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linear, all manifolds compact, and all submanifolds locally flat (which is always the case for
codimension = 3 by [11]). We say M is a proper submanifold of Q if the boundary McQ
and the mterlor M.

The main result of this paper (Theorem 1) says that if M, P are proper submanifolds of
Q then we can ambient isotop M until it is transversal to P

Perhaps we should straightway point out some inherent difficultics. We do not assume
that P has a normal bundle in @ (or, equivalently, a normal microbundle). As yet the

al
existence of normal bundles in the piecewise linear cntegory is an open question. Haefliger
and Wall [5] have proved that normal bundles exist in the stable range, but Hirsch [6] has
shown that normal disc bundles do not always exist in the unstable range, and this gives

weight to the conjecture that normal bundles also may not always exist.

If P did have a normal bundle in Q, then one could slide M along the fibres until it was
transversal. This essentially is the geometrical idea behind Thom’s original transversality
theorem [8] for smooth maps, and behind Williamson’s extension [10] to piecewise linear
maps.

However, we are interested in the case where P may not have a normal bundle, and
therefore we do not assume anything about normal bundles. Also we are primarily inter-
ested in ambient isotoping embeddings to be transversal, rather than homotoping maps,
although in Theorem 2 we do deduce a result about maps.

Given M, P c Q, if we want to isotop M transversal to P, then the following method of
attack at once suggests itself. Choose a triangulation K of Q in which M and P appear as
subcomplexes. Let K* denote the dual cell complex of K, and attempt to isotop M into the
m-skeleton of K*, where m is the dimension of M. But this is not always possible, because if
it were one could infer that M always had a normal disc bundle in Q contradicting Hirsch’s
result [6].

Therefore we cannot isotop M into the m-skeleton of K*. Instead we have to isotop M
step by step so as to be transversal to each simpiex of K. In other words our proof is by bare
hands—the subtlety lying in the interplay between the linear and the piecewise linear. If one

ithaat
uses only the piecewise linea runs into a difficulty illust

following example.
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The folded disc. Let D be a folded disc crossing an interval I in Euclidean 3-space (E?)
as shown in Fig. 1.

Fic. 1.

This picture is piecewise linearly homeomorphic to a standard linear disc in E3 together
with a perpendicular line through its centre, consequently D and I are transversal in E3. If
we now multiply by an extra dimension, we obtain D x I crossing I x I transversally in E*.
However, on tilting I x I upwards a little keeping I x O fixed the transversality is destroyed,
since the intersection of D x I with I x I becomes three concurrent lines and is no longer a
manifold. With this example in mind it is easy to manufacture the following more dis-
heartening situation. Let A? be a g-simplex and S™~!, SP~! spheres crossing transversally
in its boundary. Let D™, D? be discs formed by joining the spheres to two points in general
position in the interior of AZ. Then D™ and D? may cross transversally at all interior points,
yet fail to be transversal at their boundaries.

So as not to meet with this kind of difficulty in the inductive step of our proof, we shall
introduce the notion of M being transimplicial to the triangulation K of the ambient manifold
Q. Being transimplicial is roughly the opposite of being a subcomplex. It is not a piecewise
linear invariant, but rather is a technical device introduced for the purposes of proof; it uses
not only the piecewise linear structure but also the local linear structure of K, and conse-
quently is a stronger property than transversality. With this extra structure we are able to
produce (transimplicial) Theorems 4 and 5 that have our main (transversality) result,
Theorem 1, as a corollary.

The same techniques are used in Theorem 2 to extend the result from embeddings to
maps : any map f: M — Q is homotopic to a map g transversal to the submanifold P of Q,
and the cobordism class of g~ 1P depends only on the homotopy class of f. It should be noted
that in the analogous differential setting [8], the set of all transversal maps is open in the
function space, whereas this is not true in piecewise linear theory (we have no derivatives
to “control” local movement). This defect accounts for our more directly geometrical
approach.
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We should point out that although Theorem 5 is a relative transimplicial theorem, we
have no corresponding relative transversality theorem. This omission is discussed at the end

of the paper.

Our third main result, Theorem 3, can be thought of as an existence theorem for
quotient regular neighbourhoods (analogous to quotient vector bundles)—the inherent
difficulty here being that in a regular neighbourhood there are no convenient fibres to play
with. More precisely, given manifolds M= P < Q, we produce a fourth manifold N in Q
that cuts P transversally along M.

FiG. 2.
At the end of the paper we show how this result can be used to construct induced regular

neighbourhoods, and Whitney sums. However, we are unabie to prove any uniqueness
theorems for these constructions.

We should like to acknowledge an unpublished paper by V. Poenaru and one of us,
which contained incomplete proofs of some of the results below.
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§1. THE MAIN THEOREMS

Firstly we give a precise definition of what we mean by transversality. Let M, P be two

proper submanifolds of the manifold Q. Denote by E" n-dimensional Euclidean space and
by E’ the closed half space obtained by restricting the first coordinate to be non-negative.

Definition 1. The submanifolds M, P are transversal at the point x € M n P (respec-
tively M n P) if there is a coordinate neighbourhood # : E?— Q (h: E4 — Q) of x in O such
that h~*M, h™'P are two linear subspaces of E4(E%) in general position.
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M and P are transversal if they are transversal at all points of M n P.

It follows immediately that if M, P are transversal in Q, then M N P is a proper sub-
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THEOREM 1. If Q is a manifold with pr oper submanifolds M and P, then M can be
fent i ed transversal to P by an arbitrarily small ambient isotopy of Q.

We want an analogous definition and theorem for maps. For simplicity we confine our-
seives to closed manifoids, aithough there are simiiar resuits for bounded manifoids.

Definition 2. (i) Let M, P, Q be closed manifolds, with P a submanifold of Q. Let
f: M — Q be an embedding; we say that the embedding fis transversal to P if fM and P are
transversal as submanifolds.
(i) Now suppose /: M — Q is an arbitrary piecewise linear map. We say that the map fis
graph-transversal to P if its graph

If:M—>MxQ

is transversal to M x P as an embedding. Two properties follow at once.

(A) If f: M — Q is an embedding that is transversal to P as an embedding, then it is graph-
transversal to P as a map. In other words graph-transversality is a generalisation.

(B) If f: M — Q is a map that is graph-transversal to P then f~'P is a locally-flat sub-
manifold of M of codimension g — p. This is because the homeomorphism I'f: M — (/)M

maps f~*P onto (I'f)M n (M x P), which is a locally flat submanifold of dimension
m + (m + p) — (m + q) by the remark above.

THEOREM 2. Given closed manifolds M, P, Q with P < Q, and given a map f: M — Q,
then there exists an arbitrarily close homotopic map g that is graph-transversal to P The

11 3 s I P Y -

inverse image g~ 'Pisa locally flat submanifold of M of codimension g — p, and the cobordism

class {g~'P} depends only on the homotopy class [f].

Remark. All our results in this paper concern manifoids; a subsequent paper by one of
us will deal with polyhedra [2]. In particular a stronger deﬁnition of transversality for maps
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THEOREM 3. Given manifolds M = P = Q, both inclusions being proper, then there exists a
Sfourth manifold N, contained in Q, that intersects P transversally in M.

Remark. N will not be a proper submanifold of Q, because in general the boundary
N ¢ Q. However it will be proper in the neighbourhood of M, and so the definition of
transversality of N and P makes sense.

We proceed now with the business of setting up sufficient machinery to prove Theorems
1,2 and 3.

§2. (p, ¢)-DISC FIBERINGS

The ideas introduced in this section will be of fundamental importance throughout the
rest of the paper. Let X, Y, Z be polyhedra, and let D" denote a standard n-dimensional disc
with centre 0.
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Definition 3. A map g: Y — Z will be said to be locally a g-disc fibering at ye ¥, or
more briefly F(q) at y, if there exists a neighbourhood N of gy in Z and an embedding
¥ : N x D* - Y onto a neighbourhood of y, such that the diagram

N x DALt N

\lfl lt
Y—Z2
is commutative. Here p, denotes projection onto the first factor, and i the inclusion of N in
Z.
Definition 4. The pair of maps X LY % 7 is said to be locally a (p, g)-disc fibering at
x € X, abbreviated to F(p, q) at x, if there exists a neighbourhood N of gfx in Z, embeddings
@:Nx DP—> X, y: Nx D'— Y onto neighbourhoods of x, fx respectively, and a map

k: D?, 0— D%, 0 such that

N

>

N x DP~"5N x D*-2, N
commutes.

