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Abstract

We study a class of block structured matrides= {Ri./}l?f’j:l with a property that the
solution of the corresponding syste®n = y of linear algebraic equations may be performed
for O(NV) arithmetic operations. In this paper for finite invertible matrices we analyze in detail
factorization and inversion algorithms. These algorithms are related to those suggested by P.M.
Dewilde and A.J. van der Veen (Time-varying Systems and Computations, Kluwer Academic
Publishers, New York, 1998) for a class of finite and infinite matrices with a small Hankel rank.
The algorithms presented here are more transparent and are a modification of the algorithms
from the above reference. The approach and the proofs are essentially different from those in
the above-mentioned reference. The paper contains also analysis of complexity and results of
numerical experiments. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

We study a class of block structured matricRs= {R; j}ff’jzl with a property
that the solution of the corresponding syst&m = y of linear algebraic equations
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may be performed for V) arithmetic operations. As is well known, the standard
methods for the solution of linear systems, as for instance the Gaussian elimination,
require QN3) operations. For some classes of structured matrices such as Toeplitz,
Cauchy, Vandermonde and others it takgsv®) operations. We consider a special
class of matrices which admit linear complexity algorithms. These classes of matri-
ces appear in different problems in which discretizations of kernels which are Green
functions of differential equations are used, as well as in signal processing (Kalman
filter, see [11,12]). More precisely we consider block matrices whose entries are
specified as follows:

pigi-1---ajy1qj, 1< j<i<N,
Rij=di 1<i=j <N, (1.1)
gibiy1---bj_1hj, 1<i<j<N.

Here p; (=2,...,N), q; j=1,...,N—=1), anda (k=2,...,N—1) are
matrices of sizesn; x r/_,, r;. x nj, andr, x r;_;, respectively; these elements
are said to bdower generatbrs of the matrix Rith ordersr, (k=1,...,N —
1). The elementg; (=1,.... N—=1), h; (j=2,...,N), andb; (k=2,...,

N — 1) are matrices of sizes; x r/, andr}’_l x nj, andr_; x r//, respectively;
these elements are said to ygper generators of the matrix With ordersr;’ (k =
1,...,N —1). The matriced; (k=1,..., N) of sizesmy x n; are said to be
diagonal entrief the matrixR.

The class which we consider contains at least three well-known classes: diagonal
plus semiseparable matrices, band matrices and unitary Hessenberg matrices. For
band matrices linear complexity inversion algorithms are presented in various papers
and monographs (see for instance [13]). For diagonal plus semiseparable matrices,
probably for the first time a linear complexity inversion algorithm was suggested by
Gohberg et al. in [11,12] with the assumption that a matrix is strongly regular, i.e.,
all its principal leading minors are non-vanishing. Another approach to inversion
of diagonal plus semiseparable matrices which is based on the system theory was
suggested by Gohberg and Kaashoek in [10]. Using the Gohberg—Kaashoek inver-
sion formula the authors in [3,4] obtained inversion formulas and linear complexity
inversion algorithms for diagonal plus semiseparable matrices of general form.
Analysis of representations obtained in [3,4] showed that inverse to a diagonal
plus semiseparable matrix is in general a matrix of the form (1.1), i.e., it belongs
to a more general class. We started the detailed study of this class in our paper [5].
In this paper and also in [6,7] we developed linear complexity inversion algorithms
which are based on computation of generators of the inverse matrix.

Another approach which is based on factorization representations was suggested
by Dewilde and van der Veen. Dewilde and van der Veen in [1] (see also [2]) consid-
ered a class of finite and infinite matrices with a small Hankel rank. In particular in
[1] a method for factorization and inversion of such matrices was suggested. In this
paper we consider only the case of finite invertible matrices. This case is analyzed
in detail, and a systematical description of factorization and inversion algorithms is
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presented. These algorithms are more transparent and are modification and simplifi-

cation of the algorithms suggested in [1]. The approach and the proofs are essentially

different from those in [1]. It allows us to avoid the requirement of the minimality

of generators which represents numerical difficulties in using of the algorithm. The

paper contains also analysis of the complexity and results of numerical experiments.
We will now explain the main idea of our derivation of the algorithms. Assume

that the matrix® has a block row of the form

Rk = (pq A gh) ,

wherep is a matrix of the sizes: x n, m > n andm, n are small numbers, and the
diagonal blockA and the matrixg have small sizes also. By an orthogonal transfor-
mationV one can transform the matnxto the form

X
Vp=X1= .
P ! (0(mn)><n)

For the whole row we obtain
VR*=(X1 VA (Vo).

It means that for a small number of operations we obtain a large number of zeros in
one part of the matrix and elements of the same structure in another part. The struc-
ture of quasiseparable matrices allows us to apply such transformations successively
and to derive an algorithm on this basis. The suggested derivation of the algorithms
is completely different from the derivation in [1] but leads to the same results. The
same idea was used in the particular case of diagonal plus semiseparable matrices by
Mastronardi et al. in their recent paper [14].

The paper consists of eight sections. Section 1 is the introduction. In Section 2
we give definitions and some auxiliary relations. In Sections 3 and 4 we consider
algorithms for computing of the product of a matrix by a vector and solution of
triangular systems via generators. In Section 5 we obtain some factorization relations
for triangular matrices which are used for derivation of the main algorithms of the
paper. In Section 6 we present the detailed description of the inversion method. This
section contains a general description, two factorization algorithms which are a basis
for the method, an application of the obtained results to the solution of linear systems,
and analysis of complexity. In Section 7 we consider separately the case of matrices
with scalar entries. In Section 8 we present results of numerical experiments.

2. Definitions

Let {ax},k=1,..., N, be a family of matrices of sizeg x ry_1. For positive
integersi, j, i > j, define the operatiomij as foIIows:aij. =aj_1---ajppfori >

J+Llaj, ;=1
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Let {bx}, k=1,..., N, be a family of matrices of sizeg_1 x rr. For positive
integers, j, j > i, define the operatiohl; as foIIows:bl.? =bjy1---bj_1forj >
i+1 bi>,<i+1 = Iy

Itis easy to see that

“ix+1,j = aiaii(j 2.1)
and

bf_lﬁj = bibfj. (2.2)
LetR = {RU}ZN‘=1 be a matrix with block entrieR;; of sizesn; x n;. Assume that

the entries of ’tf\is matrix are represented in the form

Pia,'?qj', 1<j<i<N,
Rij =14, 1<i=j <N, (2.3)
gib;;»hj, 1<i<j<N.

Here p; i=2,...,N), q; (j=1,...,N=-1, anda (k=2,...,N—-1) are
matrices of sizesn; x r/_,, r} x nj, andry x r;_,, respectively; these elements

are said to bdower generators of the matrix Rith ordersr; (k =1,..., N —1).

The elementsg; (i=1,...,.N—=1), h; (j=2,...,N), and b (k=2,...,

N — 1) are matrices of sizes; x r/’, r}@l x nj, andr;_; x r/, respectively; these
elements are said to hgpper generators of the matrix\th ordersr) (k =1,...,

N —1). The matricesdy (k =1,..., N) of sizesm; x n; are said to baliago-

nal entriesof the matrixR. We define also orders of generatags r; for k =

-1, 0, N, N + 1 setting them to be zeros.

Formally, we use some calculation rules with matrices that have blocks with di-
mension zero. Aside from obvious rules, the product of an “empty” matrix of dimen-
sionm x 0 and an empty matrix of dimensionOn is a matrix of dimensiom x n
with all elements equal to 0. All further rules of block matrix multiplication remain
consistent. Such operations are used in MATLAB.

