
Linear Algebra and its Applications 343–344 (2002) 419–450
www.elsevier.com/locate/laa

A modification of the Dewilde–van der Veen
method for inversion of finite structured

matrices�

Y. Eidelman∗, I. Gohberg
School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel-Aviv University, Ramat-Aviv 69978, Israel

Received 30 July 2000; accepted 14 April 2001

Submitted by V. Olshevsky

Abstract

We study a class of block structured matricesR = {Rij }N
i,j=1 with a property that the

solution of the corresponding systemRx = y of linear algebraic equations may be performed
for O(N) arithmetic operations. In this paper for finite invertible matrices we analyze in detail
factorization and inversion algorithms. These algorithms are related to those suggested by P.M.
Dewilde and A.J. van der Veen (Time-varying Systems and Computations, Kluwer Academic
Publishers, New York, 1998) for a class of finite and infinite matrices with a small Hankel rank.
The algorithms presented here are more transparent and are a modification of the algorithms
from the above reference. The approach and the proofs are essentially different from those in
the above-mentioned reference. The paper contains also analysis of complexity and results of
numerical experiments. © 2002 Elsevier Science Inc. All rights reserved.

Keywords: Structured matrices; Linear complexity algorithms; Inversion algorithms; Factorization
algorithms; Solution of linear equations

1. Introduction

We study a class of block structured matricesR = {Rij }N
i,j=1 with a property

that the solution of the corresponding systemRx = y of linear algebraic equations

� This research was supported in part by The Israel Science Foundation founded by The Israel Academy
of Sciences and Humanities.∗ Corresponding author.

E-mail addresses:eideyu@math.tau.ac.il (Y. Eidelman), gohberg@math.tau.ac.il (I. Gohberg).

0024-3795/02/$ - see front matter� 2002 Elsevier Science Inc. All rights reserved.
PII: S0024-3795(01)00363-9

420 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

may be performed for O(N) arithmetic operations. As is well known, the standard
methods for the solution of linear systems, as for instance the Gaussian elimination,
require O(N3) operations. For some classes of structured matrices such as Toeplitz,
Cauchy, Vandermonde and others it takes O(N2) operations. We consider a special
class of matrices which admit linear complexity algorithms. These classes of matri-
ces appear in different problems in which discretizations of kernels which are Green
functions of differential equations are used, as well as in signal processing (Kalman
filter, see [11,12]). More precisely we consider block matrices whose entries are
specified as follows:

Rij =



piai−1 · · · aj+1qj , 1 � j < i � N,

di, 1 � i = j � N,

gibi+1 · · · bj−1hj , 1 � i < j � N.

(1.1)

Here pi (i = 2, . . . , N), qj (j = 1, . . . , N − 1), and ak (k = 2, . . . , N − 1) are
matrices of sizesmi × r ′

i−1, r ′
j × nj , and r ′

k × r ′
k−1, respectively; these elements

are said to belower generators of the matrix Rwith orders r ′
k (k = 1, . . . , N −

1). The elementsgi (i = 1, . . . , N − 1), hj (j = 2, . . . , N), and bk (k = 2, . . . ,

N − 1) are matrices of sizesmi × r ′′
i , andr ′′

j−1 × nj , andr ′′
k−1 × r ′′

k , respectively;
these elements are said to beupper generators of the matrix Rwith ordersr ′′

k (k =
1, . . . , N − 1). The matricesdk (k = 1, . . . , N) of sizesmk × nk are said to be
diagonal entriesof the matrixR.

The class which we consider contains at least three well-known classes: diagonal
plus semiseparable matrices, band matrices and unitary Hessenberg matrices. For
band matrices linear complexity inversion algorithms are presented in various papers
and monographs (see for instance [13]). For diagonal plus semiseparable matrices,
probably for the first time a linear complexity inversion algorithm was suggested by
Gohberg et al. in [11,12] with the assumption that a matrix is strongly regular, i.e.,
all its principal leading minors are non-vanishing. Another approach to inversion
of diagonal plus semiseparable matrices which is based on the system theory was
suggested by Gohberg and Kaashoek in [10]. Using the Gohberg–Kaashoek inver-
sion formula the authors in [3,4] obtained inversion formulas and linear complexity
inversion algorithms for diagonal plus semiseparable matrices of general form.
Analysis of representations obtained in [3,4] showed that inverse to a diagonal
plus semiseparable matrix is in general a matrix of the form (1.1), i.e., it belongs
to a more general class. We started the detailed study of this class in our paper [5].
In this paper and also in [6,7] we developed linear complexity inversion algorithms
which are based on computation of generators of the inverse matrix.

Another approach which is based on factorization representations was suggested
by Dewilde and van der Veen. Dewilde and van der Veen in [1] (see also [2]) consid-
ered a class of finite and infinite matrices with a small Hankel rank. In particular in
[1] a method for factorization and inversion of such matrices was suggested. In this
paper we consider only the case of finite invertible matrices. This case is analyzed
in detail, and a systematical description of factorization and inversion algorithms is

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450421

presented. These algorithms are more transparent and are modification and simplifi-
cation of the algorithms suggested in [1]. The approach and the proofs are essentially
different from those in [1]. It allows us to avoid the requirement of the minimality
of generators which represents numerical difficulties in using of the algorithm. The
paper contains also analysis of the complexity and results of numerical experiments.

We will now explain the main idea of our derivation of the algorithms. Assume
that the matrixRhas a block row of the form

Rk = (
pq A gh

)
,

wherep is a matrix of the sizesm × n, m > n andm, n are small numbers, and the
diagonal blockA and the matrixg have small sizes also. By an orthogonal transfor-
mationV one can transform the matrixp to the form

Vp = X1 =
(

X

0(m−n)×n

)
.

For the whole row we obtain

V Rk = (
X1 V A (V g)h

)
.

It means that for a small number of operations we obtain a large number of zeros in
one part of the matrix and elements of the same structure in another part. The struc-
ture of quasiseparable matrices allows us to apply such transformations successively
and to derive an algorithm on this basis. The suggested derivation of the algorithms
is completely different from the derivation in [1] but leads to the same results. The
same idea was used in the particular case of diagonal plus semiseparable matrices by
Mastronardi et al. in their recent paper [14].

The paper consists of eight sections. Section 1 is the introduction. In Section 2
we give definitions and some auxiliary relations. In Sections 3 and 4 we consider
algorithms for computing of the product of a matrix by a vector and solution of
triangular systems via generators. In Section 5 we obtain some factorization relations
for triangular matrices which are used for derivation of the main algorithms of the
paper. In Section 6 we present the detailed description of the inversion method. This
section contains a general description, two factorization algorithms which are a basis
for the method, an application of the obtained results to the solution of linear systems,
and analysis of complexity. In Section 7 we consider separately the case of matrices
with scalar entries. In Section 8 we present results of numerical experiments.

2. Definitions

Let {ak}, k = 1, . . . , N , be a family of matrices of sizesrk × rk−1. For positive
integersi, j, i > j , define the operationa×

ij as follows:a×
ij = ai−1 · · · aj+1 for i >

j + 1, a×
j+1,j = Irj

.

422 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

Let {bk}, k = 1, . . . , N , be a family of matrices of sizesrk−1 × rk. For positive
integersi, j, j > i, define the operationb×

ij as follows:b×
ij = bi+1 · · · bj−1 for j >

i + 1, b×
i,i+1 = Iri

.
It is easy to see that

a×
i+1,j = aia

×
i,j (2.1)

and

b×
i−1,j = bib

×
i,j . (2.2)

Let R = {Rij }N
i,j=1 be a matrix with block entriesRij of sizesmi × nj . Assume that

the entries of this matrix are represented in the form

Rij =



pia
×
ij qj , 1 � j < i � N,

di, 1 � i = j � N,

gib
×
ij hj , 1 � i < j � N.

