible collars co, P c and a triangulation J of e, P. If Q,, Pi denote the images of co, cp, 

then the canonical extension of J to Q, is a triangulation of the pair Q,, P1 and the restriction 
to P, is the canonical extension of the restriction of J to Zj. 

LEMMA 13. Let P be a proper submantfold of Q. Given a triangulation J of Q, P then 
there exists an extension of J to a triangulation K of Q, P. Further, I~J is Brouwer then K can 
be chosen to be Brouwer. 

Proof. Choose compatible collars co, cp, let Q,, P1 denote their images, and let 

- Q, = Q - Q,, Pz = P - P1. Let (J x 2)’ be the canonical extension of J to IQ1 and let J’ 
denote the subcomplex triangulating the inside of the collar, 0,. 

Choose any triangulation L of Q, , P2. Then both J’ and .I!, triangulate Q, , and so they 
have a common subdivision, say J” = L’ (see [12] Lemma 4). These subdivisions extend 
uniquely to subdivisions (J x I)“, L’ of (J x I)‘, L without introducing any more vertices. 
Identifying J” = k, the union K = (J x I)” u L’ gives a triangulation of (2, P and provides 
the required extension of J. 

Finally, if J is Brouwer then so is the canonical extension to the collar. Therefore K is 
Brouwer at the boundary, and so by Lemma 7(b) we can choose a Brouwer subdivision K’ 
that also extends J. 

Relative t-shifts. In proving Theorem 5 we shall need to be more precise in our t-shift 
process; recall the considerable choice available for the position of the point W. The neces- 
sary accuracy is expressed in the following lemma. 

Let M, Q be manifolds and K a triangulation of Q. Given a map f : M --) Q let 

T{ = (x E A4 : f is transimplicial to K at x}. 

LEMMA 14. Suppose f : M + Q is a proper embedding, K a Brouwer triangulation of Q, 
and K(‘) a second derived of K. Let K1 be a triangulation of M, and K, a subdivision of K(‘) 
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such that f :K, -+ K2 is simplicial. Let T be a t-simplex of KI such that T c a, and f --* g the 

associated local t-shift made in the local Linear structure of K. If the shift is suficiently small 

then T{ c Ti . 

Remark. The proof of Lemma 14 is long, and more complicated than our correspon- 
ding work in the proof of Theorem 4. The difficulty is that we are in a situation where the 
glueing lemma is no longer applicable. 

Proof of Lemma 14. Since f is a proper embedding we know f T c 0. Define, as before, 
B, to be a simplicial neighbourhood off T modulo its boundary in Ki2), and BI = f -‘B2. 

Now 

c 3(un, P)) for some vertex ~4~ E R(‘) 

C st(u, K) for some vertex u E K. 

Therefore the problem is localised both with respect to K and K, . Using the Brouwer 
property of K choose a linear embedding 

h : qu, K)-PE? 

Then h automatically embeds B, linearly in Eq. The local shift may now be defined as 
before; in particular we write 

f0 = hf:f-‘Sf(u, K) +Eq, and 

go =jhf:f-‘Sf(u, K) -+Eq. 

Remark. The above construction explains our reason for calling this section “relative 
t-shifts”. We are t-shifting f with respect to the triangulation K, , but with the reservation 
that we do so relative to the local linear structure of K. 

Suppose f is transimplicial to K at x E M, we want to ensure that g is also. If x # B,, 
the result is trivial because some neighbourhood of x is not moved by the shift. Also if 
x E &, application of Lemma 10 as in the proof of Theorem 4 shows g transimplicial to 

KY’, and therefore to K, at x. 

Therefore there remains the case x E B, ; here fx = gx. Let A be the simplex of K such 
that fx E A, and let LA = Ik(A, K). Then AL* c Z(u, K). Define E” = [hA], the linear sub- 
space of Eq spanned by hA, and Eq-’ = EqJ/E”, the decomposition space whose points are 
a-dimensional linear subspaces of Eq parallel to E”. Let n : Eq + Eq-’ be the natural pro- 
jection and rr* : Eq -+ E” the orthogonal projection (see Fig. 8). 

Since f is transimplicial to K at x, the pair 

A Jo f-‘AL -Eq &‘E4-. 

is F(m + a - q, a) at x. Therefore if y = fO x, z = ny, there is a neighbourhood N of z in 
Eq-’ (which we may take to be a simplex), and embeddings rp, + onto neighbourhoods of x, 
y in f -‘AL*, Eq respectively, such that the following diagram commutes 
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E" 

FIG. 8. 