The class of matrices which we are considering contains at least three well-
known classes of structured matrices: band matrices, diagonal plus semiseparable
matrices, and unitary Hessenberg matrices. Assume that blocks of the fRatrix
are square and the orders of generators are consfaatry, r/ =r2 (k=1,...,
N-D.Ifin(23)axr=a, by =b(k=2,...,N—1) anda" =0, b2 =0, then
Ris a band matrix. oy = I, by = I, (k=2,..., N — 1), then we obtain a di-
agonal plus semiseparable matrix. Assume now thatin 243> 1, n1 =0, my =
ng=1k=2,....,N-1), my=0,ny=1 and r;=0(k=1,...,N—-1).
ThenRis an upper Hessenberg matrix. If moreowge= 1 (k = 1,..., N — 1) with
some additional assumptions (see Section 5 below), we obtain a unitary Hessenberg
matrix.

Generators of a matrik = {Rij}ff’j:l may be obtained by its entries as follows:

pi=[R1 -+ Rii1 % - x|, 2<i<N,
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On; xn;
gi=| In; |, 1<j<N-1
0.
gi=[x = Rii+1 Rin], 1<i<N-1,
[ Onixn; |
hj = In] , 2<j<N,
0,

Such defined generators have ord&rsvhich are not the minimal. Generators with
minimal orders may be obtained by entries of a matrix foN@) operations using an
algorithm suggested in [1, p. 56]. In the case of a unitary Hessenberg matrix this cost
may be reduced to @/?) operations (see [8]). If generators of a matrix are given,
then one can obtain by them generators with minimal orders using an algorithm
suggested in [1, p. 101]. Next we assume that generators of a matrix are given and
their orders are essentially less than sizes of a matrix.

Let R(k, :) be thekth block row of the matriXR. From the definition of generators
it directly follows that

R(1, ) =(d1 g1H2),
Rk,:) = (pk Q-1 dr  gkHit1), (2.4)
R(N,:) = (pnOn-1 dn),

where matrice®);, H are defined as follows:

O1=q1; Qi=(ak---acq1 ar---asq2 ... aqe-1 qi),
2<k<N-1 (2.5)

Hy =hy, Hi=(h bihis1  bibeythes2 ... bi---byhy),
N-1>k>2 (2.6)

Itis easy to see that these matrices may be defined equivalently via recursive relations
O1=q1; Ok=(wQk-1 @), 2<k<N-1L (2.7)

Hy =hy, Hi=(hx biHip1), N—-12k>2 (2.8)



424 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343-344 (2002) 419-450

Define the QR factorization of a matri of sizesm x n as the representation

A = VX, whereV is a unitarym x m matrix andX is a matrix of sizesn x n.

In the casem > n the matrix X has the formX = (’g‘)), where Xg is a matrix

of sizesn x n. Such a factorization is computed using the standard MATLAB
function.

Complexity of computations is expressed via a number of flops, i.e., arith-
metic operations of the forma + bc, a & b/c. Submatrices are indicated in MAT-
LAB style, i.e., for a matrixA, A(m : n,t :s) selects block rowsn to n of
block columnst to s, and a colon without an index range selects all the rows and
columns.

3. Multiplication by a vector

LetR = {Rij}ff’jzl be a matrix with block entrieR;; of sizesm; x n; with given
lower generatorg; (i =2,...,N), ¢j(j=1...,N=-1, ax(k=2,...,N=1)
of ordersr; (k =1,..., N — 1), upper generatorg; (i =1,...,N —1), h; (j =
2,....,N), by (k=2,...,N—1) of ordersr)/ (k=1,..., N —1) and diagonal
entriesd; (k =1,..., N). The multiplication of the matrix by a vector may be
performed as follows. Let = col(xi)f":l be a vector with column coordinates
of sizesn;. The producty = Rx of the matrixR by the vectorx is found asy =
yt + yP 4+ yY whereyt = R_x, yP = Rpx, yY = Ryx, andR_, Rp andRy are
the corresponding strictly lower triangular, diagonal and strictly upper triangular
parts of the matribR.

For y- we haveylL = 0 and fori > 2 using the first of relations (2.3) we obtain

i—-1

i-1
L X
Y= Rijxj= ZPiaij‘Ijxj = PiZis
j=1 j=1

where
i—1
X
G = a;4;%)
j=1

From equalities (2.1) armJ,XJrli = I it follows thatz; satisfies the recursive relations
i—1

L
X X X
i+l = Zai+l’jqjxj =ai Zaijq.,'xj +a;1q,9i% = aiZi +qiXi.
j=1 j=1

ForyY we havey};', = 0andfori < N — 1using the third of relations (2.3) we obtain

N N

U X

W= ) Rijxj= Y gibShjxj = gwi,
j=i+1 j=i+1
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where

N
= 3 bk (3.1)
Jj=i+1
From equalities (2.2) angf” , ; = I it follows thatw; satisfies the recursive relations

Wi — 1—Zbl lj

N
=b; Z bl.);hjx./ + bz?:l,ihix"
j=itl
=bjw; + h;x;. 3.2)
ForyP itis obvious thay? = d;x;, i =1,..., N

From these relations we obtain the following algorithm for computing the product
y = Rx.

Algorithm 3.1.
1. Start Withy'l- =0, z2 = q1x1, y|2‘ = ppzp andfori = 3,..., N compute recur-
sively

Zi = aj-1%i-1+ qi-1Xi-1,

YF = pizi-
2. Computefoi =1,...,N
le = d,'x,‘.

3. Start withyy =0, wy_1 = hyxy, Yy_; = gnv-1wy-1 and fori = N — 2,
., 1 compute recursively

Wi = bip1wiy1 + hip1Xit1,
vy = giwi.
4. Compute vectoy
L D
y=y"+yP+)"
In this algorithm, computation of the produets_1z;-1, gi—1xi—1, pizi, dixi,
bir1wiy1, h,+1xl+1, and g;w; costs, respectivelyy/ vl _,, r/_jni_1, mir]_j,

m;in;, rl”r[jrl, ri’niy1, andm;r! flops. Hence the total complexity of Algorithm 3.1
is expressed as follows:

= E [mk (r,’c_l + r,g) + nk,lrlé_l + nk+1r,i’ + "llc—l"lé—z + r,gr,g_i_l + mknk].
k=1
(3.3)



426 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343-344 (2002) 419-450

If the sizes of a matrix:;, n; and the orders of its generatots r; are bounded
by the numbersnandr, respectively, we obtain the estimate
c < N@mr + 2r2 + m2).

In this case multiplication of a matrix by a vector costa\Q operations in contrast
to O(N?2) for a matrix of general form.

4. Solution of triangular systems

Let R be a block upper triangular matriR = {Ri.,'}ff]jzl with block entriesR;;
of sizesn; x n; withgivenuppergeneratogg i =1,...,.N=1), h; (j =2,...,
N), by (k=2,...,N —1) of ordersp; (k=1,..., N —1) and invertible diago-
nal entriesy (k =1, ..., N). Analgorithm similar to Algorithm 3.1 can be obtained
for the solution of the system®x = y. Solution of an upper triangular system is
obtained as follows:

N
xN=R;/JNyN, x,-=R;l Vi — ZRijx]‘ ,i=N-1,...,1
j=i+1
Using the second and the third relations from (2.3) we obtain
XN = dﬁl)’N
and

N
xi:di_l Vi — Z gib;;hjxj
Jj=i+1

:dfl(yi —-gw;), i=N-1...1
where the auxiliary variabley is given by (3.1). From (3.2) it follows that; satis-

fies the recursive relationy = byyiwi+1 + hiyixky1, k=N —-2,..., L
Thus we obtain the following algorithm.