X — ¥ —
Note: (i) We can choose ¢ so that @(gfx, 0) = x.
(ii) There is a natural generalisation to sequences of maps of greater length.
(iii) If the pair X Ly4zisF (v, 9) at x € X, thenthe composition X M ZisF (p)atx.
(iv) The same diagram shows that the pair f, g is also F(p, ¢) at all points in some
neighbourhood of x.
We prove three basic lemmas.

LemMMA 1. (Restriction). Suppose X - Y —Z is F(p, q) at xe X, where gfxeZ,, a
subpolyhedron of Z. Let Yy =g 'Z,, Xo=f"1Y,. Then X,-2%% v,-"° 7, is also
F(p, q) at x.

Proof. By restriction.

LEmMA 2. (Glueing). Given X Ly 5HZ,letZ;i=1,..,, t be subpolyhedra of Z, and
suppose| )i-, Z; isaneighbourhoodofgfx inZ.Let Y, =g~ 'Z;, g, =g Y, X;=f"'Y,and
fi=f1X;. Then X—+Y—>Zst(p q) at x if and only if each X; —>Y 57, lsF(p q) at x.

Proof. Given that X Lyszis F(p, g) at x, restriction shows each X; EN Y, 5 Z, to be
F(p, q) at x.

Conversely, suppose we are given for each i a neighbourhood N; of g fx in Z;, embed-
dings ¢;: N; x D? - X, §;: N; x D' Y; and a map k;: D?, 0 — D, 0 such that

N, x D255 N x DB N,
fml q’ij lc
X' Ji > Y‘ gi A'Zi

commutes.
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Triangulate Z so that g fx is a vertex and each N, is a subcomplex. tlet K = st(gfx, Z),

G-

then each simplex 4 € K is contained in some N;. Consider a conewise expansion
ofx=Ko, /K, /... /K=K
each K being a cone, vertex gfx.
Let K; , denote the cone K; shrunk by ¢, and D?, D? the discs D?, D? shrunk by .

We shall define, inductively on j, a number ¢; > 0, embeddings ®;: K; ., x D}, — X,

W;:K;, x Di,~ Yand amap k:Df,0— D], 0such that
K. x D?p _liL K. xDiI_P.x.
JEj £j LT I 7} FrJaEg
D; ‘Pj‘ <
{ ! {
> > Z
X S Y 9

commutes.

Begin, for j =0, with g, = 1 and @, = ¢;| gfx x D?, W, =y,| gfx x D%, k =k, for
some chosen i.

(Without loss of generality we may assume k(D?) = D?for all ¢ suchthat 0 < ¢ £ 1, for
if not proceed as follows. Choose 4, 0 < A £ 1, such that D7 is contained in the star of the
origin in some triangulation of D? with respect to which k is simplicial. Then k(D3,) = D?
for all ¢€ [0, 1]. Let A: D”— D% be the shrinking map, and replace k, ®, by kA and
®y(1 x A) respectively.)

Inductive step, j —j + 1.

Suppose K;,1 = K; U 4,let L= K; n Aand p: 4 — L be a retraction. Choose r such that
AcN,. Givenae A, ue D?, ve D% define ¢, ,: DP > Xand ¢, ,: D' > Y by
(.Dr,a(u) = (p,(a, u)

¥r,o(0) =¥ (a, v).
Now ¢ (L x D?) is a neighbourhood of x in f~*¢ L, and moreover ®; maps
: -1, -1
[L,, x DE into f~'g 'L

1gfxx0to x.
0 f fxi

[Ls,- x DZ into g~ 'L

lgfx x O to fx.
Therefore there is a positive ¢, ¢ < g;, such that

+ Let v be a vertex of a complex K; we denote the open, closed star of v in K by st(v, K) st(v, K), res-
pectively.
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Choose then ¢;,; = ¢ and define

®(z,u)on K;, x D?
DQ;41(z, u) ={ ! -1 e

(pr,zq)r,szj(pZ, u) on Ae X Df
Y(z,v)onK;,

Y; (Zs U)
™ {l//r zl/Ir,pzT (PZ 0) on A X Dq

In both cases we have agreement on the overlap, because here pz = z. Our map ® 4y 18
piecewise linear on A, x DF because it is the composition

A DPQX—SA L 1x¢!A X1X¢,_>A XLX DpprOJnA Dp(Pr )‘

Similarly for ¥;,,
We are left to show the commutativity of

A, x DP5 4, x DI-Bs 4,

¢j+ll ‘anl JC

X f‘,Y — Z.

For the right hand square, if a e 4,, v e D?, then

9¥;+1(a, v) = gy, Y 2. (pa, v)
€gy,,(D?)
=a
= pi(a, v).
In the left hand square, for a € 4,, u € D?, we have
Wil x k)a, u) = Yiii(a, ku) =y, 40, ,pa\P i(pa, ku)

=Y, ¥ (1 x k)pa, u)

=Y, W, f®,(pa, u) by inductive hypothesis

= wr,alllrtptf (pr,pa(P:;lzll Q;,4(a,u)

- . k,
=Y, k0, ®;,1(a, u) since D’—»D? commutes,

¢npaJ Jqlnpa

. k
=f®;,,(a,u) since D’—5D? commutes
j+1

X—f—)Y

This completes the inductive step j —j + 1.
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Eventually, at the end of the induction, we obtain a commutative diagram

1xk
K, x DP—5K, x DI-2 K,

X 7 A), 7 —'Z5

where ¢ = ¢,,. Since K, is a neighbourhood of gfx inZ, this shows that X-5 Y% Z is F(p,q)
at x, and so completes the proof of Lemma 2.

LemMa 3. (Composition). Is X5 Y5 Z is F(p, q) at x e X and Z-5 W is F(n) at gfx,
then X5YSZ5Wis Fn+p, n+q,n) at x.

Proof. We have a neighbourhood N’ of gfx in Z, embeddings ¢', ' and a map k which
give rise to a commutative diagram—

N' x P 225 N x Da-BL, N’

7

X f—>Y 972.

Choose a neighbourhood N of hgfx in W and an embedding e : N x D" — Z onto a neigh-
bourhood of gfx in N’ such that

N x D" -2

Z > w
commutes.
Define Y:N xD"x DY by
Y(t, u, v) = y'(e(t, u), v)
and ¢:N x D" x DP— X by
o(t, u, v) = @'(e(t, u), v).
Then

N x D" x DPLXXK N o« pr oy pr200 N pr 2t N

T

X > Y - >z —— s W

commutes as required.

COROLLARY. With the same hypotheses, X EA YewisF (n+p,n+q)at x.
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§3. TRANSIMPLICIAL MAPS

Let Q be a2 manifold, and K a triangulation of Q. If 4 is an a-dimensional simplex of X,
let

I* = 1k(A, K)
denote the link of 4 in K. Thent AL* = 5f(4, K). Let v be a vertex of 4, and
541 AL pI?
denote the simplicial map defined as the join of 4 — v to the identity on L4,
Let M be another manifold, and f: M — Q be amap. Given a point x of M, let A be the
unique simplex of K such that fx € 4.
Definition 5. We say that the map f'is transimplicial to K at x if the pair

sA

FALr S AIAS o1h
is F(m + a — g, a) at x. If this is the case for all x € M, we say f is transimplicial to K.

Note 1. Our definition is independent of the choice of v (by an application of the com-
position lemma).

Note 2. The restriction and glueing lemmas of the previous section show that equiva-
lent to Definition 5 is : for every principal simplex 4B € K, the pair f~'4B L ABS 0B is
F(m+ a—gq,a)atx.

Note 3. Often it will be convenient to use the idea of a submanifold (i.e. the image of an
embedding rather than the embedding itself) being transimplicial to a triangulation. The
definition is the obvious one. Given a manifold @, submanifold M and triangulation K of Q,
we say M is transimplicial to K at x € M if the pair

s4

M n AIA < ALA S oI

is F(m + a — g, a) at x, where x € A, 4 € K, and we use the above notation. Therefore, if
(D° D™**"9) denotes an unknotted disc pair, we need a neighbourhood N of vin vL# and an
embedding

@:NxD* N x D" * 1 AI* M n AL
onto a neighbourhood of x, such that

s4¢ = projection : N x D*— N,

Figure 4 illustrates the situation.

Note 4. The concept is designed to cut out the folding phenomenon described in
our introduction. We illustrate in Fig. 3 a non-transimplicial embedding of a 2-disc in
3-dimensions. The disc lies in the star of a 1-simplex, and has a fold running down to a point
in the l-simplex.

1 We denote the join of two complexes X and L by KL.
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Fic. 4.

The embedding f fails to be transimplicial at x, because if it were, then the composition s4f
would be F(0), i.e. would be an embedding; but it is not an embedding because it is three-to-
one where the fold gets flattened down.