(2.3)

Here pi (i = 2, . . . , N), qj (j = 1, . . . , N − 1), and ak (k = 2, . . . , N − 1) are
matrices of sizesmi × r ′

i−1, r ′
j × nj , and r ′

k × r ′
k−1, respectively; these elements

are said to belower generators of the matrix Rwith ordersr ′
k (k = 1, . . . , N − 1).

The elements gi (i = 1, . . . , N − 1), hj (j = 2, . . . , N), and bk (k = 2, . . . ,

N − 1) are matrices of sizesmi × r ′′
i , r ′′

j−1 × nj , andr ′′
k−1 × r ′′

k , respectively; these
elements are said to beupper generators of the matrix Rwith ordersr ′′

k (k = 1, . . . ,

N − 1). The matricesdk (k = 1, . . . , N) of sizesmk × nk are said to bediago-
nal entriesof the matrix R. We define also orders of generatorsr ′

k, r ′′
k for k =

−1, 0, N, N + 1 setting them to be zeros.
Formally, we use some calculation rules with matrices that have blocks with di-

mension zero. Aside from obvious rules, the product of an “empty” matrix of dimen-
sionm × 0 and an empty matrix of dimension 0× n is a matrix of dimensionm × n

with all elements equal to 0. All further rules of block matrix multiplication remain
consistent. Such operations are used in MATLAB.

The class of matrices which we are considering contains at least three well-
known classes of structured matrices: band matrices, diagonal plus semiseparable
matrices, and unitary Hessenberg matrices. Assume that blocks of the matrixR
are square and the orders of generators are constant:r ′

k = r1, r ′′
k = r2 (k = 1, . . . ,

N − 1). If in (2.3) ak = a, bk = b (k = 2, . . . , N − 1) andar1 = 0, br2 = 0, then
R is a band matrix. Ifak = Ir1, bk = Ir2 (k = 2, . . . , N − 1), then we obtain a di-
agonal plus semiseparable matrix. Assume now that in (2.3)m1 = 1, n1 = 0, mk =
nk = 1 (k = 2, . . . , N − 1), mN = 0, nN = 1 and r ′

k = 0 (k = 1, . . . , N − 1).
ThenR is an upper Hessenberg matrix. If moreoverr ′′

k = 1 (k = 1, . . . , N − 1) with
some additional assumptions (see Section 5 below), we obtain a unitary Hessenberg
matrix.

Generators of a matrixR = {Rij }N
i,j=1 may be obtained by its entries as follows:

pi = [
Ri1 · · · Ri,i−1 ∗ · · · ∗] , 2 � i � N,

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450423

qj =




0ni×nj

· · ·
Inj

· · ·
0nN ×nj


 , 1 � j � N − 1,

gi = [∗ ∗ · · · Ri,i+1 · · · Ri,N

]
, 1 � i � N − 1,

hj =




0ni×nj

· · ·
Inj

· · ·
0nN ×nj


 , 2 � j � N,

ak = bk = I
Ñ

, k = 2, . . . , N − 1, Ñ =
N∑

i=1

ni.

Such defined generators have ordersÑ which are not the minimal. Generators with
minimal orders may be obtained by entries of a matrix for O(N3) operations using an
algorithm suggested in [1, p. 56]. In the case of a unitary Hessenberg matrix this cost
may be reduced to O(N2) operations (see [8]). If generators of a matrix are given,
then one can obtain by them generators with minimal orders using an algorithm
suggested in [1, p. 101]. Next we assume that generators of a matrix are given and
their orders are essentially less than sizes of a matrix.

Let R(k, :) be thekth block row of the matrixR. From the definition of generators
it directly follows that

R(1, :) = (
d1 g1H2

)
,

R(k, :) = (
pkQk−1 dk gkHk+1

)
,

R(N, :) = (
pN QN−1 dN

)
,

(2.4)

where matricesQk, Hk are defined as follows:

Q1 = q1; Qk =(ak · · · a2q1 ak · · · a3q2 . . . akqk−1 qk

)
,

2 � k � N − 1; (2.5)

HN = hN , Hk =(hk bkhk+1 bkbk+1hk+2 . . . bk · · · bN hN

)
,

N − 1 � k � 2. (2.6)

It is easy to see that these matrices may be defined equivalently via recursive relations

Q1 = q1; Qk = (
akQk−1 qk

)
, 2 � k � N − 1; (2.7)

HN = hN , Hk = (
hk bkHk+1

)
, N − 1 � k � 2. (2.8)

424 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

Define the QR factorization of a matrixA of sizesm × n as the representation
A = V X, whereV is a unitarym × m matrix andX is a matrix of sizesm × n.
In the casem > n the matrix X has the formX = (

X0
0

)
, where X0 is a matrix

of sizes n × n. Such a factorization is computed using the standard MATLAB
function.

Complexity of computations is expressed via a number of flops, i.e., arith-
metic operations of the forma ± bc, a ± b/c. Submatrices are indicated in MAT-
LAB style, i.e., for a matrixA, A(m : n, t : s) selects block rowsm to n of
block columnst to s, and a colon without an index range selects all the rows and
columns.

3. Multiplication by a vector

Let R = {Rij }N
i,j=1 be a matrix with block entriesRij of sizesmi × nj with given

lower generatorspi (i = 2, . . . , N), qj (j = 1, . . . , N − 1), ak(k = 2, . . . , N − 1)

of ordersr ′
k (k = 1, . . . , N − 1), upper generatorsgi (i = 1, . . . , N − 1), hj (j =

2, . . . , N), bk (k = 2, . . . , N − 1) of ordersr ′′
k (k = 1, . . . , N − 1) and diagonal

entriesdk (k = 1, . . . , N). The multiplication of the matrix by a vector may be
performed as follows. Letx = col(xi)

N
i=1 be a vector with column coordinatesxi

of sizesni . The producty = Rx of the matrixR by the vectorx is found asy =
yL + yD + yU, whereyL = RLx, yD = RDx, yU = RUx, andRL, RD andRU are
the corresponding strictly lower triangular, diagonal and strictly upper triangular
parts of the matrixR.

For yL we haveyL
1 = 0 and fori � 2 using the first of relations (2.3) we obtain

yL
i =

i−1∑
j=1

Rij xj =
i−1∑
j=1

pia
×
ij qj xj = pizi,

where

zi =
i−1∑
j=1

a×
i,j qj xj .

From equalities (2.1) anda×
i+1,i = I it follows thatzi satisfies the recursive relations

zi+1 =
i∑

j=1

a×
i+1,j qj xj = ai

i−1∑
j=1

a×
ij qj xj + a×

i+1,iqixi = aizi + qixi .

ForyU we haveyU
N = 0 and fori � N − 1 using the third of relations (2.3) we obtain

yU
i =

N∑
j=i+1

Rij xj =
N∑

j=i+1

gib
×
ij hj xj = giwi,

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450425

where

wi =
N∑

j=i+1

b×
i,j hj xj . (3.1)

From equalities (2.2) andb×
i−1,i = I it follows thatwi satisfies the recursive relations

wi−1 =
N∑

j=i

b×
i−1,j hj xj

= bi

N∑
j=i+1

b×
ij hj xj + b×

i−1,ihixi

= biwi + hixi . (3.2)

For yD it is obvious thatyD
i = dixi, i = 1, . . . , N .