Algorithm 4.1.
1. Startwithey = dytyy, wy—1=hyxy, xv—1=dyt (V-1 — gN-1WN—_1).
2. Fori = N —2,...,1 compute recursively

w; = bit1wit1 + hit1xi+1,
-1
xXi =d; ~(yi — giwi).

In this algorithm, computation of the produdis,iw;t1, h;y1xi+1, and giw;
costs, respectivelyy; p/ 1, p;nit1, andn;p; flops. The total complexity of Algo-
rithm 4.1 is expressed as follows:
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N
c =Y [mpi + nisapp + pipiss + )] (4.1)
k=1

Here¢ (n) is a complexity of solution of x » linear system by the standard Gauss
method. If the sizes of a matrix;, n; and the orders of its generatots r; are
bounded by the numbersandr, respectively, we obtain the estimate

c < N@2mr ~|—r2~|—§‘(m)).

In this case, similarly to the multiplication by vector, the solution of a tri-
angular system costs(®) operations in contrast to(@?) for a matrix of general
form.

5. Factorization of triangular matrices

In this section we obtain some factorization relations for triangular matrices
using their generators. These results turn out to be useful for derivation of the main
algorithms of this paper. Similar relations were used earlier (see [8,9]) for unitary
Hessenberg matrices.

Lemmab5.1l. LetR = {R,-J-}f’vj.:l be a block lower triangular matrix with entries of
sizesn; x n; and lower generatorg; (i =2,...,N), ¢; (j=1,...,N-1), a
(k=2,...,N—1) and diagonal entriesi;y (k =1,..., N). By generators and
diagonal entries define matrices

d
R1 = [qﬂ ,
sz[p" d"], k=2...,N—1, (5.1)
ar gk
Ry =[pn dn].
and next set
Ry = diag(R1, I},
Ry = diag(l,,, Re, I,,}, k=2,....,N —1, (5.2)
Ry = diag(l,, Ry},
wheren, = Y\ mi, ye = XN i ani
Then the equality

R=I§N-I§N_1-~-R1 (5.3)
holds.
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Proof. Let us prove by induction the validity of the relations

5 5 R(1:k,1:k) O
Ry ---R1 = Ok O, k=1...,N-1, (5.4)
0

I)’k

where matrice®),, are given by (2.5).
For k = 1, relation (5.4) is obvious. Suppose (5.4) holds kowith 1 < k <
N —2.Then

RiyaRi - Ry
Iy, O 0 0\ /RA:k,1:k) O 0
_| O P dea O Ok 0 0
0 Ak+1 qk+1 0 0 Ink+1 0
0 0 0 I}’k+1 0 0 IJ/k+1

RA:k,1:k) O 0
Pi+10k drt1 0

- ap+1 0k qrk+1 0
0 0 IVk+1

Using relations (2.7) and

(R(l:k,l:k) 0

=R(1:k+1,1:k+1
Pk+1Qk dk+1> ( + +1

we conclude that

Ret1R---R1 = Ok+1

RA:k+11:k+1) 0
0 I

Vk+1

Relation (5.4) withkk = N — 1 yields

RA:N—-1,1:N—-1 O
~ = (L 0 0
RN"'Rl—( 0 pn dy ng—l 0

Iy,

RAL:N-1,1:N-1) O
= =R(A:N,1:N)=R. [l
( PNON-1 0> ( )

Lemmab5.2. LetR be ablock upper triangular matrix with entries of sizgsx n ;,
upper generatorg; (i=1,...,N—-1, h; (j=2,...,N), by (k=2,...,N -1
and diagonal entrieg;, (k =1, ..., N). By generators and diagonal entries define
matrices
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Ri=[d1 g].
_ e b - _
Rk—[dk gk] k=2,...,N -1, (5.5)
h
RN=|:dx],

and next set
Iél = diag{R1, Iy},
Ry = diagl,,, R, Iy}, k=2,...,N—1, (5.6)
Ry = diag(l,y. Ry},

wherey;, = Zf-‘;ll ni, ¢ = va=k+l mi.
Then the equality
R=Ri-Ro - Ry (5.7)
holds.

Lemma 5.2 is obtained from Lemma 5.1 by passing to adjoint matrices.

Let us notice that the adjoint matriR* is a block lower triangular matrix with
entries of sizes; x m; and lower generators? (i =2,..., N), g;f G=1...,

N -1, bj (k=2,...,N —1) and diagonal entrie#; (k =1,..., N).

If mi=1 n=0 m=n=1k=2,..., N=-1), my =0, ny =1, the
orders of generators of the matifikequal one and all the matric&s in (5.5) are
unitary, therRis a unitary Hessenberg matrix and factorization (5.6) is similar to the
one used in [8].

6. Description of the method
6.1. General description

Let Rbe a block invertible matrix. The method suggested by Dewilde and van der
Veen in [1] consists of construction of the factorization of the form

R=VUS, (6.1)

whereV, U are block unitary matrice¥, is block lower triangularJ is block upper
triangular, andSis a block upper triangular matrix with square invertible blocks on
the main diagonal. The matricds U, S are given by their generators which are
computed via generators of the original matRxIf the generators of the matrices
V, U, S have just been computed, then the solution of the system of linear algebraic
equationskx = y may be determined by = S~1U*V*y using Algorithms 3.1 and
4.1,

On the first stage we compute the factorizatibe- VT, whereV is a block lower
triangular unitary matrix, and is a block upper triangular matrix. Following the ter-
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minology of [1] we call this stage inner coprime factorization. The méaftmbtained
in the first stage has in general rectangular blocks on the main diagonal. In order to
obtain matrices which are convenient for inversion we compute for the niathig
factorizationT = U S, whereU is a block upper triangular unitary matrix, aSds
a block upper triangular matrix with square invertible blocks on the main diagonal.
This stage also following the terminology of [1] we call inner—outer factorization.
Below we present the description of both stages with the detailed justification. The
proofs are based on Lemmas 5.1 and 5.2 on factorization of triangular matrices and
differ completely from the proofs given in [1].

Notice that in [1] instead of (6.1) a more general factorizatfoa: VU SW with
an additional block triangular unitary factéf/ was used. In our case of finite invert-
ible matrices the factow does not appear and thus the amount of computations is
reduced.

6.2. Inner coprime factorization

Let R be a block matrix with given generators. We present here an algorithm
for computing generators and diagonal entries of unitary block lower triangular ma-
trix V and block upper triangular matrik such thatR = VT. This algorithm is a
generalization of an algorithm suggested in [1, p. 131,170] with some additional
assumptions which are equivalent to the conditions

rankpy =ry_;, rank (5}’:) =r_, k=N-1,...,2 (6.2)

Theorem6.1. LetR = {Rij}ff’jzl be a block matrix with entries of sizes x n;,
lower generatory; (i=2,...,N), ¢; (j=1,...,.N—=1), ax (k=2,...,N—-1)
ofordersr; (k =1,..., N — 1), uppergeneratorg; (i =1,...,N —1), h; (j =
2,...,N), by (k=2,...,N —1) of ordersr; (k=1,..., N —1) and diagonal
entriesd; (k=1,...,N).