N x D”‘+qzN x Da-----t N projn 

cp I 
f-‘ALA /a 

Call E” “the vertical”. Given two points yl, y, E Eq, let a(yl, y2) denote the angle that the 
vector y1 y2 makes with the vertical. More precisely 

a(~,, y2) = tan-l (d$::: Fi,) 
where d denotes Euclidean distance. 

SLJBLEMMA 1. There exists ~1~ > 0 such that given any two distinct points x1, x2 E N and 
any y E D”, then 

4Jl(x,, YL $(x2, Y>> 2 ao. 

Proof. We chose N to be a simplex and we can regard D” as a simplex, therefore N x D’ 
is a convex linear cell. Let J be a simplicial subdivision of N x D” such that $ : .7+ Eq is 
linear. 

Case (i). Suppose (x1, y), (x2, y) both lie in a simplex S E J. Then their images $(x1, y), 
$(x2, y) lie in $(S n (N x y)), which is a convex linear cell in Eq. This cell is embedded in 
Eq-’ by n (because nJ/ : N x D” --f N is the projection), and therefore it makes an angle 
us > 0 (independent of y since $ I S is linear) with the vertical. Let a0 = min(a, : SE J). 

Then a($(~~, y), $(x2, YN 2 as 2 ~1~. 



TRANSVERSALITY FOR PIECEWISE LINEAR MANIFOLDS 459 

Case (ii). (x1, y) and (x2, y) do not lie in the same simplex of.Z. Since $(N x y): Nis a 
homeomorphism, the vector x1 x2 c N lifts under z-l to an arc, Z say, in $(N x y) which 
joins $(x1, y) to J/(x2 , y). Then Z consists of a finite number of linear segments, all lying in 
the (a + I)-dimensional linear subspace of Eq above x1 x2, each one of which makes an 
angle greater than or equal to c1,, with the vertical. Therefore the vector joining the ends of Z 
also makes an angle 2 a, with the vertical. This completes Sublemma 1, and we now con- 
tinue with the proof of Lemma 14. 

As before we denote the combinatorial ball hB, by X, and its boundary by Y. Recall 
the homeomorphism j : X + X, defined by moving fop= v to a suitable point w = g,$ in 
general position with respect to the vertices of X, and joining linearly to Y. Extend j by the 
identity to the whole of Eg. 

SUBLEMMA 2. Givers c(,, > 0, there exists E > 0 such that if d(f,t gOp) < E then for all 

Y,, ~2 E Eq 

Proof. Let S be a simplex of X. Since j 15’ is linear, there exists Ed > 0 such that if j 
moves Jo? less than sS, then any vector in S changes direction by less than ~1~. Let E = 
min(e, : SE X). Suppose now that j moves fop by less than E. Given yl, y2 in Eq, the 
vector y1 y2 consists of a finite number of segments, each one lying either in some simplex of 
Xor in Eg - X. Therefore j(y, y2) is an arc, consisting of a finite number of linear segments 
each making an angle less than a0 with y1 y, . Therefore the vector (jyJ(jyJ joining the 
ends of this arc also makes an angle less than a0 with y1 y2. But y1 y, makes an angle 2 a, 
with the vertical, and therefore (j y,)( j y2) makes an angle > 0 with the vertical. This com- 
pletes Sublemma 2. 

We now make our local shift within the E given by Sublemma 2; it remains to show this 
ensures g transimplicial to K at X. To do this it is sufficient to construct a commutative 
diagram 

‘p* ! 
g-lALA 

I- 
E4-a 

which we now proceed to do. Let U = j$(N x D”); since jy = y, U is a neighbourhood of y 
in Eq. Define 6 : U-t Dq as the composition 

u+j-$(N x D”)aN x Da= D”. 