Notice that if we move the fold point into the interior of a 3-simplex, then the embedding
does become transimplicial. In fact this is the geometric idea behind our main proof. Given
an embedding M — Q and a triangulation K of Q, we cannot isotop M into the m-skeleton of
K* (by Hirsch’s result [6]), but nevertheless we shall show that we can push the worst fold
and kink points into top dimensional simplexes, and so make M transimplicial to K.

Note 5. To prove the theorems in this paper we need only consider transimplicial
embeddings rather than transimplicial maps. However, maps are just as easy to handle as
embeddings at this stage, and several of the more general results that we prove for maps will
be useful in [2].

LemMA 4. (Openness). Iffis transimplicial to K at x € M, then f'is transimplicial to K at
each point in some neighbourhood of x.

Proof. Using the previous notation, the pair
Frra L AIAS, o1t
is F(m + a — q, a) at x. By the openness of disc fiberings, there is a neighbourhood U of x

in M such that this pair is F(m + a — g, a) at all points of U. Let y € U and suppose f € B,
Be K; then A is a face of B and consequently BLE < AL#; let B = AC. By restriction the

pair f ~1p1 B BIBSyCLE is F(m + a — g, a) at y. But s*C: vCL® - vLP is F(b — a) at s*fp,
and s*¢s4 = s® : BL® » vL3, Therefore by the corollary to Lemma 3

fBIPL BIE S, ol ?
is F(m + b — q, b) at y, completing the proof.
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LEMMA 5. For any subdivision K’ of K, f transimplicial to K’ imples f transimplicial to K.

Proof. Given x € M, suppose fxe A’, where '€ K’ and A’ <« 4, AeK. Letv'bea
vertex of A, v a vertex of 4, L' = lk(4’, K") and L = lk(4, K). Then s?: AL — vL induces a
linear (i.e. each simplex is mapped linearly) map A : v'L’ — oL which makes the following
diagram commute

“tapLaryn
NN
f AL L AL oL,
Since f is transimplicial to K’ the pair f "!A’L’ - A'L' »v'L' is F(m + a’ — q, a’) at x.

If we show that Ais F(a — a’) at v, then f “YAL - AL - vL is F(m + a ~ q, a) by com-
position, and so the lemma follows. Therefore it remains to show that 1 is F(a — a') at v'.

K is contained in some Euclidean space E. Let F be the decomposition space of E
consisting of all a-planes parallel to 4, and let g : E — F be the natural map. Then g embeds
vL in F because A4 is joinable to L. Similarly g’ embeds v'L’ in F’, where g’ : E— F’ is the
natural map onto the decomposition space of all a’-planes parallel to 4. We have a com-
mutative diagram

A
vl SoL

a’l la
F' X, F
where u is the natural map. Since p is linear it is F(a — a’) everywhere.
Let N = g(vL), N’ = g'(v’'L’). Then N'is a neighbourhood of g’v’ in 4~ !N because 4'L’

is a neighbourhood of x in AL. Therefore u: N'— N is F(a — ') at g’'v’ by restriction.
Therefore A : 'L’ - vL is F(a — a') at v/, and the proof of Lemma 5 is complete.

Let P be a proper submanifold of Q, and let K be a triangulation of the pair Q, P; in
other words K is a triangulation of Q in which P appears as a subcomplex K.

- Lemma 6. (Consistency). If M is a proper submanifold of Q that is transimplicial to K,
then M is transversal to P.

Proof. Givenxe M n P, suppose x € A, A € K,. Let L = lk(A, K), L, = Ik(4, K,) and
v be a vertex of 4. Since M is transimplicial to X we have, with the usual notation, a com-
mutative diagram:

1xk rojection
NxD ——5N x D, =2, N

14

M AL—— > AL > L,

SA
where D = D™"**"%and D, = D° Let N, = N nvL,. Since Q, P is a locally flat manifold

pair, we can choose N such that N, N, is an unknotted ball pair. The above left hand square
can be rewritten:
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N x D—5,N x D,

Since M is locally flat in Q, we know that N x kD is locally flat at (v, 0) in Nx D,, and
therefore that kD is locally flat at 0in D, . Meanwhile N, is locally flat at v in N. Therefore
N x kD and N, x D, are transversal at (v, 0) in N x D, . Taking the image under ¢ we
deduce that M and P are transversal at x in Q. This is true forallx e M n P, and so M, P are
transversal.
We shall require triangulations of our manifolds that possess a certain local linearity
property.
Definition 6. A combinatorial manifold K, of dimension g, is called Brouwer if:
(i) For each 4 €K there is a lincar embedding 57(4, K) - E“.
(ii) For each 4 €K there is a linear embedding 57(4, K), 5#(4, K) - E%, E?71,
Notes: 1. If only (ii) holds we say K is Brouwer at the boundary.
2. Not every combinatorial manifold is Brouwer, see Cairns [4].
3. Any subdivision of a Brouwer manifold is Brouwer.

The following lemma is due, in a sharpened form, to Whitehead [9].

LeMMA 7. (a) Any combinatorial manifold K has a Brouwer subdivision K'.

(b) If K is already Brouwer at the boundary, we can choose K' such that K’ =K.

Proof. (a) Choose an atlas of g-simplexes f; : A — K, 1 £ i < r, that cover K in the sense
that every point has some f; A as a closed neighbourhood. Now produce K’ by subdividing
so that all the f; are simultaneously simplicial (using [12], Theorem 1].
(b) If K is already Brouwer at the boundary, we can confine our attention to a subatlas not
meeting K that covers every simplex not meeting K. In order to make the subatlas simplicial,
it is not necessary to subdivide any simplex on the boundary.

The main burden of this paper will be to prove the following two theorems.

THEOREM 4. Iff: M — Q is an embedding between closed manifolds, and K any triangula-
tion of Q, then f can be ambient isotoped, by an arbitrarily small ambient isotopy, to an embed-
ding g that is transimplicial to K. This theorem is in fact true for maps (see [2]). We now give
a relative version.

THEOREM 5. Let P be a proper submanifold of Q, and J a Brouwer triangulation of the
boundary Q, P. Let f: M — Q be a proper embedding such that f| M is transimplicial to J.
Then there exists an extension of J to a Brouwer triangulation K of Q, P, and an arbitrarily
small ambient isotopy keeping Q fixed carrying finto an embedding g that is transimplicial to K.

Remark. Let K be an arbitrary extension of J to a Brouwer triangulation of @, P. Then
although f | M is transimplicial to J, it may well happen that f is not transimplicial to X at
points of M. For example, let D be a disc properly embedded in a tetrahedron T as shown in
Fig. 5. Then D is transimplicial to T, but the fold ensures that D is not transimplicial to T at
the boundary point x.
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FiG. §.

In our proof of Theorem 5, we get round this difficulty by using a collaring technique to
construct a particular extension K relative to which such folds are straightened out.

Before proving these transimplicial results, we give applications in the form of proofs of
our transversality theorems.

§4. PROOF OF THEOREM 1

We are given proper submanifolds M, P of Q, and have to ambient isotop M transversal
to P.

By Lemma 7, it is possible to choose a Brouwer triangtlation of the pair Q, P. Apply
Theorem 4 to ambient isotop M transimplicial to J, and extend this ambient isotopy from Q
to the whole of Q by [7] Addendum (2.2). Suppose the effect of this isotopy has been to
move M to M, < Q, then M, is transimplicial to J. We are now in a position to apply
Theorem 5. This provides:

(a) an extension of J to a Brouwer triangulation K of the pair Q, P.
(b) an arbitrarily small ambient isotopy which moves M; transimplicial to K whilst keeping

0 fixed.

Reference to Lemma 6 shows that the composition of our two isotopies produces the required
result.

§5. PROOF OF THEOREM 2

We are given closed manifolds M, and P < Q, together with a map f: M — Q which we
want to homotop graph-transversal to P. The graph I'f: M — M x Q is an embedding.
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of O, P, andlet be a subdivision of the cel

’ A y 2130010 a O Lac el

1S ! 0
complex K; X K2 triangulating M x Q, M x P. Using Theore 4, ambient isotop T finto
an embedding F that is transimplicial to K.

(Ah

Lemma 8. We can choose F so that the composition

MHM x08BM
is a homeomorphism, where p, is the projection.

The proof of this lemma is postponed, it can be found directly following the proof of
Theorem 4.

Meanwhile, let e = (p, F)™!, the inverse homeomorphism. Define G =(e x 1)F:
M- M x Q, and let g denote the composition

MEMxQ%OQ.
Then g is homotopic to fand G = I'g, the graph of g.

The triangulation K; of M x Q is really a homeomorphism ¢: K3 — M x . Let K
denote the trianguiation

(ex Dt: Kz—>M x Q.