The matrix R admits the factorization

R=V-T, (6.3)

where V is a block lower triangular unitary matrix with block entries of sizgsx
v; (i, j=1,...,N), lower generators(py); i =2,...,N),(@qv); G =1,...,
N—-1,(ay) k=2,...,N—1) of ordersp; (k=1,..., N —1) and diagonal
entries (dy)x (k=1,...,N) and T is a block upper triangular matrix with
block entries of sizeg x n; (i, j =1,..., N), uppergeneratorsgr); (i =1,...,
N—1),(h7); G=2,...,N),(bp)x (k=2,...,N —1) of orders p, = r + px
(k=1,..., N —1)and diagonal entriegd7); (k=1,..., N).

The sizesy, the orders of generatorg,, generators and diagonal entries of the
matricesV, T are determined using the following algorithm.
1. Computepy_1 = min{my, ”1/\/71}» vy = my — py—1. Compute the QR fac-

torization
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pn =V (XON) : (6.4)

where Vy is a unitary matrix of sizes:y x my and Xy is a matrix of sizes
pN-1 X 1y _4. Determine matricespy)y and(dy)y of sizesny x py_1, and
my X vy from the partition

Vy =[(pv)n  dv)n]. (6.5)
Compute
hy = (pv)ydn, (hr)y = [Zz] . (dr)n = (dy)ydn. (6.6)

2. Fork=N-1,...,2 we perform the following. Compui&,_1 = min{my +
Pk» i1}, vk = my + pr — pr—1. Compute the QR factorization

[inl;ak] =V (%k) ’ 6.7)

whereVy is a unitary matrix of sizeény + or) x (my + pr), and Xy is a matrix
of sizespr_1 x r,/cfl. Determine matrice$py)k, (av)i, (dyv)r,and(gy); of
sizesn; x prk—1, Px X Pk—1, My x v and pg x v from the partition

(v @y
Vi = [(av)k (CIV)kj| ' (6-:8)
Compute

h
hy=(pv)idi + (av)i Xev1qk,  (hr)i =[ k},

hi
s 0
(br)i= <(P§“/)kgk (av),t) ’
(er=[@visk (av)i]. (6.9)
dr)k=dv)idx + (qv); Xk+19k-

3. Computev; = mj + p1. Choose a unitary matri¥’; of sizesv; x v;. Define
matrices(dy )1, and (qy )1 of sizesny x p1, and p1 x v1 from the partition

_ | v
Vi= [(qv)l] . (6.10)
Compute
(dr)1 = (dv)jdi+ (qv)iX2q1, (gr)1=[Wv)igr (qv)i]. (6.11)

Proof. We consider a lower triangular matrix = {Vij}fvj=1 and an upper triangu-
lar matrix7T = {Tij}ff’jzl with generators given by the algorithm, i.e.,
(Pv)i(av),»xj(w)j, 1<j<i<N,

Vij = { @v)i, 1<i=j<N,
0, 1<i<j<N,
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0, 1<j<i<N,
T;; =  @r)i, 1<i=j <N,
(gr)i(br)j;(hr)j, 1<i<j<N.

Let us show that for such defined matridés T', relation (6.3) holds. Let the matri-
cesVi (k=1,..., N) be given by relations (6.5), (6.8) and (6.10). Set
\71=diag{V1, Iy},
Vie=diagil,,, Vi, Ig,}, k=2,...,N -1,
VN =diag{1,,N, Vnl,
where
k-1 N
Mk =Zmi, ¢ = Z Vi
i=1 i=k+1
From Lemma 5.1 it follows that
V =VyVy_1--- V1. (6.12)

Since all the matrice®) are unitary, all the matriceg, are also unitary and hence
the matrixV is unitary as a product of unitary matrices.
Let us prove by induction that

) ) R(l:/f—l,:)
Vi VIR = X4 , k=N,...,2 (6.13)

where
Xy=(XnOn-1 1Y),
Xp=(X¢Qx-1 h}, A), k=N-1,...2
the element#; andX; are given in (6.6), (6.9) and (6.4), (6.7),
A= ((PYrgr  (av)) (Hp)i+1, (6.14)

and matrice®; and(Hry); are defined by (2.5) and (2.6).
Fork = N we represent the matrRRin the form

_(RA:N-1,))
k= < R(N, ) >
The last relation from (2.4) yield®R(N,:) = (pxOn-1 dy). From (6.4) we
obtain

* X _
VNPNON-1 = ( N%N 1)-
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Next, from relations (6.6) it follows that

AV )
Vvdy = <(dv)*N) dv = ((dm :

Thus we obtain

¥ ~_ (XNON-1 I _( Xw
Vi RN, ) = < 0 (dTlgN) = <T(N, :)) '

Hence it follows that

o (L O\ [(RA1:N-1,)
=y ) (v )
_(RA:N-1,)
“\ VIRV,

R(1:N-1,))
= Xy .
T(N,>)

Suppose (6.13) holds féewith N > k > 3. Then

RA1:k-1,9)
Vi Vi VR = Vi Xk

Tk:N,:)
R1:k-2,:
177k—1 0 0 (R(k -1, )
= 0 Vi, 0 % >
0 0 Iy T (k IE\/ )
RA:k—-2)
N Rk—-1,2)
B Vkl( X )
Tk:N,:)

From the definition of matriceik and relations (2.7) we obtain

Xp = (Xear-1Qk—2  Xeqe—1 By, Ax).
Relations (2.4) and (2.8) yield

Rk—1,) = (px-1Qk—2 di-1  gk—1hx  gk-1biHiy1).
Thus we have

Rk=19Y _ ( pr-1Qk—2 di-1 gk-1hk  gk—1bkHita
Xk Xrag-10k—2  Xiqr-1 hy, Ax '
(6.15)
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By virtue of (6.7) we obtain
Vk*—l( Pk-1Qk-2 ) _ <Xk—1oQk—2)‘ (6.16)

Xiar—1Qk—2
Relations (6.8) and (6.9) yield

X di—1 '\ _ | (pv)i_q (av)Z_l]( dr—1 )_( hi_q )
Vi1 (XkCIk1>_[(dv)7§_1 (@i 1] \Xkar-1) — \dr-1)" (6.17)
Using (6.9) we obtain
(@i (@v)iy] (g";lihk)z[(dw;:lgk_l @v)i_a] (Zi)
=(gr)k-1(h1)k- (6.18)
Next we have

(@) (@v)i_q] (gk_llijkH) = (gr)k-1 (bkl/_lll:rl) . (6.19)

Using (6.14), the relation
H,
(H7)kt1 =( "“)

*

and (6.9), we obtain

beHiy1\ by Hyy1 _
( A )‘(((p’c)kgk ) (tess) = ORI (620)

Thus from (6.18) and (6.19) we obtain

i * ~1h _1biH,
(@i s @] (gkh}t F st k+1)
= (g1 ((hr)x  (br)x(Hr)is1)

and relation (2.8) for the matriit ), yields

[@i_y  (@v)i_y] (g";,i’”‘ gk‘l’j"ka“)=<gT)k_1<HT>k. (6.21)

Next, using relations (6.9), (6.20), (6.14) and (2.8) we obtain

% % gk-1hr  gk—1bx Hit1
[(PV)k_l (aV)k_l]( h;( Ay )

=[(pv)i_18k—1  (av)i_1] (Hr)k = Ag-1. (6.22)

Thus from relations (6.15)—(6.17), (6.21), (6.22) and relation (2.4) for the upper tri-
angular matrixT we conclude that
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v (R(k -1 1)) _ (Xk—le—Z hy_q Ag-1 >
k=1 Xk 0 (dr)-1  (gr)k—1(Hr)k

_( Xk
T\Tk-1,2)

which completes the proof of (6.13).
Using (6.13) withk = 2 we obtain

V¥R=V;Vs. . V¥R
R, R(,)
%k ~ * ~
:(% P) X2 :‘G<X2>
S \T@2: N, T(2:N,>)

Next, the first of relations (2.4) and (2.8) yield

R(LOY _( di  giha g1H
X2 Xoq1 hy, Az )T
By virtue of (6.10), (6.11) and (6.21) and the first of relations (2.4) we obtain

« (R, ) « % d h H
Vi < XZ )Z[(dv)l (CIV)l] <X2:;1 g]],;/22 gi122>

=(dr)1  (gr)a(Hr)2) =T(1,>).