From these relations we obtain the following algorithm for computing the product
y = Rx.

Algorithm 3.1.
1. Start withyL

1 = 0, z2 = q1x1, yL
2 = p2z2 and fori = 3, . . . , N compute recur-

sively

zi = ai−1zi−1 + qi−1xi−1,

yL
i = pizi .

2. Compute fori = 1, . . . , N

yD
i = dixi .

3. Start withyU
N = 0, wN−1 = hN xN , yU

N−1 = gN−1wN−1 and for i = N − 2,

. . . , 1 compute recursively

wi = bi+1wi+1 + hi+1xi+1,

yU
i = giwi.

4. Compute vectory

y = yL + yD + yU.

In this algorithm, computation of the productsai−1zi−1, qi−1xi−1, pizi, dixi,

bi+1wi+1, hi+1xi+1, and giwi costs, respectively,r ′
i−1r ′

i−2, r ′
i−1ni−1, mir

′
i−1,

mini, r ′′
i r ′′

i+1, r ′′
i ni+1, andmir

′′
i flops. Hence the total complexity of Algorithm 3.1

is expressed as follows:

c =
N∑

k=1

[
mk(r ′

k−1 + r ′′
k) + nk−1r ′

k−1 + nk+1r ′′
k + r ′

k−1r ′
k−2 + r ′′

k r ′′
k+1 + mknk

]
.

(3.3)

426 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

If the sizes of a matrixmk, nk and the orders of its generatorsr ′
k, r ′′

k are bounded
by the numbersm andr, respectively, we obtain the estimate

c � N(4mr + 2r2 + m2).

In this case multiplication of a matrix by a vector costs O(N) operations in contrast
to O(N2) for a matrix of general form.

4. Solution of triangular systems

Let R be a block upper triangular matrixR = {Rij }N
i,j=1 with block entriesRij

of sizesni × nj with given upper generatorsgi (i = 1, . . . , N − 1), hj (j = 2, . . . ,

N), bk (k = 2, . . . , N − 1) of ordersρ′
k (k = 1, . . . , N − 1) and invertible diago-

nal entriesdk (k = 1, . . . , N). An algorithm similar to Algorithm 3.1 can be obtained
for the solution of the systemRx = y. Solution of an upper triangular system is
obtained as follows:

xN = R−1
NN yN , xi = R−1

ii


yi −

N∑
j=i+1

Rij xj


 , i = N − 1, . . . , 1.

Using the second and the third relations from (2.3) we obtain

xN = d−1
N yN

and

xi = d−1
i


yi −

N∑
j=i+1

gib
×
ij hj xj




= d−1
i (yi − giwi), i = N − 1, . . . , 1,

where the auxiliary variablewk is given by (3.1). From (3.2) it follows thatwk satis-
fies the recursive relationwk = bk+1wk+1 + hk+1xk+1, k = N − 2, . . . , 1.

Thus we obtain the following algorithm.

Algorithm 4.1.
1. Start withxN = d−1

N yN , wN−1 = hN xN , xN−1 = d−1
N−1(yN−1 − gN−1wN−1).

2. Fori = N − 2, . . . ,1 compute recursively

wi = bi+1wi+1 + hi+1xi+1,

xi = d−1
i (yi − giwi).

In this algorithm, computation of the productsbi+1wi+1, hi+1xi+1, and giwi

costs, respectively,ρ′
iρ

′
i+1, ρ′

ini+1, andniρ
′
i flops. The total complexity of Algo-

rithm 4.1 is expressed as follows:

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450427

c =
N∑

k=1

[
nkρ′

k + nk+1ρ′
k + ρ′

kρ′
k+1 + ζ(nk)

]
. (4.1)

Hereζ(n) is a complexity of solution ofn × n linear system by the standard Gauss
method. If the sizes of a matrixmk, nk and the orders of its generatorsr ′

k, r ′′
k are

bounded by the numbersm andr, respectively, we obtain the estimate

c � N(2mr + r2 + ζ(m)).

In this case, similarly to the multiplication by vector, the solution of a tri-
angular system costs O(N) operations in contrast to O(N2) for a matrix of general
form.

5. Factorization of triangular matrices

In this section we obtain some factorization relations for triangular matrices
using their generators. These results turn out to be useful for derivation of the main
algorithms of this paper. Similar relations were used earlier (see [8,9]) for unitary
Hessenberg matrices.

Lemma 5.1. Let R = {Rij }N
i,j=1 be a block lower triangular matrix with entries of

sizesmi × nj and lower generatorspi (i = 2, . . . , N), qj (j = 1, . . . , N − 1), ak

(k = 2, . . . , N − 1) and diagonal entriesdk (k = 1, . . . , N). By generators and
diagonal entries define matrices

R1 =
[
d1
q1

]
,

Rk =
[
pk dk

ak qk

]
, k = 2, . . . , N − 1,

RN = [
pN dN

]
,

(5.1)

and next set

R̃1 = diag{R1, Iγ1},
R̃k = diag{Iηk

, Rk, Iγk
}, k = 2, . . . , N − 1,

R̃N = diag{IηN
, RN },

(5.2)

whereηk = ∑k−1
i=1 mi, γk = ∑N

i=k+1 ni .
Then the equality

R = R̃N · R̃N−1 · · · R̃1 (5.3)

holds.

428 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

Proof. Let us prove by induction the validity of the relations

R̃k · · · R̃1 =

R(1 : k, 1 : k) 0

Qk 0
0 Iγk


 , k = 1, . . . , N − 1, (5.4)

where matricesQk are given by (2.5).
For k = 1, relation (5.4) is obvious. Suppose (5.4) holds fork with 1 � k �

N − 2. Then

R̃k+1R̃k · · · R̃1

=




Iηk+1 0 0 0
0 pk+1 dk+1 0
0 ak+1 qk+1 0
0 0 0 Iγk+1






R(1 : k, 1 : k) 0 0
Qk 0 0
0 Ink+1 0
0 0 Iγk+1




=




R(1 : k, 1 : k) 0 0
pk+1Qk dk+1 0
ak+1Qk qk+1 0

0 0 Iγk+1


 .

Using relations (2.7) and(
R(1 : k, 1 : k) 0

pk+1Qk dk+1

)
= R(1 : k + 1, 1 : k + 1)

we conclude that

R̃k+1R̃k · · · R̃1 =

R(1 : k + 1, 1 : k + 1) 0

Qk+1
0 Iγk+1


 .

Relation (5.4) withk = N − 1 yields

R̃N · · · R̃1=
(

IηN
0 0

0 pN dN

)R(1 : N − 1, 1 : N − 1) 0
QN−1 0

0 InN




=
(

R(1 : N − 1, 1 : N − 1) 0
pN QN−1 0

)
= R(1 : N, 1 : N) = R. �

Lemma 5.2. Let R be a block upper triangular matrix with entries of sizesmi × nj ,

upper generatorsgi (i =1, . . . , N − 1), hj (j =2, . . . , N), bk (k=2, . . . , N − 1)

and diagonal entriesdk (k = 1, . . . , N). By generators and diagonal entries define
matrices

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450429

R1 = [
d1 g1

]
,

Rk =
[
hk bk

dk gk

]
, k = 2, . . . , N − 1,

RN =
[
hN

dN

]
,

(5.5)

and next set

R̃1 = diag{R1, Iφ1},
R̃k = diag{Iχk

, Rk, Iφk
}, k = 2, . . . , N − 1,

R̃N = diag{IχN
, RN },

(5.6)

whereχk = ∑k−1
i=1 ni, φk = ∑N

i=k+1 mi .
Then the equality

R = R̃1 · R̃2 · · · R̃N (5.7)

holds.