Then since e x 1 maps M x P to itself, Kis also a triangulation of M x O, M x P. Now Fis
transimplicial to the triangulation K5, and since we have applied the homeomorphism e x 1
to both embedding and triangulation, we deduce that G is transimplicial to K. Therefore by
Lemma 6 we know G is transversal to M x P. Hence g is graph-transversal to P, because
I'g = G, and consequently g 1P is a locally flat submanifold of M of codimension g — p.

It remains to show the invariance of the cobordism class {g~'P}. There were two
choices involved in the above construction, namely those of triangulation and isotopy. Let
K, , g4 arise from different choices. Then g, g, are connected by 2 homotopy & : M x I - Q
say.

The graph

Th:MxI—MxIixQ
is a proper embedding, whose restriction to the boundary
TguTlg,:0(M x )—>dM x I x Q)

is transimplicial to the Brouwer triangulation K U K, of 6(M x I x Q). By Theorem 5
extend K U K, to a triangulation of M x I x @, M x I x P and ambient isotop I'#, keeping
the boundary fixed, to a transimplicial embedding H, say.

By Lemma 6 H is transversal to M xIx P, and so H Y(M xIx P) is an
(m + 1 + p — g)-dimensional submanifold of M x I with boundary g™*P U (—g5*P), the
minus sign referring to orientation. In other words g~ 'P and g, 'P are cobordant. If £ is
homotopic to f then the same g will do for both, and so the cobordism class {g~'P} depends
only upon the homotopy class [f].

Remark. There is a small but subtle point here. If / happened to be already graph-
transversal to P we could not infer that f ~1P € {g~ 1P}, because f might not be transimplicial
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to any triangulation, and so we could not use the relative transimplicial .
proof above. Nor do we have a relative transversal theorem to use instead (see the end of the
paper).

We are given manifolds M = P = @, with both inclusions proper and need to construct

Thoarem 1 cambining tha saculte f Thaneema 4
i Of 1r

¢ dicnl 13 AT o
a “perpendicular’ manifo Neoreim 1 \.\uuuuuug the resuits ICOTCINS 4

a  perpéndaicuiar > manifold N. Begiﬁ asio
and 5 to obtain a triangulation J of P and an ambient isotopy of P moving M to M,, where
M, is transimplicial to J. By [7] Corollary (2.3) extend the ambient isotopy of P to give an

AR IPICIAL 10O S, ARG Y &) CAVCLIQ LII0 alllICAAL 1801 o) ~ &2

ambient isotopy of the whole of Q. Extend Jto a triangulation K of Q, this is possible since P
is proper and locally flat in O (see [3]). Let K’ denote a first derived of K mod J.

For each simplex 4 € J, let

4 xrs 4 rrs 1

L, ={simpiexes Be K': ABe K and BnJ=

8

Define
X = U A4nM)L,,

Aed
the joins being made linearly inside the simpiexes of K. Note firstly that the dimension of X
ism -+ q — p. X need not be a manifold, however we shall show that it is a manifold “near”

AL
ivZq.

.

Fia. 6.

For x € M, suppose x € A, A €J, and write L” = lk(4, J), L2 = lk(d, K'). Letv bea
vertex of 4. Since M, is transimplicial to J, the pair

M, n AP < AIP5501P
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is Fm+a —
XﬁALQcALQ vI<

is also F(m + a — p, a) at x. So as not to interrupt the main line of argument, we ask the
reader to temporarily accept this implication; a proof will be given following Lemma 12. We
have therefore a neighbourhood D?™* of v in vL? and an embedding of

Dq a Dm+a P _— Dm+q P

onto a neighbourhood of x in X. Consequently there is a neighbourhood N, of M, in X (for
example take a second derived neighbourhood) which is an (m + ¢ — p)-manifold and tran-
simplicial to X’. By Lemma 6 N, is transversal to P in Q. By construction Ny n P=M
Now reverse the original ambient isotopy of Q to obtain the required manifold M.

§7. THE ¢-SHIFT OF AN EMBEDDING

For the proof of Theorem 4 we shall use a sequence of special local moves (first intro-
duced in [12] Chanter 6) called r-shifts. The parameter ¢ concerns dimension, and the

construction involves choice of local coordinate systems (i.e. replacing the piecewise linear
structure by local linear structures) and choices of points in general position.

Suppose /: M — Q is a proper embedding between manifolds. By Lemima 7, we can
find triangulations K, K, of M, Q such that f: X; — K, is simplicial and K, Brouwer. If
K®, K{® denote the barycentric second derived complexes of K, K,, then f: K{* — K{?
remains simplicial.

Let T be a t-simplex of K, such that T, =M, and let T, = fT,. Take a simplicial
neighbourhood of T, modulo its boundary in X{? (i.e. this consists of all closed simplexes of
K® which meet the interior of T,) and call the resulting g-ball B,. Let B; = f ~'B,, this is
an m-ball (it is in fact the corresponding simplicial neighbourhood of 7; mod T in K{?),
For i =1, 2 let T, denote the barycentre of T;, and let S;=B;. Then the polyhedron
|B,) = |T,S,|, although of course as a complex B; is a subdivision of T;S,.

Denote by f; : B; = B, the restriction of f. Thus f; is the join of the two maps T} - T},
S; — S, . The idea is to construct another embedding g, : B; — B, that agrees with f; on
the boundary B, and is ambient isotopic to f; keeping the boundary B, fixed. We shall give
the explicit construction below; it will be apparent that g; can be chosen arbitrarily close to
fr, and the ambient isotopy made arbitrarily small.

Define a new embedding of M in Q by
fon M — B,
g =

a.on R
\gr Ot By.

Then g is ambient isotopic to f. We call the move f— g a local t-shift with respect to the

o T PN gy

tlliaupuiativil 1\2

Construction of the local shift. Choose a linear embedding % of 54T, , K,) in E? (this is
possible since K, is Brouwer), then /4 embeds B, linearly in £
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Let X denote the combinatorial g-ball hB,, Y =X, and » = hT,. Choose a point

w € E? near v which satisfies:
@) west(v, X)

(i) w and Y are joinable
(iii) w is in general position with respect to the vertices of X.
Define a homeomorphism j: X — X as the join of the identity on Y to the map v — w.
Thus A~ %jh is a homeomorphism of the ball B, which keeps its boundary fixed. Define
gr = b~ Yjhfr. Then g, is ambient isotopic to f; keeping B fixed in view of:

ALEXANDER’S LEMMA, Any homeomorphism of a ball keeping the boundary fixed is
isotopic to the identity keeping the boundary fixed.

Suppose we now let 7; run over a sequence of “interior™ f-simplexes of K, then the
corresponding balls {B,} overlap onlyin their boundaries, on which the {g;} agree with f, and
therefore with each other. Consequently the resulting embeddings, and ambient isotopies,
may be combined to give an embedding g ambient isotopic to f. We call f— g a global
t-shift or, more briefly, a z-shift.

We shall want to perform a succession of z-shifts, one for each value of ¢, dim K; = ¢t = 0.
But after the first shift the resulting embedding will no longer be simplicial with respect to
K, K,. However, in the construction of a shift, our initial assumption that f be simplicial
was a luxury rather than a necessity, and the construction can be adapted as follows. Sup-
pose r>1, e: Ky — K, simplicial, and that we perform an r-shift e »f. Then given a
t-simplex T,eK;:

P Vi anale A~ a feitamlar

(a) fmaps T, linearly onto a ¢-simplex T, € K, .
(b) If B, is as above, and if B, = f "!B,, then B, is an m-ball and f ~'B, =B,.
(c) 1. :B, - B, ig the ioin nfR —_sR- to '? —b'?A

N~ JT - 25 I8 AL LML O

Property (a) is satisfied because the r-shift does not move the (r — 1) -skeleton, and properties
(b) and (c) follow from property (i) of w in each local r-shift.

With the amount of structure contained in (a), (b) and (c) we can construct a local
t-shift f— g exactly as before. Only one minor modification is needed, and that is in property

(iii) for the point w: for this choose subdivisions such that B; — B} is simplicial, let X' be the
corresponding subdivision of X, and choose w in general position with respect to the vertices
of X’. The remainder of the construction is unaltered.

In this way we can construct ¢-shifts for all £, m = dim K, = ¢ = 0, in descending order,

because for each t-simplex, the preceding higher dimensional shifts preserve the structure

(a), (b) and (c).

2 PRDNANOL O TODE
AL A XA

SUs &Y waiva

4
4

Let X be a combinatorial g-ball, with boundary Y, linearly embedded in E%, and S™ ! an

P, I I 7 T thaot Viaiaina hila t~ tha intorine naint 1w of Ve in athar ward
\Iﬂ - 1)'bpllCLC lll 1 OuPlJUbU iiatr 1 JUluaUl\/ LU il LIWiUL puUiLIY w 01 Ay ML UL WOra

X and wY have the same underlying polyhedron. We have the following two lemmas.