Thus we obtain

* _ T(la :) _
VR_(HZNJ)_T

Hence (6.3) follows. O

If relations (6.2) hold, then the algorithm given in Theorem 6.1 is simplified
since in this casey = r,/(, 1<k <N -1 Inorder to check the last relations, no-
tice that from (6.2) it follows thatny < ry_;, 7,y < mg +r; and hencey 1 =
min{my, ry_,} = ry_, and next fromp, = r; it follows that o1 = min{m; +
Pk, T_1} = 1,_,- Generators of a matrix satisfying (6.2) may be obtained by the
original ones using an algorithm presented in [1, p. 101]. However computational
framework of this algorithm is not clear to the authors.

6.3. Inner—outer factorization

In this section we consider block invertible upper triangular matrices with given
upper generators. If a block triangular matrix is invertible, the following conditions
on the sizes of its entries are valid.
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Lemma6.2. LetT = {T,-j}{f’jzl be a block upper triangular matrix with entries of
sizesy; x n;j.
Then

k
> wi-n)>0 k=1...N-1,
i=1

N
Z(vi —n;) =0.
i=1

Proof. Let us consider the submatrik(:, 1 : k) which is composed of the firgt
block columns of the matriX. We have

TG, 1:k)= (%),

whereTy, is a matrix of sizes

(2] ()

From the invertibility of the matrix it follows that rank7j, = Zle n; and thus

k k
domi <Y v, 1<k<N-L
i=1 i=1

From the invertibility ofT it follows thatT is a square matrix. Hence
N N
Z Vi = Z n;. (Il
i=1 i=1

In order to transform a matrix to a form which is convenient for the inversion, we
use a specification of an algorithm suggested in [1, p. 171].

Theorem 6.3. LetT = {Tij}ij:l be a block upper triangular invertible matrix with
entries of sizes; x n;, upper generatorsgr); (i =1,...,N—=1), (hr); (j =
2,...,N), (br)x (k=2,...,N—1) ofordersp, (k=1,..., N —1) and diago-
nal entries(d7)r (k=1,...,N).

The matrix T admits the factorization
T=US, (6.23)
where U is a block upper triangular unitary matrix with block entries of sizes
xnj(i,j=1,...,N),uppergeneratorégy); (i =1,...,N —=1), (hy); (j =2,
..., N), (bu)i (k=2,...,N —1)oforderssy =35, (v —n;) (k=1,...,N — 1)
and diagonal entriesdy), (k =1,..., N) and S is a block upper triangular invert-
ible matrix with block entries of sizeg x n; (i, j =1,..., N), upper generators
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(gs)i (i=1,...,N=1), (hs); (j =2,...,N), (bs)k (k=2,...,N —1)ofor-

dersp; (k=1,..., N — 1) and invertible diagonal entrie&ls); (k=1, ..., N).
Generators and diagonal entries of the matridésS are determined using the

following algorithm.

1. Computes; = v1 — n1. Compute the QR factorization

(ds) (gs)l} ’ (6.24)

[(dr)1 (gr)1] = U1|: 0 Y1

whereU1 is a unitary matrix of sizes; x v1, (ds)1 is an upper triangular matrix
of sizesi; x n1, andYy is a matrix of sizes; x p]. Determine matricesdy):,
and (gy)1 of sizesy; x n1, andvy x ,o/l from the partition

Ur=[@u)1 (gu)1]. (6.25)

2. For k=2,...,N — 1 perform the following. Compute, = sx_1 + vk — ng.
Compute the QR factorization

Yecathr)e  Ye—1(brdi | _ @) (g9«
[ (dr)k (e7)k :|_Uk[ 0 Y ] (6.26)

whereUy is a unitary matrix of sizeévy + sg—1) X (Vg + sk—1), (ds) IS an up-
per triangular matrix of sizeg; x ny, and Yy is a matrix of sizeg; x 'O//c' Set
(hs)k = (h)k, (bs)k = (br)k-

Determine matricesdy)s, and (gu)k, (hu)k, and(by)y of sizesy, x ny, vi x
Sk, Sk—1 X ng, andsg_1 x si from the partition

_ |k (budk
U= [(dU)k (gU)k:| ' (6.27)

3. Compute the QR factorization

[YN—l(hT)N
dr)n

whereUy is a unitary matrix of sizegvy + sy—1) x (vy + sy—1), and (ds)n
is an upper triangular matrix of sizesy x ny. Set(hs)y = (hr)n-
Determine matricesdy)y and (hy)y of sizesvy x ny andsy_1 x ny from
the partition

| (hu)n
Uy = [(dU)N:| . (6.29)

] — Uy sy, (6.28)

Proof. From Lemma 6.2 it follows that all the numbetgs are nonnegative and
VN + SN—1 =npN.
We consider upper triangular matrices= {Uij}?\’

i j=1 and S = {Si./}tj'\,/j=l with
generators given by the algorithm, i.e.,
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0, 1<j<i<N,
Uij = { (du)i. 1<i=j<N,
(gw)ibw);(hw)j, 1<i<j<N,

and
0, 1<j<i<N,
Sij =1 ds)i, 1<i=j <N,

(85)i(bs)}j(hs)j, 1<i<j<N.

Let us show that for such defined matridésand S, relation (6.23) holds. Let the
matricesUy (k =1, ..., N) be given by relations (6.25), (6.27) and (6.29). Set

01=diag{U1, Iy},
Ur=diag{l,,, Uy, Iy}, k=2,...,N -1,
Udeiag{IXN,UN},

where
k=1 N
Xk = Zni, b = Z Vi
i=1 i=k+1
From Lemma 5.2 it follows that
U=U1U,- - Uy. (6.30)

MoreoverU is unitary as a product of unitary matrices.
Let us prove by induction that

) 3 SA:k,2)
Up - U;T = Vi , k=1,...,N-1, (6.31)
Tk+1:N,:)

where
Yi = (Osescniss  Ye(HT)i41)

and matricegHr); are defined by (2.6).
Fork = 1 we represent the matrikin the form

(T
r'= (T(Z: N, :))'

The first of relations (2.4) yield¥' (1, :) = ((dr)1 (gr)1(Hr)2). From (6.24) we
obtain

% N (Wds)r (g9)a(Hr)2\ _ (S(L,2)
uird. ')_< 0 Y1(Hr)2 )_< 17} )
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Hence
S(1,:)

~ Ui 0\ /(T@A> =
1 0 I)\T2> (T(Z, :))

Suppose (6.31) holds férwith 1 <k < N — 1. Then

y y y y S(A:k, )
U:+1U:"'U;_FT=U:+1 Yy

Tk+1:N,>)
S(A:k,:
I 0 O (?k)
={ 9 U O Tk+1,:)
0 0 o Tk+2:N,?)
S(A:k,:)
_ * ?k
=Y (T(k—i— 1, :))
Tk+2:N,>)