Lemma 5.2 is obtained from Lemma 5.1 by passing to adjoint matrices.
Let us notice that the adjoint matrixR∗ is a block lower triangular matrix with

entries of sizesni × mj and lower generatorsh∗
i (i = 2, . . . , N), g∗

j (j = 1, . . . ,

N − 1), b∗
k (k = 2, . . . , N − 1) and diagonal entriesd∗

k (k = 1, . . . , N).
If m1 = 1, n1 = 0, mk = nk = 1 (k = 2, . . . , N − 1), mN = 0, nN = 1, the

orders of generators of the matrixR equal one and all the matricesRk in (5.5) are
unitary, thenR is a unitary Hessenberg matrix and factorization (5.6) is similar to the
one used in [8].

6. Description of the method

6.1. General description

Let Rbe a block invertible matrix. The method suggested by Dewilde and van der
Veen in [1] consists of construction of the factorization of the form

R = V US, (6.1)

whereV, U are block unitary matrices,V is block lower triangular,U is block upper
triangular, andS is a block upper triangular matrix with square invertible blocks on
the main diagonal. The matricesV, U, S are given by their generators which are
computed via generators of the original matrixR. If the generators of the matrices
V, U, S have just been computed, then the solution of the system of linear algebraic
equationsRx = y may be determined byx = S−1U∗V ∗y using Algorithms 3.1 and
4.1.

On the first stage we compute the factorizationR = V T , whereV is a block lower
triangular unitary matrix, andT is a block upper triangular matrix. Following the ter-

430 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

minology of [1] we call this stage inner coprime factorization. The matrixT obtained
in the first stage has in general rectangular blocks on the main diagonal. In order to
obtain matrices which are convenient for inversion we compute for the matrixT the
factorizationT = US, whereU is a block upper triangular unitary matrix, andS is
a block upper triangular matrix with square invertible blocks on the main diagonal.
This stage also following the terminology of [1] we call inner–outer factorization.
Below we present the description of both stages with the detailed justification. The
proofs are based on Lemmas 5.1 and 5.2 on factorization of triangular matrices and
differ completely from the proofs given in [1].

Notice that in [1] instead of (6.1) a more general factorizationR = V USW with
an additional block triangular unitary factorWwas used. In our case of finite invert-
ible matrices the factorW does not appear and thus the amount of computations is
reduced.

6.2. Inner coprime factorization

Let R be a block matrix with given generators. We present here an algorithm
for computing generators and diagonal entries of unitary block lower triangular ma-
trix V and block upper triangular matrixT such thatR = V T . This algorithm is a
generalization of an algorithm suggested in [1, p. 131,170] with some additional
assumptions which are equivalent to the conditions

rankpN = r ′
N−1, rank

(
pk

ak

)
= r ′

k−1, k = N − 1, . . . , 2. (6.2)

Theorem 6.1. Let R = {Rij }N
i,j=1 be a block matrix with entries of sizesmi × nj ,

lower generatorspi (i =2, . . . , N), qj (j =1, . . . , N − 1), ak (k=2, . . . , N − 1)

of ordersr ′
k (k = 1, . . . , N − 1), upper generatorsgi (i = 1, . . . , N − 1), hj (j =

2, . . . , N), bk (k = 2, . . . , N − 1) of ordersr ′′
k (k = 1, . . . , N − 1) and diagonal

entriesdk (k = 1, . . . , N).
The matrix R admits the factorization

R = V · T , (6.3)

where V is a block lower triangular unitary matrix with block entries of sizesmi ×
νj (i, j = 1, . . . , N), lower generators(pV)i (i = 2, . . . , N), (qV)j (j = 1, . . . ,

N − 1), (aV)k (k = 2, . . . , N − 1) of ordersρk (k = 1, . . . , N − 1) and diagonal
entries (dV)k (k = 1, . . . , N) and T is a block upper triangular matrix with
block entries of sizesνi × nj (i, j = 1, . . . , N), upper generators(gT)i (i = 1, . . . ,

N − 1), (hT)j (j = 2, . . . , N), (bT)k (k = 2, . . . , N − 1) of orders ρ′
k = r ′′

k + ρk

(k = 1, . . . , N − 1) and diagonal entries(dT)k (k = 1, . . . , N).
The sizesνk, the orders of generatorsρk, generators and diagonal entries of the

matricesV, T are determined using the following algorithm.
1. ComputeρN−1 = min{mN , r ′

N−1}, νN = mN − ρN−1. Compute the QR fac-
torization

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450431

pN = VN

(
XN

0

)
, (6.4)

whereVN is a unitary matrix of sizesmN × mN and XN is a matrix of sizes
ρN−1 × r ′

N−1. Determine matrices(pV)N and(dV)N of sizesmN × ρN−1, and
mN × νN from the partition

VN = [
(pV)N (dV)N

]
. (6.5)

Compute

h′
N = (pV)∗N dN , (hT)N =

[
hN

h′
N

]
, (dT)N = (dV)∗N dN . (6.6)

2. For k = N − 1, . . . , 2 we perform the following. Computeρk−1 = min{mk +
ρk, r ′

k−1}, νk = mk + ρk − ρk−1. Compute the QR factorization[
pk

Xk+1ak

]
= Vk

(
Xk

0

)
, (6.7)

whereVk is a unitary matrix of sizes(mk + ρk) × (mk + ρk), andXk is a matrix
of sizesρk−1 × r ′

k−1. Determine matrices(pV)k, (aV)k, (dV)k, and (qV)k of
sizesmk × ρk−1, ρk × ρk−1, mk × νk andρk × νk from the partition

Vk =
[
(pV)k (dV)k

(aV)k (qV)k

]
. (6.8)

Compute

h′
k =(pV)∗kdk + (aV)∗kXk+1qk, (hT)k =

[
hk

h′
k

]
,

(bT)k =
(

bk 0
(p∗

V)kgk (aV)∗k

)
,

(6.9)(gT)k =[(dV)∗kgk (qV)∗k
]

,

(dT)k =(dV)∗kdk + (qV)∗kXk+1qk.

3. Computeν1 = m1 + ρ1. Choose a unitary matrixV1 of sizesν1 × ν1. Define
matrices(dV)1, and (qV)1 of sizesm1 × ρ1, andρ1 × ν1 from the partition

V1 =
[
(dV)1
(qV)1

]
. (6.10)

Compute

(dT)1 = (dV)∗1d1 + (qV)∗1X2q1, (gT)1 = [
(dV)∗1g1 (qV)∗1

]
. (6.11)

Proof. We consider a lower triangular matrixV = {Vij }N
i,j=1 and an upper triangu-

lar matrixT = {Tij }N
i,j=1 with generators given by the algorithm, i.e.,

Vij =



(pV)i(aV)×ij (qV)j , 1 � j < i � N,

(dV)i, 1 � i = j � N,

0, 1 � i < j � N,

432 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

Tij =



0, 1 � j < i � N,

(dT)i, 1 � i = j � N,

(gT)i(bT)×ij (hT)j , 1 � i < j � N.