Then the product rc x 8 : U-+ Eqma x D” is piecewise linear and onto a neighbourhood of 
(z, 0). We claim that it is an embedding; for given y1 # yz E U with 8y, = ey,, then 
cr(y,, y2) > 0 by Sublemmas 1 and 2, thus zyny, z ny, . Choose a neighbourhood hr* of z in 
Eq-“, and a disc neighbourhood 0: of 0 in D” such that N* x 0: c (TZ x f?)U. Define 
I++* = (n x 0)-l : N* x D”* + Eq. We have therefore produced the right hand half of our 
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FIG. 9. 

diagram. Since k : Dm+a-q, 0 + D’, 0 is an embedding, choose D~‘“-q as a disc neighbour- 
hood of 0 in k-‘D; and define k* = k 1 Dzf’-q : D~“-q-+D4,. Finally we need to define 
‘p* . It is elementary to check that 

Jr& x k&N, x G?‘-ql = a&Q’, 

therefore since go is an embedding ;ire &i define 

‘p* = g;‘$*(l x k,) : N, x D~+a-q+g;lAIt. 
We have not finished the proof of Lemma 14 yet: so far we have shown that, given 

x B B, n TK/, then there exists E > 0, such that if d&p, g,n < E then x E 8, n Tg . Notice 
that e depends upon x. Suppose that x’ E & n TKf and x, x’ lie in the interior of the same 
simplex S E Kl. 

SUBLEMMA 3. The same E will do for x’. 

Proof. Choose neighbourhoods V, V’ of x, x’ in st(S, K,), such that linear translation by 
the vector XX’ maps Vinto V’. Let A : V, x --f V’, x’ denote this linear translation. Since f0 
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maps st(,!?, Kr) linearly into Eg, there are linear translations Iz’, A” of Eg, Eq-” respectively 
such that the diagram 

fo v. x ---+Eq-%Eg-~ 

is commutative. Recall the commutative diagram 

expressing the fact that f is transimplicial to K at x. We can choose N, Dm+a-q such that 
im q c V (replacing them by subballs if necessary); note that this replacement does not 
alter the angle cq, of Sublemma 1. Now replace the three vertical arrows by @, X$, 1” 
respectively, and we have an expression of the transimpliciality off to K at x’. Again CI,, is 
unaltered. Therefore the E of Sublemma 2 is unaltered. This completes the proof of Sub- 
lemma 3, and we now conclude the lemma. 

B, is covered by the interiors of a finite number of simplexes of K,; for each of these 
choose an E by Sublemmas 2 and 3, and select the minimum such E. Therefore if 
d(f,p, gO$) < E then B, n T& cl$ n Tz. In other words if the shift is sufficiently small 
T{ c Ti. This completes the proof of Lemma 14. 

Proofof Theorem 5. Recall the statement of Theorem 5. We are given a manifold-pair 
Q, P, a Brouwer triangulation J of the boundary e, P and a proper embedding f: M-* Q 
such thatf 1 &l is transimplicial to J. We have to extendJto a Brouwer triangulation Kof Q, 
and ambient isotop f to g keeping e fixed, so that g is transimplicial to K. 

First choose compatible collars cQ, cp of Q, P. Then choose collars c~, ci of M, Q 
_-_- 

compatible withf: J4 4-Q. By l&z] Theorem 13 ambientisotop c;lto co keepmg QFxed, 
and suppose that this ambient isotopy carriesfto g. The result is that c,, cQ are now com- 
patible with g. 

Intuitively what we have done so far is unfold ib4 near the-boundary, and get rid of the 
sort of kinks that are illustrated in the diagram of the Remark after Theorem 5. More 
precisely, we shall describe this unfolding in transimplicial terms, as follows. 

Extend the triangulation J to the collars by the canonical extension, which is Brouwer, 
and then extend further over the rest of the manifolds by Lemma 13 to give a Brouwer 
triangulation K of Q, P. We claim that g is transimplicial to K at points of a (notice that 
before the unfolding we only knew that f I A% was transimplicial to J at points of n;i). To 
prove this claim we use the compatibility of the collars c, , cQ with g, because it then suffices 
to show that 

(gIIl;i)xl:ll;ixl+Qxl 
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is transimplicial at points of h;r x 0 to the canonical triangulation (J x I)’ of 0 x I. Now we 
can use the fact that g ( h;r = f 1 Id, which is transimplicial to J. Given x E iif = hi x 0, 
supposefx E A, A E .Z = .Z x 0. Let u be a vertex of A, L = lk(A, K), L, = Zk(A, J). By the 
transimpliciality off I Id we have a commutative diagram 

. 

N x Dm+a-qzN x Da projn ,N 

4 *I ic 
f -‘AL, -A, AL, v&.+ vL, 

Let U = [$(N x 0”) x Z] n AL, and let r : 0 x Z + 0 be the projection. Define 0 : U--f D’ 

as the composition 

U--&I,@/ x D”) +-cN x DaprojnDa. 