[

rr om—1 » . | LSNP A 1 am—1 -« 4 o

LemMma 9. If 8™ " is transimplicial io Y at y, then wS is transimplicial to X at y.



TRANSVERSALITY FOR PIECEWISE LINEAR MANIFOLDS 451

LemMa 10. If S™ ™! is a subcomplex of Y, and if w is in general position with respect to the
vertices of X, then wS™ ' is transimplicial to X at all interior points of X.

Proof of 9. Suppose ye A, Ae Y. Let v be a vertex of 4, L = Ik(4, X), L, = Ik(4, Y)
and sthe simplicialmap AL — vL. Weknowthat ™' n AL, = AL, SoLisF(m+a—g, a)
at y: i.e. there is a neighbourhood N, of v in vL; and a commutative diagram

Ny x Dp*em41X=, Ny x D], N,

ml (011 IC
S™~1~ AL, = AL —3—vL,
where @ embeds N, x D%, Ny x D7+ % as neighbourhoods of y in AL;, ™' ~ AL, res-
pectively. Since w is joinable to Y, every ray radiating from w meets Y in a unique point.
The same is true for points near w. Thus any ray near wy and parallel to wy also meets Y
in a unique point. Therefore given a neighbourhood ¥V of y in Y, there exists a neighbour-
hood U of y in X such that projection paralilel to wy gives a map r : U~ V. Now choose ¥,
U sufficiently small so that ¥ < ¢,(N, x Df) and U c AL. Define §: U — D} as the com-
position

U—L—-)(,Dl(Nl X D‘;) (—-'P}—-Nl X Dt; Projn Dq.

Thens x 6 : U— vL x D{is piecewise linear and onto a neighbourhood of v x 0in oL x Dj.
Moreover, s X B is an embedding, for suppose »,, #, have the same image under s x 6. Since
su, = su, the interval uy u, is parallel to 4. Therefore the interval (ru,)(ru,) is also parallel to
A and of the same length, consequently the points ¢ ‘ri;, @1 ru, have the same first co-
ordinate in N, x D{. Since Bu; = Bu,, they also have the same last coordinate. Therefore
they are equal, giving ru; = ru,, and so u; = u,. Thus 5 x 8 is an embedding as required.

Choose neighbourhoods N of v in vL, D® of 0 in Df, D™* "4 of 0 in D7T** 7 such that
N x D<= (s x )U, and
Dm+a—q - Da‘
Define ¢ : N x D*— AL by ¢ = (s x §)"'| N x D° By construction

NxDm-H:——q 1xc NxDa projn N

wS™ ' N AL S AL 2 suL

commutes, showing wS™~! transimplicial to X at y.

Proof of 10. (See Fig. 7). Since w is in general position it must lie in the interior of a
principal simplex of X, hence trivially wS™ ! is transimplicial to X at w. Given an interior
point x of wS™!, x # w, suppose that x € A where 4 is 4 simpléx of X (we may assume
dim A4 < ¢, otherwise the lemma is again trivial). Let L = /k(4, X). We need to show that

wS™ 1~ AL <« AL-S vL

is F(m + a — g, a) at x. Denote by [A] the linear subspace of E? spanned by 4. Then
w ¢ [4], by the general position of w. Let [wx] meet Yin y, where y e €, Ce Y. Again using
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.
fore [wd]l n Cis

the general osition of w, we infe

1 1] St WeE 1nler
in

a convex linear ¢ ll containing y

23 &8 %) vl Spial

that [‘41 and I'm too _,ﬂ‘\Pr span E9, There [wA]
its interior, of dimension (@ + 1 + ¢ — g). Call this cell E.

Fic. 7.

Let L, = k(C, S™ "), L, =(C, Y). Then EL,, EL, are respectively m + a —gq,
a — balls.

Let p : C— [E]denote orthogonal projection, and ¥ be the neighbourhood (p “*E)L, of
yin Y. Let p: V— EL, be the join of p to the identity on L,. As in the proof of the
previous lemma any ray parallel and sufficiently close to wx meets Y 'in a unique point, and
therefore there exists a neighbourhood U of x in X such that projection parallel to wx
gives a map r: U— V. We can choose U sufficiently small so that U < AL. Let 0 be the
composition

ULV AEL,.
Then 0 is a projection in a direction complementary to the projection
USAL-S 0L,

sx08:U—vL x EL,
is a piecewise linear embedding onto a neighbourhood of » x y in vL x EL,. Choose
neighbourhoods N of vin vL, D™** % of y in EL,, D° of y in EL,, such that D"**"? < D°
and N x D° < (s x §)U. Define y: N x D= AL by ¢y =(s x §)"*{ N x D® By construc-
tion we have a commutative diagram
N x D"*44_S, N x p_BRin, N

/| J
1 Lo

wS" ' N AL—— AL—=——vL
and therefore the proof of Lemma i0 is compiete.
We shall also need:

Lemma 11. Let M, Q be closed manifolds, and f: M — Q an embedding. Suppose B, is a
g-ball contained in Q such that (B, , B, 0 fM) is a(q, m)-ball pair. Let By =f (B, n fM),
and let K be a triangulation of Q, B,. Then if x is a point of B, such that both

[
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|B,: B,—B,,and
fIM—B,:M—-B8,—-0~8,
are transimplicial to K at x, then f is transimplicial to K at x.

Proof. A straightforward application of the glueing lemma. (Of course in saying
f| By : By > B, is transimplicial to K, we mean that it is transimplicial to the subcomplex of
K triangulating B,; similarly for the statement about /| M — B,. Where no confusion can
arise this abbreviation will be constantly used.)

Inductive proof of Theorem 4. Recall the statement of Theorem 4. We are given an
embedding f: M — Q between closed manifolds, together with a triangulation X of Q, and
we have to ambient isotop fto g such that g is transimplicial to X.

Choose a triangulation K; of M and a subdivision K, of K so that f: K; - K, is simpli-
cial and K, is Brouwer. Let K| denote the t-skeleton of K;, and K{? the barycentric second
derived of K,. We shall produce inductively a sequence of embeddings of M in Q

f=gm+1’ Gms -390 =9
such that

() g, is transimplicial to K$® at points of K; — K}™', and
(ii) g, is ambient isotopic to g,+4 by an arbitrarily small ambient isotopy.
Application of Lemma 5 shows that the final embedding g is transimplicial to K.

Beginning of induction. Apply a local m-shift to f, with respect to X,, for each m-
simplex of K. Define g,, to be the embedding which results from the global m-shift. Then
(ii) is satisfied. Let 4, be an m-simplex of K; and 4, = f4,. It is sufficient to show that g,,
is transimplicial to K2 at points of 4;. Recall the local m-shift process. Using the notation
of the previous section, we have

gm = h—ljhf: 21441 ""*225’2.
By Lemma 10, jhf A, is transimplicial to X at all interior points. Therefore, since the pro-

perty of being transimplicial is preserved under an isomorphism, g,,4, is transimplicial to
K$? at points of g,,4; as required.

Inductive step. Assume that, as a result of r-shifts for m = r > t, we have

Gms o3 Gr+1
satisfying (i) and (ii).

Apply a local #-shift to g, (, with respect to X, for each r-simplex of X;, and define g,
as the embedding resulting from the global 7-shift. Again (ii) is immediately satisfied, and in
proving (i) it is sufficient to examine the effect of a local shift, say that associated with
T; € K;. We again use the notation of the previous section. Then:

g:=gis0on M — B, and
9. =h"'jhg,,: B;—B,.
We claim that g, is transimplicial to K$? at points of
(@) K; — K{, and
®) 1.
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g‘:M"‘Bl—)Q—BZ
is transimplicial to K{* at points of K; — K/. 1t remains to show
9. B;—B,
transimplicial to K}? at all points except those of T,.

For then (b) is automatically taken care of, and (a) follows at once by application of
Lemma 11. Our aim is accomplished using Lemmas 9 and 10. By Lemma 10, jhg,,, B, is
transimplicial to X', and therefore to X, at all interior points. Consequently

A
p
5
3
3

1 lJ .
hg,+,B, is transimplicial to ¥ except at points of Ag,,7}. Therefore, since ] keeps Y fixed,
ill noints of jhg, (R — T\ Conse-

Lemma 9 shows jhg,,, B, transimplicial to X at 19 B on
[ SN

R AV ST i+1 Pl TAEERARS

quently g,B, B, is transimplicial to K{? at points of g(B, — T}), and the induction is
complete.