Let us show that for such defined matricesV, T , relation (6.3) holds. Let the matri-
cesVk (k = 1, . . . , N) be given by relations (6.5), (6.8) and (6.10). Set

Ṽ1=diag{V1, Iφ1},
Ṽk =diag{Iηk

, Vk, Iφk
}, k = 2, . . . , N − 1,

ṼN =diag{IηN
, VN },

where

ηk =
k−1∑
i=1

mi, φk =
N∑

i=k+1

νi .

From Lemma 5.1 it follows that

V = ṼN ṼN−1 · · · Ṽ1. (6.12)

Since all the matricesVk are unitary, all the matrices̃Vk are also unitary and hence
the matrixV is unitary as a product of unitary matrices.

Let us prove by induction that

Ṽ ∗
k · · · Ṽ ∗

N R =

R(1 : k − 1, :)

X̃k

T (k : N, :)


 , k = N, . . . , 2, (6.13)

where

X̃N =(XN QN−1 h′
N

)
,

X̃k =(XkQk−1 h′
k �k

)
, k = N − 1, . . . , 2,

the elementsh′
k andXk are given in (6.6), (6.9) and (6.4), (6.7),

�k = (
(p∗

V)kgk (aV)∗k
)

(HT)k+1, (6.14)

and matricesQk and(HT)k are defined by (2.5) and (2.6).
For k = N we represent the matrixR in the form

R =
(

R(1 : N − 1, :)
R(N, :)

)
.

The last relation from (2.4) yieldsR(N, :) = (
pN QN−1 dN

)
. From (6.4) we

obtain

V ∗
N pN QN−1 =

(
XN QN−1

0

)
.

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450433

Next, from relations (6.6) it follows that

V ∗
N dN =

(
(pV)∗N
(dV)∗N

)
dN =

(
h′

N

(dT)N

)
.

Thus we obtain

V ∗
N R(N, :) =

(
XN QN−1 h′

N

0 (dT)N

)
=
(

X̃N

T (N, :)
)

.

Hence it follows that

Ṽ ∗
N R=

(
IηN

0
0 V ∗

N

)(
R(1 : N − 1, :)

R(N, :)
)

=
(

R(1 : N − 1, :)
V ∗

N R(N, :)
)

=

R(1 : N − 1, :)

X̃N

T (N, :)


 .

Suppose (6.13) holds fork with N � k � 3. Then

Ṽ ∗
k−1Ṽ ∗

k · · · Ṽ ∗
N R = Ṽ ∗

k−1


R(1 : k − 1, :)

X̃k

T (k : N, :)




=

Iηk−1 0 0

0 V ∗
k−1 0

0 0 Iφk−1






R(1 : k − 2, :)
R(k − 1, :)

X̃k

T (k : N, :)




=




R(1 : k − 2, :)
V ∗

k−1

(
R(k − 1, :)

X̃k

)
T (k : N, :)


 .

From the definition of matrices̃Xk and relations (2.7) we obtain

X̃k = (
Xkak−1Qk−2 Xkqk−1 h′

k �k

)
.

Relations (2.4) and (2.8) yield

R(k − 1, :) = (
pk−1Qk−2 dk−1 gk−1hk gk−1bkHk+1

)
.

Thus we have(
R(k − 1, :)

X̃k

)
=
(

pk−1Qk−2 dk−1 gk−1hk gk−1bkHk+1
Xkak−1Qk−2 Xkqk−1 h′

k �k

)
.

(6.15)

434 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

By virtue of (6.7) we obtain

V ∗
k−1

(
pk−1Qk−2

Xkak−1Qk−2

)
=
(

Xk−1Qk−2
0

)
. (6.16)

Relations (6.8) and (6.9) yield

V ∗
k−1

(
dk−1

Xkqk−1

)
=
[
(pV)∗k−1 (aV)∗k−1
(dV)∗k−1 (qV)∗k−1

](
dk−1

Xkqk−1

)
=
(

h′
k−1

(dT)k−1

)
. (6.17)

Using (6.9) we obtain

[
(dV)∗k−1 (qV)∗k−1

] (gk−1hk

h′
k

)
=[(dV)∗k−1gk−1 (qV)∗k−1

] (hk

h′
k

)
=(gT)k−1(hT)k. (6.18)

Next we have[
(dV)∗k−1 (qV)∗k−1

] (gk−1bkHk+1
�k

)
= (gT)k−1

(
bkHk+1

�k

)
. (6.19)

Using (6.14), the relation

(HT)k+1 =
(

Hk+1
∗
)

and (6.9), we obtain(
bkHk+1

�k

)
=
(

bkHk+1(
(p∗

V)kgk (aV)∗k
)

(HT)k+1

)
= (bT)k(HT)k+1. (6.20)

Thus from (6.18) and (6.19) we obtain

[
(dV)∗k−1 (qV)∗k−1

] (gk−1hk gk−1bkHk+1
h′

k �k

)
= (gT)k−1

(
(hT)k (bT)k(HT)k+1

)
,

and relation (2.8) for the matrix(HT)k yields

[
(dV)∗k−1 (qV)∗k−1

] (gk−1hk gk−1bkHk+1
h′

k �k

)
= (gT)k−1(HT)k. (6.21)

Next, using relations (6.9), (6.20), (6.14) and (2.8) we obtain

[
(pV)∗k−1 (aV)∗k−1

] (gk−1hk gk−1bkHk+1
h′

k �k

)

= [
(pV)∗k−1gk−1 (aV)∗k−1

]
(HT)k = �k−1. (6.22)

Thus from relations (6.15)–(6.17), (6.21), (6.22) and relation (2.4) for the upper tri-
angular matrixT we conclude that

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450435

V ∗
k−1

(
R(k − 1, :)

X̃k

)
=
(

Xk−1Qk−2 h′
k−1 �k−1

0 (dT)k−1 (gT)k−1(HT)k

)

=
(

X̃k−1
T (k − 1, :)

)

which completes the proof of (6.13).
Using (6.13) withk = 2 we obtain

V ∗R = Ṽ ∗
1 Ṽ ∗

2 · · · Ṽ ∗
N R

=
(

V ∗
1 0
0 Iφ1

) R(1, :)
X̃2

T (2 : N, :)


 =


V ∗

1

(
R(1, :)

X̃2

)
T (2 : N, :)


 .

Next, the first of relations (2.4) and (2.8) yield(
R(1, :)

X̃2

)
=
(

d1 g1h2 g1H2
X2q1 h′

2 �2

)
.

By virtue of (6.10), (6.11) and (6.21) and the first of relations (2.4) we obtain

V ∗
1

(
R(1, :)

X̃2

)
=[(dV)∗1 (qV)∗1

] (d1 g1h2 g1H2
X2q1 h′

2 �2

)

=((dT)1 (gT)1(HT)2
) = T (1, :).

Thus we obtain

V ∗R =
(

T (1, :)
T (2 : N, :)

)
= T .

Hence (6.3) follows. �

If relations (6.2) hold, then the algorithm given in Theorem 6.1 is simplified
since in this caseρk = r ′

k, 1 � k � N − 1. In order to check the last relations, no-
tice that from (6.2) it follows thatmN � r ′

N−1, r ′
k−1 � mk + r ′

k and henceρN−1 =
min{mN , r ′

N−1} = r ′
N−1 and next fromρk = r ′

k it follows that ρk−1 = min{mk +
ρk, r ′

k−1} = r ′
k−1. Generators of a matrix satisfying (6.2) may be obtained by the

original ones using an algorithm presented in [1, p. 101]. However computational
framework of this algorithm is not clear to the authors.