Relation (2.8) yields
Vi = (Ogxmrs  Yerisr  Yebr)isa(Hr)is2) -
Relations (2.4) for the upper triangular matfiyield
Tk+1)=Opxps @ri+1r  (@rik+1(Hr)is2) .
Thus we have

( Y ) _ <0sk><)(k+1 Yi(h1)is1 Yk(bT)k+1(HT)k+2) (6.32)
Tk+1:) Ovexxirr  (@risr €rk+1(Hp)iks2 ) '

By virtue of (6.26) we obtain

U ( Y ) _ < Onpe x 1 (ds)k (gS)k+l(HT)k+2>
HI\T(h+1,2) Osipixners  Osepaxme  Yer1(Hr)py2

B <S(k~+ 1 :))
“\ Y1 )

which completes the proof of (6.31).
Using (6.31) withk = N — 1 we obtain

I 0 SA:N-12)
U;;U;:,_ln-ufT:( )éN U;) Yi
T(N,>)
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SA:N-1>)

= * ?Nfl
Un (T(N, :))
Since

V-1 ) _ (Osyaxxy  Yn-1(hr)n
T(N, :) OVNX)(N (dT)N
we obtain from (6.29) that

« [ Vv
Uy <T(7v,1;)) = (Ouyxzy  (ds)n) = S(N.2).
Thus we conclude thdf*T = S, i.e., (6.23) holds.

Invertibility of the matrixSand of the matrice&ls); follows from the invertibility
of the matrixT. O

The algorithm suggested in [1, p. 171] handles block matrices which are not nec-
essarily invertible. The difference between Algorithm 6.3 and the algorithm from [1]
is the following. Instead of (6.26) the factorization

[Yk—l(hr)k Yk—l(bT)ki| — U (d(s))k (gYSk)k (6.33)
(dr)i (81)k 0 0

with unitary matrixUy is used. The partitioning of the second factor in (6.33) is such

that matricegds);, andY; containingn; andp, columns have full row rank. This

also defines the row sizes @fs);, andYy.

Notice that in the case of invertible matrixall the matricegds); are invertible
and from relations (6.31) and (6.32) it follows that the matrix in the left-hand side
of (6.33) has full row rank. Hence in this case conditions of full row rank for the
matrices(ds),, andY; are valid automatically and the zero rows in the second factor
in (6.33) are absent.

6.4. Solution of linear systems

Let now us consider the systeRx = y of linear algebraic equations with block
invertible matrixR with given generators. Using results of Theorems 6.1 and 6.3 and
Algorithms 3.1 and 4.1 we obtain the following algorithm.

Algorithm 6.4. LetR = {Rl-j}ff’jzl be a block matrix with entries of sizeg x n,
lower generatorg; (i=2,...,N), ¢; (j=1,...,N=-1, o (k=2,...,N-1)
of ordersr; (k=1,..., N — 1), upper generatorg; (i =1,...,N —1), h; (j =
2,....,N), by (k=2,...,N—1) of ordersr)/ (k=1,...,N —1) and diagonal

entriesd, (k =1,..., N). Then solution of the systelRx = y is given as follows.
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1. Using algorithm from Theorem 6.1 compute generators

(pv)i(i=2,...,N), (qv); (j=1,....,N—=1),

(ay)k k=2,....N=1, (gr)i(i=1...,N—-1),

(hr);j j=2,....,N), (i k=2,...,N=-1)

and diagonal entriesdy);, (dr)x (k=1,...,N) of the block lower tri-
angular unitary matrix¥ and the block upper triangular matrik such that
R=VT.

2. Using algorithm from Theorem 6.3 compute generators

b k=2,...,N=-1), (gs)i(i=1...,N-1),

(hs);j j=2,....,N), (s k=2,...,.N=1)

and diagonal entrie&ly)x, (ds)x (k =1,..., N) of the block upper triangular
unitary matrixU and the block upper triangular mat®with invertible diagonal
entries such thaf = US.

3. Compute the produdt = V*y as follows: start withcy = (dv)yyn, wy-1=
(PVININ, EN-1=(qv)y_qwN-1+ (dv)y_yn-1 @nd fori =N—-2,...,1
compute recursively

w; = (ay)jwir1 + (PV)ipyiet, X = (qv)jwi + (dv)]yi.

4. Compute the product’ = U*x as follows: start withx] = (dy)jx1, z2 =
(gu)iX1, x5 = (hu)jz2 + (du)sxz2 and fori = 3, ..., N compute recursively

zi = (bw)zi—1+ (U1 Xi—1, x| = (A% + (huv)}zi.

5. Compute the solutiom of the equationSx = x’ as follows: start withxy =
(ds)y xhy, wy-1= (hs)nxy, xn-1 = (ds)ytq(xy_q — (gs)n-1wn-1) and
fori = N —2,...,1 compute recursively

wi = (bg)it1witt + (hs)is1xier, X = (ds); Hx! — (gs)iwy).

Here in Stages 3 and 4 we used Algorithm 3.1 for the upper triangular n&trix
with upper generatordgy)f (i =1,...,N - 1), (pv)jf (j=2....N), (av)§
(k=2,...,N —1) anddiagonal entrie@ly); (k =1, ..., N) and for the lower tri-
angular matrixy* with lower generator¢hy); (i =2,..., N), (gu)j G=1,...,
N-1, (byj; (k=2,...,N—1) and diagonal entriegdy); (k=1,...,N).
Computations in Stages 3 and 4 may be performed also based on relation (6.12)
for the matrixV and relation (6.30) for the matrid. In Stage 5 we apply Algorithm
4.1 to the upper triangular matr&
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6.5. Complexity

We consider here the costs of computations in Algorithm 6.4 presented above. In
Stage 1, i.e., in the algorithm from Theorem 6.1, costs are determined by relations
(6.7) and (6.9). In (6.7), computing of the produtt, 1ax requirespir,r,_, flops
and the QR factorization costs(m; + ok, r;_,) flops. Hered (m, n) means com-
plexity of QR factorization for a matrix of sizes x n. In (6.9), computing of the
products(py)idk, (av);Xi+1qx. (PV)k&ks (dv)igk, (dv)idk, and (qv)i Xk+1qk
costs, respectivelyy, _1myny, pk—lpkr;/(nk, Pk—lmk”]ys vkmkr,i’, viemgng, andvg o
ryn flops. Thus the total complexity of Stage 1 is

N
c1= Y [ O+ pr. ri_1) + Pk—1mink + pr-1pring + pe—amiry
k=1
Fvkmpry + vimng 4 v prrgngd

flops. In Stage 2, i.e., in the algorithm from Theorem 6.3, costs are determined by
relation (6.26). Computing of the producYs_1(h7)i, and Yy_1(b7)i COStSs;_1
Pr_qnk, andsx_10,_4p; flops, respectively, computing of the QR factorization costs
¥ (sk—1 + vk, nx + py) flops. Thus the total complexity of Stage 2 is
N
c2 = Z[ﬁ(Sk—l + v, i+ o) + Sk—10p_1(nk + pp)]
k=1
flops. In Stage 3, we apply to the upper triangular matfik relation (3.3) with
my = v, np =my, r; = pg, rp =0and obtain the complexity
N
€3 = Z[Vk,ok + Mi 10k + Pk P41+ Vi)
k=1
flops. In Stage 4, we apply to the lower triangular matiX relation (3.3) with
my = ng, ng = v, r; =0, r, = s; and obtain the complexity
N
ca =) [nksk—1+ v-15k-1+ Sk—15c—2 + nxvi]
k=1
flops. And finally complexity of Stage 5 is given by (4.1):