Then sA x 0 : U --) vL x Da is a piecewise linear map onto a neighbourhood of (v, 0). More- 
over it is an embedding because given u1 # u2 such that sAul = ~~24~) then u1 u2 is parallel 
to A, and so is (vu,)(vu,), implying that 8u, # 8u2. Therefore, choosing discs N, c vL, 

0: c D” such that N, x 0: c (sA x fl)U, we can define 

$* = (sA x 0)-l : N, x D;+AL. 

The required diagram for the transimpliciality of (f I df ) x 1 at x can now be built up in the 
usual fashion. Therefore g is transimplicial to K at points of &Z. 

There remains to isotop g transimplicial on the interior (keeping 0 fixed) as follows. 
By Lemma 4 g is transimplicial to K at all points in some open neighbourhood U of&f. Let 

K(*) be the second barycentric derived of K. Choose a triangulation Kl of M and a sub- 
division K2 of Kc2) such that 

(a) g : Kl --* K, is simplicial, and 
(b) if V is the closed simplicial neighbourhood of K, in K,, then V c U. 

Now perform the t-shifts of Lemma 14 in order of decreasing dimension for all simplexes 
T E Kl such that ? c M - V. Then, as in the proof of Theorem 4, we see that g becomes 
transimplicial to K2 , and therefore to K, at all points of M - V. By Lemma 14 g remains 
transimplicial to K at points of V. 

The proof of Theorem 5 is complete. 

Remark. The significance of Lemma 14 in the above proof should now be apparent. At 
the last stage we had an embedding g transimplicial to K at points of ti. If we had just 
haphazardly made interior shifts of g with respect to some subdivision of K, then we may 
well have introduced new folds at boundary points, and so lost the transimplicial property 
there. 

$10. RELATIVE TRANSVERSALITY? 

We were able to prove relative transimpliciality (in Theorem 5) but not relative trans- 
versality. We tried the procedure 
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transversal transimplicial isotop transversal 

on the * on the * transimplicial * on the 
boundary boundary on the interior interior, 

and although the second two steps are given by Theorem 5 and Lemma 6, we failed to 
achieve the first step. Essentially it is a passage from local to global, because transversality is 
local but transimpliciality is global, in the sense that an atlas is local while a triangulation 
is global. It is true that given manifolds M c Q, it is possible to triangulate Q so that M is 
transimplicial as follows : triangulate Q anyhow, ambient isotop M transimplicial, and then 
apply the inverse isotopy to move both M and the triangulation back. But the question is 
whether it is possible to have another manifold as a subcomplex at the same time. 

CONJECTURE 1. Given two transversal submanifolds of Q, then it is possible to triangulate 
Q so that one is a subcomplex and the other transimplicial. 
Conjecture 1 would supply the missing step to prove: 

CONJECTURE 2. (Relative Transversality). If M, P are proper submanifolds of Q such 
that ti, P are transversal in e, then M can be ambient isotoped transversal to P keeping ~j 
Jixed. 
A special case of Conjecture 2, which in fact turns out to be equivalent to Conjecture 2 is: 

CONJECTURE 3. Transversal spheres 27-l, Se-’ c 9-l can be spanned by transversal 
discs D”‘, De c Dq. 
Joining linearly to interior points is no good, because if we join them to the same point the 
discs fail to be transversal at that point, and if we join them to separate points, they fail to be 
transversal at the boundary (by the folded disc phenomenon). Conjecture 2 would imply: 

CONJECTURE 4. If M, Q are closed andf, g : M + Q are homotopic maps transversal to P, 
then f - ‘P, g- ‘P are cobordant. 
Summarising : 

Conjecture 1 * Conjecture 20 Conjecture 3 =j Conjecture 4. 

$11. TUBES 

Definition. We use the word tube as an abbreviation for the term “abstract regular 
neighbourhood”, which is rather a mouthful. Let M” be ciosed. Define a t-tube on M to be 
a manifold T”+’ together with a proper (locally flat) embedding e : M + T such that T \ eM. 
In other words Tis a regular neighbourhood of a homeomorphic copy of M, We call t the 

dimension of the tube. 