Proof of Lemma 8. Let us recall and simplify the statement of Lemma 8. We are given
two closed manifolds M, Q. Let & denote the set of embeddings e: M - M x Q with the

property that the composition
M—2>M x Q—Lroin, pp

is a homeomorphism. In particular if f: M - Q is an arbitrary map, then its graph T'fe &.
Let K;, K, be Brouwer triangulations of M, Q and let K, be a simplicial subdivision of the
convex linear cell complex K; x K,. Then Lemma 8 follows from:

LemMA 8%, Given e € &, there exists ¢’ € & transimplicial to K, and ambient isotopic to e.

Proof. By Theorem 4 we can ambient isotop e to e’ transimplicial to K5 . The only thing

1aft 1 t maka ann cf and thic ic achiavad hy talring cara avar tha ¢ chifte
1ICIT 18 1O Maxe sure c € &, ana (nis 15 acniCvea Oy taxing €are over the #-shifts.

isotopy e to e’ consists of a finite sequence of local shifts.
e—e —e,—...—e =¢.

We proceed by induction on the number of local shifts. This begins trivially since e € &.
Suppose we have managed to ensure ¢; € &, and consider the local shift e; —» e, ;. It takes
place inside a ball AL, where 4 € K}, K3 some subdivision of K, and L = Ik(4, K3). Since

o A A | PRy ALl el s

K3 1 ion of Al x K,, there exist buupu:)\ca A e 1\1, Ay € A2 sucn that

Kj is a subdivis
AL c St(Al, 1) X st(Az, Kz)-
Also, since K, K, are both Brouwer, we can choose linear embeddings A4, : st#(4,, K;) —» E™,
h, :st(4,, K;) = E1. We shall use the linear embedding
h=h  xh,: AL—-E™ x E?

in order to construct the shift.

In detail, if X = h(4L) and v = h4, then X = vX. Choose w in general position in X
sufficiently near v such that X = wX. Define j: X — X by mapping v — w, keeping X fixed,
and joining linearly. Use h™'jh: AL — AL to define the shift ;> e, ,.
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M, and let Z =

Lo

M Then 7 ic an m-cell and 7~ Y
Ao Then Z is an m Cii, QNG L © 4,

ZeX,Z=0vZ Letn:E™x E?— E™denote the projection. Then since ¢, € &, = embeds Z
as an m-cell in E™, and

Fi

Now let M, = e; "(4L)
=)

Luvig =

nZ = (nv)(nZ).
We now choose w sufficiently close to v such that
nZ = (aw)(nZ).

As a consequence, although e; M, # e; .1 My, nevertheless the projection M x Q — M will
map both e; M, and e;, ; M, homeomorphically onto the same m-cell in M. Thene;,; €&,
and the inductive step is complete.

We end this section by filling the gap left in the proof of Theorem 3. For this we need:

LEMMA 12. Let E be a simplex, F a principal face of E, v the vertex opposite F, and W a
submanifold of F. If W is transimplicial to F at a point x, then vW is transimplicial to E at x,

Proof. By exactly the same technique as was used for Lemma 9.

COROLLARY. Let F, C be simpiexes, and W a submanifoid of F. If W is transimpliciai to
F, then CW is transimplicial to CF at points of W.

Proof. Join successively to the vertices of C, applying the lemma at each step.

Recall the proof of Theorem 3. With the previous notation, we needed to show that for
any point x € M,

X nAIP < AI2 — pI?
is F(m+ a — p, a) at x.

S D~ T . 4D Pl 2T RO AD — T oA Y al O, -c AD g
UIVCIl D e L™, WIILC AD = UL WIIKIC I' = AD (Y J dlIG C 15 LNC ¢ Ol AD OppOSl[C r,
Since M, is transimplicial to J, we have by restriction M, n F tr ans1mp11c1al to F. But
XN AB = C(M. n F) and so hv the Carollarv ahaove Y A 4R ic tranaimnlicial ta R at v
N Ab C{M; n [) ang so by the Loroilary above X AL 1§ transimpiiciat o A8 at x.

In other words

is F(m + a — p, a) at x. Therefore by glueing (Lemma 2) over all B € L2, we have the desired
resuit. This compietes the proof of Theorem 3.

§9. PROOF OF THEOREM 5
It is necessary to do a considerable amount of preparatory work.
Collars. Let Q be a manifold with boundary. A collar ¢y of Q is an embedding
co: 0 xI—>0

such that c(x, 0) = x for all xe Q. Any compact manifold has a collar, and any two collars
are ambient isotopic keeping the boundary fixed ([12], Theorem 13).

Given a proper embedding f: M — Q then by [12], Lemma 24 we can choose collars
cyr» Cg of M, Q that are compatible with f, that is to say the following diagram commutes
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(FIM)x1

b i
QxI—29.

I

In particular if P is a proper submanifold of g, then we can choose compatibie coilars, that is
to say cp=cg|P X I.

Suppose we are now given a collar ¢, of Q and a triangulation J of the boundary Q. If
Q, denotes the image of cq, then we can extend J to a triangulation of the collar Q,, in a
canonical way, as foilows. J x 7 is a convex finear ceii compiex, which has a canonicai
simplicial subdivision, (J x 1) say, obtalned by starring in order of decreasing dimension

2l gimnlavac 4dxl. Aet. Th
ail auuleA\:a A A1, a€v. 1

'S‘

is called the canonical extension of J to the collar. The canonical extension is functorial in
the following sense. Let P be a proper submanifold of Q, and suppose we are given compa-
tible collars cg, cp and a triangulation J of @, P. If Q,, P; denote the images of cg, cp,
then the canonical extension of J to Q, isatriangulation of the pair Q,, P, and the restriction
to P, is the canonical extension of the restriction of J to P.

LEMMA 13. Let P be a proper submanifold of Q. Given a triangulation J of Q, P then
there exists an extension of J to a triangulation K of Q, P. Further, if J is Brouwer then K can
be chosen to be Brouwer.

Proof. Choose compatible collars ¢y, cp, let Q;, P, denote their images, and let

0,=0Q—Q,, P,=P—P;. Let (J x I)) be the canonical extension of J to Q, and let J'
denote the subcomplex triangulating the inside of the collar, @, .

Choose any triangulation L of Q,, P,. Then both.J’ and L triangulate Q,, and so they
have a common subdivision, say J” = L’ (see [12] Lemma 4). These subdivisions extend
uniquely to subdivisions (J x I)", L’ of (J x I)’, L without introducing any more vertices.
Identifying J” = L, the union K = (J x I)" u L' gives a triangulation of Q, P and provides
the required extension of J.

Finally, if J is Brouwer then so is the canonical extension to the collar. Therefore K is
Brouwer at the boundary, and so by Lemma 7(b) we can choose a Brouwer subdivision X’
that also extends J.

Relative t-shifts. In proving Theorem 5 we shall need to be more precise in our #-shift
process; recall the considerable choice available for the position of the point w. The neces-
sary accuracy is expressed in the following lemma.

Let M, Q be manifolds and X a triangulation of Q. Given a map f: M — Q let

T = A o £30 bansmaimmlinial T ons 5a)
AR = AT v .J 15 uauoluxpu\dcu LU I al -&j

LemMmaA 14. Suppose [ M — Q is a proper embedding, K a Brouwer triangulation of Q,

r-(2) Vs 7d £ oar r r(2)

and K'*’ a .secona derived o] I, Let Al bea trlangutauan o] M, and A2 a subdivision o] N7
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such that f:K, — K, is simplicial. Let T be a t-simplex of K| such that T M, andf— g the
associated local t-shift made in the local linear structure of K. If the shift is sufficiently small
then T = T§.

Remark. The proof of Lemma 14 is long, and more complicated than our correspon-
ding work in the proof of Theorem 4. The difficulty is that we are in a situation where the
glueing lemma is no longer applicable.

Proof of Lemma 14. Since fis a proper embedding we know f7T < 0. Define, as before,
B, to be a simplicial neighbourhood of /7 modulo its boundary in K¢¥, and B, =f"'B,.
Now

fB, © B, < 51(fT, K,)
< 5Hu", K@) for some vertex u” € K®
< st(u, K)  for some vertex u € K.

Therefore the problem is localised both with respect to X and K,. Using the Brouwer
property of K choose a linear embedding

h:5t(u, K)— E,

Then h automatically embeds B, linearly in E% The local shift may now be defined as
before; in particular we write

fo = hf : f~15#(u, K) — E4, and
go = jhf: f~5#(u, K) — E%
Remark. The above construction explains our reason for calling this section “relative

t-shifts”. We are r-shifting f with respect to the triangulation K,, but with the reservation
that we do so relative to the local linear structure of K.