N
cs =Y _[mpp + niv1pp + Pppigr + E0)],
k=1

whereZ (n) is a complexity of solution of x n linear triangular system by the stan-
dard method. The total complexity of Algorithm 6.4 is the st ¢1 + c2 + ¢3 +
c4 + cs.
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Assume that the sizes of blocks, ny, the orders of generatorg, r;’ of the

matrix R and the valueile(m,- — n;) are bounded by the numbers r, andsg,
respectively, i.e.,

me,np <m, k=1,... N,

k
res iy <, Z(mi—n,-)gso, k=1...,N -1
i=1

Then the following estimates are obtained. From the relatipry = min{m; +
Pk» T_41) it follows that o, < r and from the equality;, = r;’ + px we conclude
thatp; < 2r. Next we have

N N
Z Vv = ka <mN
k=1 k=1

and fromvy = my + pr — pr—1 we conclude that

k k

sk= (v —n)=Y (mi+p— pi-1—ni)

i=1 i=1

k
=pk+ Y _(mi —n) <r+so,
i=1

k—1
Vi + Sk-1 =mk+/0k+2(mi —n;) <m+r+so.
i=1
Using these relations the complexiti@s c2, c3, ¢4, c5 are estimated as follows:

ca<SNOm+r,r)+ 2rm? 4 r3m + r’m + m® + r2m2),

< NOm+r+so,n+2r)+ (2rm+ 4r2)so +2r%m + 4r3),
c3 < N@mr + 1%+ m?),

ca < NQ@2mr + P24+ so(2mr + 2r + sg) + mz),

cs < N(4mr + 4r% + £ (m)).

Thus the total complexity of Algorithm 6.4 is estimated as follows:

c<NWm+r,r)+0@F+m+sg,m +r)+f(m)~|—2rm2+r3m+3r2m
+72m2 + m® + 42 + 8mr + 6r2 + 2m? + so(dmr + 42 4+ 2r + 50)).

Thus in this case Algorithm 6.4 has a lineatX) complexity.
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Assume that sizes of the blocks of the mawisatisfym; =ny, k=1,..., N.
Then sinceg = 0 we conclude that

c<NWm~+r,r)+9%(r+mm+r) +Z(m) +2rm? + r3m + 3r%m
+ r2m? + m3 + 43 + 8mr + 6r% + 2m?). (6.34)

The coefficient inN here is bigger than the coefficient in the corresponding formula
in [7]. This fact is confirmed by the measuring of the time in numerical experiments
(see Section 8).

7. Thecaseof scalar matrices

We consider here the case of a matfix= {Rij}ff’jzl with scalar entries, i.e.,
my =np =1.Letr; (k=1,..., N — 1) be orders of lower generators &f In fac-
torization (6.1) the matriXS is a scalar upper triangular matri¥, U are unitary
matrices. Thus we have here a special form of the QR factorization in which the
unitary factor is represented as the prodwict The matrixV = {vij}ijzl with sca-
lar entriesv;; may be treated by Theorem 6.1 as a block lower triangular matrix
with blocks of sizesvyy =1+ pr — pr—1 (k=1,..., N), wherep; are orders of
lower generators of the block matrit which are defined by the relationgy =
0, pr—1=min{l+ py, r]/(_l} (k=N —1,...,1). The fact tha/ is a block lower
triangular matrix means that; = 0 for j > 22:1 vk =i + p;. Similarly for the
unitary matrixt/ = {uij}ff’.zl from Theorem 6.3 it follows that;; = 0 fori > j +
pj. Moreover, from Theorem 6.3 it follows that orders of upper generatotsare
equal tosy = Zf.‘zl(vi -1 = Zle(pi — pi_1) = pg, i.e., coincide with the orders
of generators of the matriX. If for somer hOldSr]/( <r, k=1 ...,N -1, weob-
tain o < r and hence the matric¥sandU satisfy the relations;; = Oforj > i 4 r
andu;; =0fori > j +r.

For convenience we present here for scalar matrices a factorization theorem and
an algorithm which are obtained directly from Theorems 6.1 and 6.3 and the notes
from the beginning of this section.

Theorem 7.1. LetR = {R,-j}l?f’j:l be a scalar matrix with lower generatogs (i =
2,....N),q; (j=1....N=1, q (k=2,...,N—Dofordersr; (k=1,...,
N —1), upper generatorg; i =1,...,N—=1), hj (j=2,...,N), b (k=2,
...,N—=1ofordersr) (k=1,..., N — 1) and diagonal entrieg; (k=1,..., N).
Let us define the numbers via recursive relationgpy = 0, and p_1 = min{1 +
POk » rlé—l}’ k=N,..., 2

The matrix R admits the factorization

R=VUS,
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whereV = {Ul'j}le:l, andU = {u;;};';_, are unitary matrices satisfying the rela-
tionsv;; = Ofor j > i + p; andu;; = 6f0ri > j 4+ pj, andSis aninvertible upper
triangular matrix. Moreoverthe matricesV andU admit the factorizations

V=VyVy_1---Vi, U=0U1U,---Uy,
where

N

Vie=diag k-1, Vi, IN—k—p }»
[ijdiag{Ik_l, Ui, INck—p,}, k=1...,N

with unitary matriced/; andUy, of sizeq1 + px) x (1 + px); the matrix S has upper
generators of orderg; (k=1,...,N —1).

The matricesVy, Uy, generators(gs); (i =1,...,N—=1), (hs); (j =2,...,
N), (bs)r (k=2,...,N—1) and diagonal entriedds); (k=1,..., N) of the
matrix S are determined using the following algorithm.

1.1. SetVy =1.1fr,_; > 0O, set

XN =pn,(hs)y = [Zx] , dr)n

to be 0 x 1 empty matrix if ry,_; =0, set Xy to be 0 x 0 empty matrix
(hs)n = hn, (dr)n = dn.
1.2. Fork =N —1,..., 2 perform the following. Compute the QR factorization

] = (5)

Xk+1ak 0/’

whereVy is a unitary matrix of sizegl + pr) x (1+ pr), and Xy, is a matrix
of sizesp; 1 x r;_;. Determine matricespy ), (av)x. (dv)r, and(gy)i of
sizesl x px—1, pk X pr—1, L x (L+ px — pr—1), and px x (1 + px — pr—1)
from the partition

Vk:[(ﬁv)k (dv)k}
(av)r  (gvir]’

Compute
W = (pv)idic + @V)i Xieage.  (hs) = [Zﬂ :

_( b 0 _ x *
bs)k = <(p’{/)kgk (w)?:) . (o =[W@vige  @v)i],

dr)k = @v)ide + (qv); Xi+19k-
1.3. Set

d 0
Vi=liyp, dr)1= <X221) , (gr)1= <%1 I, ) .
1
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Thus we have computed the matridgsand generatorsbs);, (hs); of the
matrix S.
2.1. Compute the QR factorization

[(dr)1  (gr)1] = U1 |:(d8)1 (g;l)l} 7

whereU1 is a unitary matrix of sizegl + p1) x (1 + p1), (ds)1 is a number
(gs)1is arow of sizep], andYy is a matrix of sizep; x p1.
2.2. Fork=2,..., N — 1 perform the following. Compute the QR factorization

[Ykl(hs)k Ykl(bS)k:| — U |:(dS)k (gs)k}
(dr)k (1) 0 Y |”
whereU; is a unitary matrix of sizegl + pr) x (1 + pr), (ds)x iS @ numbey

(gs)k is arow of sizep; , and Yy is a matrix of sizegy x p;.
2.3. SetUy = 1. Compute

YNl(hS)N]
drn |’

Thus we have computed generatggs); and diagonal entriegds); of the
matrix S.

ds)y = [

For a matrix with scalar entries we obtain the following algorithm for solution of
the system of linear algebraic equations.