6.3. Inner–outer factorization

In this section we consider block invertible upper triangular matrices with given
upper generators. If a block triangular matrix is invertible, the following conditions
on the sizes of its entries are valid.

436 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

Lemma 6.2. Let T = {Tij }N
i,j=1 be a block upper triangular matrix with entries of

sizesνi × nj .
Then

k∑
i=1

(νi − ni) � 0, k = 1, . . . , N − 1,

N∑
i=1

(νi − ni) = 0.

Proof. Let us consider the submatrixT (:, 1 : k) which is composed of the firstk
block columns of the matrixT. We have

T (:, 1 : k) =
(

Tk

0

)
,

whereTk is a matrix of sizes(
k∑

i=1

νi

)
×
(

k∑
i=1

ni

)
.

From the invertibility of the matrixT it follows that rankTk = ∑k
i=1 ni and thus

k∑
i=1

ni �
k∑

i=1

νi, 1 � k � N − 1.

From the invertibility ofT it follows thatT is a square matrix. Hence
N∑

i=1

νi =
N∑

i=1

ni. �

In order to transform a matrix to a form which is convenient for the inversion, we
use a specification of an algorithm suggested in [1, p. 171].

Theorem 6.3. LetT = {Tij }N
i,j=1 be a block upper triangular invertible matrix with

entries of sizesνi × nj , upper generators(gT)i (i = 1, . . . , N − 1), (hT)j (j =
2, . . . , N), (bT)k (k = 2, . . . , N − 1) of ordersρ′

k (k = 1, . . . , N − 1) and diago-
nal entries(dT)k (k = 1, . . . , N).

The matrix T admits the factorization

T = US, (6.23)

where U is a block upper triangular unitary matrix with block entries of sizesνi

× nj (i, j = 1, . . . , N), upper generators(gU)i (i = 1, . . . , N − 1), (hU)j (j = 2,

. . . , N), (bU)k (k=2, . . . , N − 1) of orderssk =∑k
i=1(νi − ni) (k=1, . . . , N − 1)

and diagonal entries(dU)k (k = 1, . . . , N) and S is a block upper triangular invert-
ible matrix with block entries of sizesni × nj (i, j = 1, . . . , N), upper generators

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450437

(gS)i (i = 1, . . . , N − 1), (hS)j (j = 2, . . . , N), (bS)k (k = 2, . . . , N − 1) of or-
dersρ′

k (k=1, . . . , N − 1) and invertible diagonal entries(dS)k (k=1, . . . , N).
Generators and diagonal entries of the matricesU, S are determined using the

following algorithm.
1. Computes1 = ν1 − n1. Compute the QR factorization

[
(dT)1 (gT)1

] = U1

[
(dS)1 (gS)1

0 Y1

]
, (6.24)

whereU1 is a unitary matrix of sizesν1 × ν1, (dS)1 is an upper triangular matrix
of sizesn1 × n1, andY1 is a matrix of sizess1 × ρ′

1. Determine matrices(dU)1,

and(gU)1 of sizesν1 × n1, andν1 × ρ′
1 from the partition

U1 = [
(dU)1 (gU)1

]
. (6.25)

2. For k = 2, . . . , N − 1 perform the following. Computesk = sk−1 + νk − nk.
Compute the QR factorization[

Yk−1(hT)k Yk−1(bT)k

(dT)k (gT)k

]
= Uk

[
(dS)k (gS)k

0 Yk

]
, (6.26)

whereUk is a unitary matrix of sizes(νk + sk−1) × (νk + sk−1), (dS)k is an up-
per triangular matrix of sizesnk × nk, andYk is a matrix of sizessk × ρ′

k. Set
(hS)k = (hT)k, (bS)k = (bT)k.
Determine matrices(dU)k, and (gU)k, (hU)k, and(bU)k of sizesνk × nk, νk ×
sk, sk−1 × nk, and sk−1 × sk from the partition

Uk =
[
(hU)k (bU)k

(dU)k (gU)k

]
. (6.27)

3. Compute the QR factorization[
YN−1(hT)N

(dT)N

]
= UN (dS)N , (6.28)

whereUN is a unitary matrix of sizes(νN + sN−1) × (νN + sN−1), and (dS)N

is an upper triangular matrix of sizesnN × nN . Set(hS)N = (hT)N .
Determine matrices(dU)N and (hU)N of sizesνN × nN and sN−1 × nN from
the partition

UN =
[
(hU)N

(dU)N

]
. (6.29)

Proof. From Lemma 6.2 it follows that all the numberssk are nonnegative and
νN + sN−1 = nN .

We consider upper triangular matricesU = {Uij }N
i,j=1 and S = {Sij }N

i,j=1 with
generators given by the algorithm, i.e.,

438 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

Uij =



0, 1 � j < i � N,

(dU)i , 1 � i = j � N,

(gU)i(bU)×ij (hU)j , 1 � i < j � N,

and

Sij =



0, 1 � j < i � N,

(dS)i, 1 � i = j � N,

(gS)i(bS)×ij (hS)j , 1 � i < j � N.

Let us show that for such defined matricesU andS, relation (6.23) holds. Let the
matricesUk (k = 1, . . . , N) be given by relations (6.25), (6.27) and (6.29). Set

Ũ1=diag{U1, Iφ1},
Ũk =diag{Iχk

, Uk, Iφk
}, k = 2, . . . , N − 1,

ŨN =diag{IχN
, UN },

where

χk =
k−1∑
i=1

ni, φk =
N∑

i=k+1

νi .

From Lemma 5.2 it follows that

U = Ũ1Ũ2 · · · ŨN . (6.30)

MoreoverU is unitary as a product of unitary matrices.
Let us prove by induction that

Ũ∗
k · · · Ũ∗

1 T =

 S(1 : k, :)

Ỹk

T (k + 1 : N, :)


 , k = 1, . . . , N − 1, (6.31)

where

Ỹk = (
0sk×nk+1 Yk(HT)k+1

)
and matrices(HT)k are defined by (2.6).

For k = 1 we represent the matrixT in the form

T =
(

T (1, :)
T (2 : N, :)

)
.

The first of relations (2.4) yieldsT (1, :) = ((dT)1 (gT)1(HT)2). From (6.24) we
obtain

U∗
1 T (1, :) =

(
(dS)1 (gS)1(HT)2

0 Y1(HT)2

)
=
(

S(1, :)
Ỹ1

)
.

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450439

Hence

Ũ∗
1 T =

(
U1 0
0 I

)(
T (1, :)
T (2, :)

)
=

S(1, :)

Ỹ1
T (2, :)


 .

Suppose (6.31) holds fork with 1 � k � N − 1. Then

Ũ∗
k+1Ũ∗

k · · · Ũ∗
1 T =Ũ∗

k+1


 S(1 : k, :)

Ỹk

T (k + 1 : N, :)




=

Iχk+1 0 0

0 U∗
k+1 0

0 0 Iφk+1






S(1 : k, :)
Ỹk

T (k + 1, :)
T (k + 2 : N, :)




=




S(1 : k, :)
U∗

k

(
Ỹk

T (k + 1, :)
)

T (k + 2 : N, :)


 .

Relation (2.8) yields

Ỹk = (
0sk×χk+1 Yk(hT)k+1 Yk(bT)k+1(HT)k+2

)
.

Relations (2.4) for the upper triangular matrixT yield

T (k + 1, :) = (
0νk×χk+1 (dT)k+1 (gT)k+1(HT)k+2

)
.