Two tubes are homeomorphic if there exists a homeomorphism h making a commutative 
diagram 
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Let P(M) denote the set ofhomeomorphy classes of t-tubes on M, and let F(M) = fF’(it4). 
0 

Remarks. 1. Tubes are the natural analogue in piecewise linear theory of vector 
bundles in differential theory. The existence and uniqueness of regular neighbourhoods 
show that any proper embedding A4 c Q determines a unique element of F-m(M), which 
we call the normal tube. 
2. The important thing about tubes is that, like tubes in ordinary life, they are not fibered. 
In fact Hirsch’s example is a 3-tube on S4 that cannot be fibered. In some sense the lack of 
fibering is more “geometrical” because the tube is more homogeneous. 
3. In the stable range, t 2 m + 2 Haefliger and Wall [5] have shown that any tube can be 
fibered with t-discs, and so P(M) coincides with K&,(M) of piecewise linear microbundle 
theory. 
4. The collapse T \ eM determines a homotopy equivalence rr : T--+ M such that rre = 1. 
However n is not natural, not unique, and not in general a fibering. The non-naturality of z 
reveals itself, when it turns out to be no good for defining induced tubes. 
5. There is a trivial tube 0 E P(M) containing M x D’, and a suspension 

F(M) --t F+‘(M) 

given by product with I, which stabilises in the stable range. To examine the structure of 
F(M) more thoroughly we define below subtubes, quotient tubes, induced tubes and 
Whitney sums. 
6. The concept of tube generalises to polyhedra other than manifolds, to give a theory 
totally different from vector bundle theory, even in the stable range. 

Subtubes. Call e1 : M + Tl a subtube of e : M -+ T if TX is a proper (locally flat) sub- 
manifold of T such that T \ Tl and the diagram 

is commutative. Call two subtubes T,, T, c T transversal if T,, T2 intersect transversally in 
eM. Notice that in this case t = t, + t, . We call the class of T, the quotient tube TIT,. 

COROLLARY TO THEOREM 3. Quotient tubesexist. 

Question. Are they nnique? 
We can question not only whether two such T,‘s are unique up to homeomorphism, but 
whether they are unique up to ambient isotopy, keeping Tl fixed. 

Proof of Corollary. Given eA4 c Tl c T, Theorem 3 furnishes a manifold P intersecting 
Tl transversally in eM. So far P is not proper. Triangulate everything and let N be a second 
derived neighbourhood of Tl in T. Then N is a tube, and Tl a subtube because N \ TX. Also 
N n P is a subtube because N \ (N n P) v T, \ N n P, and N n P cuts Tl transversally. 
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By uniqueness of regular neighbourhoods, there is a homeomorphism N--f T keeping Tl 
fixed, and throwing N A P onto T2, say. We have shown T, exists. 

Quotient normal tubes. Suppose we are given proper embeddings M” c Pp c Qq, 
where A4 is closed. Define the quotient normal tube on A4 to be the quotient tube To/T, 
where Tp, T, are regular neighbourhoods of M in P, Q such that Tp is a subtube of T, . 
Notice that dim(TQ /Tp) = q - p. 

Induced tubes. Given a map f: Ml -+ M2 between closed manifolds and a tube 
e2 : M, --f T, on the target, define the induced tube on M1 to be the quotient normal tube of 

M1=M1 x M $=+M1 x T2. 

Notice that the induced tube has the same dimension as the given tube. By the above, 
induced tubes exist, but we do not know if they are unique. 

Remark. Normally induced objects are defined categorically. For example if II : V, 

-_) hf2 is a vector bundle then the induced vector bundle is the pull-back of 

v2 

However in the case of tubes 71 is non-natural, and consequently the pull-back is not in 
general a manifold. What is natural is the embedding e, : Ml + Tl of a tube on the source of 
f, but the push-out of 

T1 

M,-----+Mz 
is again not in general a manifold. Therefore neither pull-backs nor push-outs give induced 
tubes, and we have to work for them. 

Whitney sums. Given tubes e1 : M + Tl and e2 : M--f T, on the same manifold M, 
define the Whitney sum T = Tl @ T, to be the quotient normal tube of 

M diagonal ,M x M elxe2, T1 x T,_ 

Notice that t = t, + t,, and so the Whitney sum gives a product Y*l x Y’* -+ Y’l+tt. 
Again we have existence, but uniqueness is unsolved. 

Questions. (i) Can T,, T2 be embedded transversally in Tl @ T2 ? 
(ii) Is the Whitney sum homeomorphic to the tube induced from e, : M -+ Tl by 7c2 : T, -+ M, 
and vice versa ? 
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