Suppose f is transimplicial to X at x € M, we want to ensure that g is also. If x ¢ B,
the result is trivial because some neighbourhood of x is not moved by the shift. Also if
x € B,, application of Lemma 10 as in the proof of Theorem 4 shows g transimplicial to
K{?, and therefore to X, at x.

Therefore there remains the case x € B ; here fx = gx. Let A be the simplex of X such
that fx € 4, and let L4 = lk(4, K). Then AL* < 5i(u, K). Define E® = [hA], the linear sub-
space of E? spanned by hd4, and E?"° = E% [E*, the decomposition space whose points are
a-dimensional linear subspaces of E? parallel to E° Let n: E%— E?"° be the natural pro-
jection and n* : E?— E* the orthogonal projection (see Fig. 8).

Since f'is transimplicial to X at x, the pair
fapA Lo pe =, peoe

is F(m + a — g, a) at x. Therefore if y = f, x, z = ny, there is a neighbourhood N of z in
E 7% (which we may take to be a simplex), and embeddings ¢, ¥ onto neighbourhoods of x,
y in f"1AL#, E“ respectively, such that the following diagram commutes :
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Call E* “the vertical”. Given two points y,, y, € EY, let o{y,, y,) denote the angle that the

vector y, y, makes with the vertical. More precisely
\

/ Py ~
- a\nyy, nY,)
@y, y,) = tan™H | —
v (d(n*yl, n*yz))
0La=sn/2
where d denotes Euclidean distance.

SUBLEMMA 1. There exists «y > O such that given any two distinct points x,, x, € N and
any y € D% then

a('//(xp y)’ t/I(XZ, y)) g Ao
Proof. We chose N to be a simplex and we can regard D° as a simplex, therefore N x D*

is a convex linear cell. Let J be a simplicial subdivision of N x D® such that  : J— E%is
linear.

Case (i). Suppose (x;, ¥), (x5, y) both lie in a simplex S € J. Then their images ¥(x;, ),
Y(x,;, ) lie in Y(S N (N x »)), which is a convex linear cell in E4. This cell is embedded in
E%% by = (because mj : N x D*— N is the projection), and therefore it makes an angle
og > 0 (independent of y since | S is linear) with the vertical. Let «, = min(xg: SeJ).
Then a(y(xy, y), Y(xz, »)) 2 05 2 .
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Case (ii). (x;,y)and (x,, ) do not lie in the same simplex of J. Since y(N x y)—> Nisa
homeomorphism, the vector x; x, < N lifts under n~* to an arc, I say, in Y(N x y) which
joins Y(x;, y) to Y(x,, y). Then I consists of a finite number of linear segments, all lying in
the (@ + 1)-dimensional linear subspace of EY above x, x,, each one of which makes an
angle greater than or equal to a, with the vertical. Therefore the vector joining the ends of 1
also makes an angle = o, with the vertical. This completes Sublemma 1, and we now con-
tinue with the proof of Lemma 14.

As before we denote the combinatorial ball 4B, by X, and its boundary by Y. Recall
the homeomorphism j : X — X, defined by moving f,T = v to a suitable point w = g, T in
general position with respect to the vertices of X, and joining linearly to Y. Extend j by the
identity to the whole of E“.

SUBLEMMA 2. Given oy > 0, there exists ¢ > O such that if d(f, T, g, T) < & then for all
Y1,y € EY

a(yy, ¥2) Z g =jy1,jy2) > 0.

Proof. Let S be a simplex of X. Since j|S is linear, there exists &g > 0 such that if j
moves f,T less than gg, then any vector in S changes direction by less than «,. Let &=
min(eg : S € X). Suppose now that j moves f,T by less than ¢. Given y,, y, in EY, the
vector y, y, consists of a finite number of segments, each one lying either in some simplex of
Xorin E?— X. Therefore j(y, y,) is an arc, consisting of a finite number of linear segments
each making an angle less than o, with y, y,. Therefore the vector (jy;)(jy,) joining the
ends of this arc also makes an angle less than «, with y; y,. But y, y, makes an angle = «,
with the vertical, and therefore (jy;)(jy,) makes an angle >0 with the vertical. This com-
pletes Sublemma 2.

We now make our local shift within the ¢ given by Sublemma 2; it remains to show this
ensures g transimplicial to X at x. To do this it is sufficient to construct a commutative
diagram

- 1 Xk, projn
N, x Dntema 22, wopa P, N,

g tALA » EI > E17

g0 n

which we now proceed to do. Let U = jiy(N x D%);sincejy =y, Uis a neighbourhood of y
in E% Define 6 : U — D7 as the composition

Uy x D) 2N x Dot e

Then the product z x § : U— E?7% x D" is piecewise linear and onto a neighbourhood of
(z, 0). We claim that it is an embedding; for given y, #y, € U with 6y, = 0y,, then
a(y;, ¥,) > 0 by Sublemmas 1 and 2, thus ny; # ny,. Choose a neighbourhood N, of zin
E?7% and a disc neighbourhood D% of 0 in D? such that N, x D < (n x )U. Define

«=@x 01N, x Dy~ E% We have therefore produced the right hand half of our
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A foM
i 4
j
goM
FiG. 9.

diagram. Since k : D™*°79, 0 — D% 0is an embedding, choose D**~7 as a disc neighbour-
hood of 0 in k™' D% and define k, = k| D797 D7*%"9 D3 . Finally we need to define
¢« . 1t is elementary to check that
Ya(l X k(N x D¥79) < goAL?,
therefore since g, is an embedaing we can’ define
Ox =00 Ya(l X k) : Ny x DyeTisggtALL,

We have not finished the proof of Lemma 14 yet: so far we have shown that, given
x € B; N T{, then there exists ¢ > 0, such that if d(f, T, g,T) < & then xe B, n T§. Notice
that & depends upon x. Suppose that x' € B; n T and x, x’ lie in the interior of the same
simplex S € K.

SuBLEMMA 3. The same ¢ will do for x'.

Proof. Choose neighbourhoods ¥, V' of x, x' in s¢(S, K;), such that linear translation by
the vector xx’ maps Vinto V'. Let A: V, x — V', X’ denote this linear translation. Since f,



Vi, x'fo,E1 * ,ET7°
is commutative. Recall the commutative diagram

N x Dmta~a X% N o pa PO,

<

4 [

e 3

fHAI —T  Fr T, Fae

t fig transimnlicial to K at x. We can choose N. nm+a 9 such that

a
QU J A0 MRAASIaiijaas p W~ 4 A 7 v ovOil viUVUOV QY Vil suiGe

imgc V (replacm them by subballs if necessary); note that this replacement does not
alter the angle a, of Sublemma 1. Now replace the three vertical arrows by 1o, A}y, 1”
respectively, and we have an expression of the transimpliciality of fto K at x’. Again a4 is
unaltered. Therefore the ¢ of Sublemma 2 is unaltered. This completes the proof of Sub-
lemma 3, and we now conclude the lemma.
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e

B, is covered by the interiors of a finite number of simplexes of K ; for each of these
choose an ¢ by Sublemmas 2 and 3, and select the minimum such e. Therefore if
d(f,T, g,T) < & then B, n T{ =B, N TZ. In other words if the shift is sufficiently small
T{ = T¢. This completes the proof of Lemma 14.

Proof of Theorem 5. Recall the statement of Theorem 5. We are given a manifold-pair
0, P, a Brouwer triangulation J of the boundary Q, P and a proper embedding f: M — Q
such that f | M is transimplicial to J. We have to extend J to a Brouwer triangulation K of Q,
and ambient isotop f to g keeping O fixed, so that g is transimplicial to K.

First choose compatible collars ¢y, cp of Q, P. Then choose collars ¢y, c§ of M, Q
compatible with f: M — Q. By [12} Theorem 13 ambient isotop ¢g to ¢, keeping U fixed,
and suppose that this ambient isotopy carries f'to g. The result is that c,,, cp are now com-
patible with g.

Intuitively what we have done so far is unfold A near the-boundary, and get rid of the
sort of kinks that are illustrated in the diagram of the Remark after Theorem 5. More
precisely, we shall describe this unfolding in transimplicial terms, as follows.