Thus we have(
Ỹk

T (k + 1, :)
)

=
(

0sk×χk+1 Yk(hT)k+1 Yk(bT)k+1(HT)k+2
0νk×χk+1 (dT)k+1 (gT)k+1(HT)k+2

)
. (6.32)

By virtue of (6.26) we obtain

U∗
k+1

(
Ỹk

T (k + 1, :)
)

=
(

0nk×χk+1 (dS)k (gS)k+1(HT)k+2
0sk+1×χk+1 0sk+1×nk

Yk+1(HT)k+2

)

=
(

S(k + 1, :)
Ỹk+1

)
,

which completes the proof of (6.31).
Using (6.31) withk = N − 1 we obtain

Ũ∗
N Ũ∗

N−1 · · · Ũ∗
1 T =

(
IχN 0

0 U∗
N

)S(1 : N − 1, :)
Ỹk

T (N, :)




440 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

=

S(1 : N − 1, :)

U∗
N

(
ỸN−1

T (N, :)
) .

Since(
ỸN−1

T (N, :)
)

=
(

0sN−1×χN
YN−1(hT)N

0νN ×χN
(dT)N

)

we obtain from (6.29) that

U∗
N

(
ỸN−1

T (N, :)
)

= (
0nN ×χN

(dS)N

) = S(N, :).

Thus we conclude thatU∗T = S, i.e., (6.23) holds.
Invertibility of the matrixSand of the matrices(dS)k follows from the invertibility

of the matrixT. �

The algorithm suggested in [1, p. 171] handles block matrices which are not nec-
essarily invertible. The difference between Algorithm 6.3 and the algorithm from [1]
is the following. Instead of (6.26) the factorization

[
Yk−1(hT)k Yk−1(bT)k

(dT)k (gT)k

]
= Uk


(dS)k (gS)k

0 Yk

0 0


 (6.33)

with unitary matrixUk is used. The partitioning of the second factor in (6.33) is such
that matrices(dS)k, andYk containingnk andρ′

k columns have full row rank. This
also defines the row sizes of(dS)k, andYk.

Notice that in the case of invertible matrixT all the matrices(dS)k are invertible
and from relations (6.31) and (6.32) it follows that the matrix in the left-hand side
of (6.33) has full row rank. Hence in this case conditions of full row rank for the
matrices(dS)k, andYk are valid automatically and the zero rows in the second factor
in (6.33) are absent.

6.4. Solution of linear systems

Let now us consider the systemRx = y of linear algebraic equations with block
invertible matrixRwith given generators. Using results of Theorems 6.1 and 6.3 and
Algorithms 3.1 and 4.1 we obtain the following algorithm.

Algorithm 6.4. Let R = {Rij }N
i,j=1 be a block matrix with entries of sizesmi × nj ,

lower generatorspi (i =2, . . . , N), qj (j =1, . . . , N − 1), ak (k = 2, . . . , N − 1)

of ordersr ′
k (k = 1, . . . , N − 1), upper generatorsgi (i = 1, . . . , N − 1), hj (j =

2, . . . , N), bk (k = 2, . . . , N − 1) of ordersr ′′
k (k = 1, . . . , N − 1) and diagonal

entriesdk (k = 1, . . . , N). Then solution of the systemRx = y is given as follows.

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450441

1. Using algorithm from Theorem 6.1 compute generators

(pV)i (i = 2, . . . , N), (qV)j (j = 1, . . . , N − 1),

(aV)k (k = 2, . . . , N − 1), (gT)i (i = 1, . . . , N − 1),

(hT)j (j = 2, . . . , N), (bT)k (k = 2, . . . , N − 1)

and diagonal entries(dV)k, (dT)k (k = 1, . . . , N) of the block lower tri-
angular unitary matrixV and the block upper triangular matrixT such that
R = V T .

2. Using algorithm from Theorem 6.3 compute generators

(gU)i (i = 1, . . . , N − 1), (hU)j (j = 2, . . . , N),

(bU)k (k = 2, . . . , N − 1), (gS)i (i = 1, . . . , N − 1),

(hS)j (j = 2, . . . , N), (bS)k (k = 2, . . . , N − 1)

and diagonal entries(dU)k, (dS)k (k = 1, . . . , N) of the block upper triangular
unitary matrixU and the block upper triangular matrixSwith invertible diagonal
entries such thatT = US.

3. Compute the product̃x = V ∗y as follows: start with̃xN = (dV)∗N yN , wN−1 =
(pV)∗N yN , x̃N−1 = (qV)∗N−1wN−1 + (dV)∗N−1yN−1 and for i = N − 2, . . . , 1
compute recursively

wi = (aV)∗i+1wi+1 + (pV)∗i+1yi+1, x̃i = (qV)∗i wi + (dV)∗i yi .

4. Compute the productx′ = U∗x̃ as follows: start withx′
1 = (dU)∗1x̃1, z2 =

(gU)∗1x̃1, x′
2 = (hU)∗2z2 + (dU)∗2x̃2 and fori = 3, . . . , N compute recursively

zi = (bU)∗i zi−1 + (gU)∗i−1x̃i−1, x′
i = (dU)∗i x̃i + (hU)∗i zi .

5. Compute the solutionx of the equationSx = x′ as follows: start withxN =
(dS)−1

N x′
N , wN−1 = (hS)N x′

N , xN−1 = (dS)−1
N−1(x′

N−1 − (gS)N−1wN−1) and
for i = N − 2, . . . , 1 compute recursively

wi = (bS)i+1wi+1 + (hS)i+1xi+1, xi = (dS)−1
i (x′

i − (gS)iwi).

Here in Stages 3 and 4 we used Algorithm 3.1 for the upper triangular matrixV ∗
with upper generators(qV)∗i (i = 1, . . . , N − 1), (pV)∗j (j = 2, . . . , N), (aV)∗k
(k = 2, . . . , N − 1) and diagonal entries(dV)∗k (k = 1, . . . , N) and for the lower tri-
angular matrixU∗ with lower generators(hU)∗i (i = 2, . . . , N), (gU)∗j (j = 1, . . . ,

N − 1), (bU)∗k (k = 2, . . . , N − 1) and diagonal entries(dU)∗k (k = 1, . . . , N).
Computations in Stages 3 and 4 may be performed also based on relation (6.12)
for the matrixV and relation (6.30) for the matrixU. In Stage 5 we apply Algorithm
4.1 to the upper triangular matrixS.