Algorithm 7.2, LetR = {Ri./}f?’j=1 be a matrix with scalar entries with lower gener-
atorsp; i=2,...,N), q; (j=1,...,.N=1, axr (k=2,..., N —1) of orders
r,i (k=1,...,N —1),uppergeneratogg (i =1,...,N—=1), h; (j=2,...,N),

by (k=2,...,N—1ofordersy (k=1,..., N — 1) and diagonal entrie (k =

1,..., N). Then solution of the syste®x = y is given as follows.

1. Setpy =0 and fork=N —1,...,2 computepx_1 = min{l+ px, r;_,}.
Using algorithm from Theorem 7.1 compute unitary matriges..., Vy, Ui,
..., Uy, generators(gs); i =1,...,.N=1), (hs); (j =2,...,N), (bs)k
(k=2,..., N — 1) and diagonal entrie&ls); (k =1, ..., N) of the upper tri-
angular matriXSsuch that

R=VUS, V=VyVy_1---V1, U=U0--Uy,
where
Vi = diag{Ix—1, Vi, IN—k—p. },

0k = diag{lx_1, Uk, INck—p}s k=1,...,N.

2. Determine matriceépy ), (av)r, (dv)k, and(qy)i Of sizes 1x pr_1, pr x
Ok—1, 1 x (14 px — pr—1), andpx x (L + pr — px—1) from the partitions

Vn=[(pv)n (dv)n],
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_ vk @vk o
Vk_[(av)k (Clv)k] k=N-1,...,2,

(dV)1:|

Vi= .

! [(QV)l

Compute the product = V*y as follows: start withty = (dy)yyy, wy-1 =
(pv)NIN, IN-1= (qv)y_qwN-1+ (dv)y_ynv-1and fori=N—-2...,1

compute recursively
w; = (ay)iwit1 + (PV)iyiet, X = (qv)iwi + (dv)]yi.

3. Determine matrice@ly)r, (gu)r, (hu)k, and(by)y of sizes(1 + pr — px—1) X
1, A+ px — pr—1) X Pk, pr—1 x 1, andpg_1 x pi from the partitions

Ur=[(dv)1 (gu)1].

o Gun] -
”_L@n @@J’k—z“”N L

(hu)n
Uy= .
N[wm}
Compute the produat’ = U*x as follows: start with:; = (du);x1, z2 = (gu);
¥1, x5 = (hu)jz2 + (du)3X2 and fori = 3, ..., N compute recursively

zi = (bv)fzi—1+ (gU)F_1%i—1, X/ = (du)i%i + (hu)}zi.

4. Compute the solution of the equationSx = x’ as follows: start withxy =
ds) ' xy, w1 = (hs)nxy, xn-1= (ds)y",(x}_4 — (gs)v—1wn—_1) and
fori = N —2,...,1 compute recursively

wi = (bg)ipawit1 + (he)ip1xitr, X = (ds); H(x) — (gs)iwi).

Inequality (6.34) for a scalar matrix yields the following estimate for the com-
plexity of Algorithm 7.2:

c<KNOA+rr)+90¢+1r+1)+5°+102 + 10- + 4).
8. Numerical experiments

As an illustration we present here the results of computer experiments with de-
signed algorithms. We investigate their behavior in floating point arithmetic and
compare them with other available algorithms. We solved linear systems y
for random values of input data, ¢, g, &, d, y, a, b. The following algorithms
were used:

(1) GEPP Gaussian eliminations with partial pivoting.

(2) DV Algorithm 6.4 presented above.

3) GE1 Algorithm obtained in [7] for block matrices.

4) GE2 Algorithm obtained in [6] for matrices with scalar
entries and generators of order one.
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All algorithms (1)—(4) were implemented in the system MATLAB, version 5.0.0.4064
with unit round-off error 2204 x 10-16. The accuracy of the solutions obtained
was estimated by the relations

xRl IRx =yl
Ixorll ST

wherex is the solution obtained by the corresponding algoritlvg is the solu-
tion obtained using QR factorization which we assume to be exact. In each case the
condition numbek,(R) of the original matrix was also computed.

In all experiments performed the input data were taken randomly using the ran-
dom-function. The values of elementspf ¢, g, 4, y, were chosen in the range
0-10, the values af, b were in the range 0-1 and the values of the diagdmwetre
taken from the range 0-100.

The data on time required by the above algorithms are also presented here. The
authors have to make a proviso that the test programs were not completely optimized
for time performance. At the same time these data can provide an approximation for
the real complexities of the compared algorithms.

1. The first series of experiments was performed for block matrices with square
blocks of a fixed size and the same orders of generators. We compare here GEPP,
DV and GEL1 algorithms. The results of computations are presented in Table 1.

The corresponding data of time required are presented in Table 2.

’

Table 1
mp=ng=2,rp=r] =2
N k2(R) GEPP GEI DV
& Ey & Sy & Ey
20 2e+3 3e-14 7e-15 6e-15 le-14 7e-15 le-14
50 le+ 4 3e-14 6e-15 4e-13 le-12 3e-14 6e-15
100 let+ 6 2e-12 8e-13 2e-12 2e-11 2e-12 7e-13
150 4e+5 le-12 3e-13 le-12 3e-12 le-12 3e-13
200 5e+5 2e-12 3e-13 2e-12 3e-12 2e-12 le-13
500 2e+6 9e-12 6e-13 le-11 3e-10 le-13 2e-13
1000 8et+ 8 5e-11 2e-11 le-10 7e-12 le-12 7e-12
Table 2
Time (seconds)
N GE1 DV MATLB's \
20 0.23 0.87 0.0058
50 0.65 2.48 0.042
100 1.24 5.51 0.29
150 1.77 6.71 1.82
200 2.45 8.99 4.88
500 6.01 22.37 71.23

1000 12.46 44.49 678.35
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Table 3
N k2(R) GEPP GEI DV
& é‘y &€ Sy & Sy
40 3e+2 2e-14 2e-15 le-14 3e-15 2e-14 2e-15
100 2e+2 9e-15 le-15 8e-15 le-15 9e-15 le-15
200 3e+3 9e-15 8e-15 4e-14 le-12 le-14 8e-15
300 let+ 4 2e-13 le-14 2e-13 le-13 2e-13 7e-15
500 4e+ 3 8e-14 4e-15 8e-14 2e-14 8e-14 4e-15
Table 4
Time (seconds)
N GE2 DV MATLB's \
40 0.12 1.51 0.007
100 0.28 3.84 0.042
200 0.58 7.92 0.31
300 0.84 12.08 1.85
500 1.56 22.70 188.34

2. The second series of experiments was performed for matrices with scalar en-
tries and generators of order one. We compare here GEPP, DV and GE2 algorithms.
The results of computations are presented in Table 3.

The corresponding data of time required are presented in Table 4.

From these tables it follows that for the examples discussed here accuracy is about
the same for all the algorithms. However for large matrices the DV, GE1, GE2 algo-
rithms are much faster. In the examples presented the DV algorithm turned out to be
more accurate but the GE1 and GE2 algorithms are faster.
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