Extend the triangulation J to the collars by the canonical extension, which is Brouwer,
and then extend further over the rest of the manifolds by Lemma 13 to give a Brouwer
triangulation K of Q, P. We claim that g is transimplicial to K at points of M (notice that
before the unfolding we only knew that f | M was transimplicial to J at points of M). To
prove this claim we use the compatibility of the collars ¢, cg With g, because it then suffices
to show that

@IM)x1:MxI-QxI
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is transimplicial at points of M x 0 to the canonical triangulation (J x I) of 0 x I. Now we
can use the fact that g| M = f | M, which is transimplicial to J. Given xe M = M x 0,
suppose fxe A, AeJ =J x 0. Let v be a vertex of 4, L = lk(4, K), L, = lk(A4, J). By the
transimpliciality of f | M we have a commutative diagram '

N x pmta=a LXKy o pe_Proit |,
fAL, S AL oL,

Let U= [y(N x D*) x I1n AL, and let r: Q x I— Q be the projection. Define 6 : U —» D*
as the composition

U~ y(N x D% «*—N x D*-27, pa
Then s# x 6 : U~ oL x D"is a piecewise linear map onto a neighbourhood of (v, 0). More-
over it is an embedding because given u; # u, such that s4u; = su,, then u, u, is parallel

to 4, and so is (vu)(vu,), implying that Ou, # 0u,. Therefore, choosing discs N, = oL,
D% < D® such that N, x D% < (s x 0)U, we can define

Ve =(s*x0)"1:N, x D%— AL.

The required diagram for the transimpliciality of (| M) x 1 at x can now be built up in the
usual fashion. Therefore g is transimplicial to K at points of M.

There remains to isotop g transimplicial on the interior (keeping Q fixed) as follows.
By Lemma 4 g is transimplicial to X at all points in some open neighbourhood U of M. Let
K@ be the second barycentric derived of K. Choose a triangulation K; of M and a sub-
division K, of X such that

(a) g: K; — K, is simplicial, and
(b) if ¥ is the closed simplicial neighbourhood of K, in K|, then ¥ = U.

Now perform the r-shifts of Lemma 14 in order of decreasing dimension for all simplexes
T e K, such that T< M — V. Then, as in the proof of Theorem 4, we see that g becomes
transimplicial to K, and therefore to K, at all points of M — V. By Lemma 14 g remains
transimplicial to K at points of V.

The proof of Theorem 5 is complete.

Remark. The significance of Lemma 14 in the above proof should now be apparent. At
the last stage we had an embedding g transimplicial to K at points of M. If we had just
haphazardly made interior shifts of g with respect to some subdivision of K, then we may
well have introduced new folds at boundary points, and so lost the transimplicial property
there.

§10. RELATIVE TRANSVERSALITY?

We were able to prove relative transimpliciality (in Theorem 5) but not relative trans-
versality. We tried the procedure
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transversal transimplicial isotop transversal
on the = on the = transimplicial =  on the
boundary boundary on the interior interior,

and although the second two steps are given by Theorem 5 and Lemma 6, we failed to
achieve the first step. Essentially it is a passage from local to global, because transversality is
local but transimpliciality is global, in the sense that an atlas is local while a triangulation
is global. It is true that given manifolds M < Q, it is possible to triangulate Q so that M is
transimplicial as follows: triangulate Q anyhow, ambient isotop M transimplicial, and then
apply the inverse isotopy to move both M and the triangulation back. But the question is
whether it is possible to have another manifold as a subcomplex at the same time.

CONIECTURE 1. Given two transversal submanifolds of Q, then it is possible to triangulate
Q so that one is a subcomplex and the other transimplicial.
Conjecture 1 would supply the missing step to prove:

CoNIECTURE 2. (Relative Transversality). If M, P are proper submanifolds of Q such
that M, P are transversal in Q, then M can be ambient isotoped transversal to P keeping Q
Sixed.
A special case of Conjecture 2, which in fact turns out to be equivalent to Conjecture 2 is:
CONJECTURE 3. Transversal spheres S™ ', SP~! = §! can be spanned by transversal
discs D™, D? = D4,
Joining linearly to interior points is no good, because if we join them to the same point the
discs fail to be transversal at that point, and if we join them to separate points, they fail to be
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CoNIECTURE 4. If M, Q are closed and f, g : M — Q are homotopic maps transversal to P,
then f 1P, g~ *P are cobordant.
Summarising:
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Definition. We use the word tube as an abbreviation for the term “abstract regular
matahlarnl A d?? it :o rathar o mn“ﬂqpnl T at A" ha olacad n Fann

NCignoournood’ , WikiCil 18 raullr a mouiniui. L0t # " 00 Cioseq. efine a #-tibe on M to be
a manifold 7" ** together with a proper (locally flat) embedding e : M — T'such that T \,eM.

In other words T is a regular neighbourhood of a homeomorphic copy of M.
dimension of the tube.

Two tubes are homeomorp! 1ere exists a homeomorphism /» making a commutative
diagram

Py
Pt

ey~ ’
Yy i

[P
~._ ¥
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Let (M ) denote the set of homeomorphy classes of t-tubes on M, andlet 7 (M) =5 T (M.
0

bundles in differential theory. The existence and uniqueness of regular neighbourhoods
show that any proper embedding M < Q determines a unique element of 4~ ™(M), which
we call the normal tube.

2. The important thing about tubes is that, like tubes in ordinary life, they are not fibered.
In fact Hirsch’s example is a 3-tube on S* that cannot be fibered. In some sense the lack of
fibering is more “geometrical” because the tube is more homogeneous.

3. In the stable range, t = m + 2 Haefliger and Wall [5] have shown that any tube can be
fibered with z-discs, and so (M) coincides with K;,,(M) of piecewise linear microbundle
theory.

4. The collapse T \veM determines a homotopy equivalence = : 7— M such that ne = 1.

not ....4..-.\1 ot TInia o and nat in gconaral a fharing Tha man_n tu
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Remarks. 1. Tubes are the natural analogue in piecewise linear theory of vector
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reveals itself, when it turns out to be no good for defining induced tubes
5. ThPTP is a trivial tube O e 7‘{M\ containing M x D', and a suspensio

yt(M) -’f‘+1(M)

given by product with I, which stabilises in the stable range. To examine the structure of
T (M) more thoroughly we define below subtubes, quotient tubes, induced tubes and

vvmlncy‘ sums.
6. The concept of tube generalises to polyhedra other than manifolds, to give a theory

rom vector bundle theorv. even in the stable rance
T Cclor dbungie theor tne stabie .

Subtubes Call : M — T, asubtube of e : M — T if T| is a proper (locally flat) sub-
P T o H

N

is commutative. Call two subtubes T,, T, < T transversal if Tl, T2 intersect transversally in
eM. Notice that in this case = #, + t,. We call the class of T, the quotient tube T|T.

COROLLARY TO THEOREM 3. Quotient tubes exist.

Question. Are they nnique?
We can question not only whether two such 7,’s are unique up to homeomorphism, but
whether they are unique up to ambient isotopy, keeping T fixed.

Proof of Corollary. Given'eM < T, < T, Theorem 3 furnishes a manifold P intersecting
T, transversally in eM. So far P is not proper. Triangulate everything and let N be a second
derived neighbourhood of T, in T. Then N is a tube, and T a subtube because N \,7;. Also
N n P s a subtube because N \\(WN " P) v T; \u\N n P, and N n P cuts T; transversally.
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where M is closed. Define the quotient normal h
where T, T, are regular neighbourhoods of M in P 0 such tha

Notice that dlm(TQ /Tp) =q — p.

[¢]

quotient tube TQ /T P
p is a subtube of T},.

l\}

Induced tubes. Givm a map f: M, » M, between closed manifolds and a tube

il & 1 WARIELS T L 5 Y A 1 $1429 03 4 & u

e, : M, — T, on the target, define the induced tube on M, to be the quotient normal tube of
My LMy x M, 2 M X T,

Notice that the induced tube has the same dimension as the given tube. By the above,

induced tubes exist, but we do not know if they are unique.

Remark. Normally induced objects are defined categorically. For example if IT: V,
— M, is a vector bundle then the induced vector bundle is the pull-back of

V2
n
M, L5 M,.
However in the case of tubes = is non-natural, and consequently the pull-back is not in

general a manifold. Whatis natural is the embedding e, : M1 — T, of a tube on the source of
[, but the push-out of
T,

|
M,— M,

is again not in general a manifold. Therefore neither pull-backs nor push-outs give induced
tubes, and we have to work for them.

Whitney sums. Given tubes ¢, : M > Ty and e, : M- T, on
efine the Whitnev sum 7T = T, @T,to be the auotient normal 1

i YYERILNLOY Suiil f LR e L otient norma 133

ame manifold M,

(o
L.

diagonal er Xe
M2 M ox M2 22, T, x T,

Notice that 7= t; +¢,, and so the Whitney sum gives a product 7't x J'2— F 1112,
Again we have existence, but uniqueness is unsolved.

Questions. (i) Can T;, T, be embedded transversally in 73 @ T, ?
(i) Isthe Whitney sum homeomorphic to the tube induced frome, : M > T, byn, : T, > M,
and vice versa?

TR e 7 ey
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