442 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

6.5. Complexity

We consider here the costs of computations in Algorithm 6.4 presented above. In
Stage 1, i.e., in the algorithm from Theorem 6.1, costs are determined by relations
(6.7) and (6.9). In (6.7), computing of the productXk+1ak requiresρkr ′

kr ′
k−1 flops

and the QR factorization costsϑ(mk + ρk, r ′
k−1) flops. Hereϑ(m, n) means com-

plexity of QR factorization for a matrix of sizesm × n. In (6.9), computing of the
products(pV)∗kdk, (aV)∗kXk+1qk, (p∗

V)kgk, (dV)∗kgk, (dV)∗kdk, and (qV)∗kXk+1qk

costs, respectively,ρk−1mknk, ρk−1ρkr ′
knk, ρk−1mkr ′′

k , νkmkr ′′
k , νkmknk, andνkρk

r ′
knk flops. Thus the total complexity of Stage 1 is

c1 =
N∑

k=1

[ϑ(mk + ρk, r ′
k−1) + ρk−1mknk + ρk−1ρkr ′

knk + ρk−1mkr ′′
k

+νkmkr ′′
k + νkmknk + νkρkr ′

knk]
flops. In Stage 2, i.e., in the algorithm from Theorem 6.3, costs are determined by
relation (6.26). Computing of the productsYk−1(hT)k, and Yk−1(bT)k costssk−1
ρ′

k−1nk, andsk−1ρ′
k−1ρ′

k flops, respectively, computing of the QR factorization costs
ϑ(sk−1 + νk, nk + ρ′

k) flops. Thus the total complexity of Stage 2 is

c2 =
N∑

k=1

[ϑ(sk−1 + νk, nk + ρ′
k) + sk−1ρ′

k−1(nk + ρ′
k)]

flops. In Stage 3, we apply to the upper triangular matrixV ∗ relation (3.3) with
mk = νk, nk = mk, r ′′

k = ρk, r ′
k = 0 and obtain the complexity

c3 =
N∑

k=1

[νkρk + mk+1ρk + ρkρk+1 + νkmk]

flops. In Stage 4, we apply to the lower triangular matrixU∗ relation (3.3) with
mk = nk, nk = νk, r ′′

k = 0, r ′
k = sk and obtain the complexity

c4 =
N∑

k=1

[nksk−1 + νk−1sk−1 + sk−1sk−2 + nkνk]

flops. And finally complexity of Stage 5 is given by (4.1):

c5 =
N∑

k=1

[nkρ′
k + nk+1ρ′

k + ρ′
kρ′

k+1 + ζ(nk)],

whereζ̃ (n) is a complexity of solution ofn × n linear triangular system by the stan-
dard method. The total complexity of Algorithm 6.4 is the sumc = c1 + c2 + c3 +
c4 + c5.

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450443

Assume that the sizes of blocksmk, nk, the orders of generatorsr ′
k, r ′′

k of the

matrix R and the values
∑k

i=1(mi − ni) are bounded by the numbersm, r, ands0,
respectively, i.e.,

mk, nk � m, k = 1, . . . , N,

r ′
k, r ′′

k � r,

k∑
i=1

(mi − ni) � s0, k = 1, . . . , N − 1.

Then the following estimates are obtained. From the relationρk−1 = min{mk +
ρk, r ′

k−1} it follows that ρk � r and from the equalityρ′
k = r ′′

k + ρk we conclude
thatρ′

k � 2r. Next we have

N∑
k=1

νk =
N∑

k=1

mk � mN

and fromνk = mk + ρk − ρk−1 we conclude that

sk =
k∑

i=1

(νi − ni)=
k∑

i=1

(mi + ρi − ρi−1 − ni)

=ρk +
k∑

i=1

(mi − ni) � r + s0,

νk + sk−1 = mk + ρk +
k−1∑
i=1

(mi − ni) � m + r + s0.

Using these relations the complexitiesc1, c2, c3, c4, c5 are estimated as follows:

c1 � N(ϑ(m + r, r) + 2rm2 + r3m + r2m + m3 + r2m2),

c2 � N(ϑ(m + r + s0, n + 2r) + (2rm + 4r2)s0 + 2r2m + 4r3),

c3 � N(2mr + r2 + m2),

c4 � N(2mr + r2 + s0(2mr + 2r + s0) + m2),

c5 � N(4mr + 4r2 + ζ̃ (m)).

Thus the total complexity of Algorithm 6.4 is estimated as follows:

c � N(ϑ(m + r, r) + ϑ(r + m + s0, m + r) + ζ̃ (m) + 2rm2 + r3m + 3r2m

+ r2m2 + m3 + 4r3 + 8mr + 6r2 + 2m2 + s0(4mr + 4r2 + 2r + s0)).

Thus in this case Algorithm 6.4 has a linear O(N) complexity.

444 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

Assume that sizes of the blocks of the matrixR satisfymk = nk, k = 1, . . . , N .
Then sinces0 = 0 we conclude that

c � N(ϑ(m + r, r) + ϑ(r + m, m + r) + ζ̃ (m) + 2rm2 + r3m + 3r2m

+ r2m2 + m3 + 4r3 + 8mr + 6r2 + 2m2). (6.34)

The coefficient inN here is bigger than the coefficient in the corresponding formula
in [7]. This fact is confirmed by the measuring of the time in numerical experiments
(see Section 8).

7. The case of scalar matrices

We consider here the case of a matrixR = {Rij }N
i,j=1 with scalar entries, i.e.,

mk = nk = 1. Letr ′
k (k = 1, . . . , N − 1) be orders of lower generators ofR. In fac-

torization (6.1) the matrixS is a scalar upper triangular matrix,V, U are unitary
matrices. Thus we have here a special form of the QR factorization in which the
unitary factor is represented as the productVU. The matrixV = {vij }N

i,j=1 with sca-
lar entriesvij may be treated by Theorem 6.1 as a block lower triangular matrix
with blocks of sizesνk = 1 + ρk − ρk−1 (k = 1, . . . , N), whereρk are orders of
lower generators of the block matrixV which are defined by the relationsρN =
0, ρk−1 = min{1 + ρk, r ′

k−1} (k = N − 1, . . . , 1). The fact thatV is a block lower

triangular matrix means thatvij = 0 for j >
∑i

k=1 νk = i + ρi . Similarly for the
unitary matrixU = {uij }N

i,j=1 from Theorem 6.3 it follows thatuij = 0 for i > j +
ρj . Moreover, from Theorem 6.3 it follows that orders of upper generators ofU are
equal tosk = ∑k

i=1(νi − 1) = ∑k
i=1(ρi − ρi−1) = ρk, i.e., coincide with the orders

of generators of the matrixV. If for somer holdsr ′
k � r, k = 1, . . . , N − 1, we ob-

tainρk � r and hence the matricesV andU satisfy the relationsvij = 0 for j > i + r

anduij = 0 for i > j + r.
For convenience we present here for scalar matrices a factorization theorem and

an algorithm which are obtained directly from Theorems 6.1 and 6.3 and the notes
from the beginning of this section.

Theorem 7.1. LetR = {Rij }N
i,j=1 be a scalar matrix with lower generatorspi (i =

2, . . . , N), qj (j = 1, . . . , N − 1), ak (k = 2, . . . , N − 1) of ordersr ′
k (k = 1, . . . ,

N − 1), upper generatorsgi (i = 1, . . . , N − 1), hj (j = 2, . . . , N), bk (k = 2,

. . . , N − 1) of ordersr ′′
k (k = 1, . . . , N − 1) and diagonal entriesdk (k=1, . . . , N).

Let us define the numbersρk via recursive relationsρN = 0, andρk−1 = min{1 +
ρk, r ′

k−1}, k = N, . . . , 2.
The matrix R admits the factorization

R = V US,

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450445

whereV = {vij }N
i,j=1, andU = {uij }N

i,j=1 are unitary matrices satisfying the rela-
tionsvij = 0 for j > i + ρi anduij = 0 for i > j + ρj , andS is an invertible upper
triangular matrix. Moreover, the matricesV andU admit the factorizations

V = ṼN ṼN−1 · · · Ṽ1, U = Ũ1Ũ2 · · · ŨN ,

where

Ṽk =diag{Ik−1, Vk, IN−k−ρk
},

Ũk =diag{Ik−1, Uk, IN−k−ρk
}, k = 1, . . . , N

with unitary matricesVk andUk of sizes(1 + ρk) × (1 + ρk); the matrix S has upper
generators of ordersρ′

k (k = 1, . . . , N − 1).
The matricesVk, Uk, generators(gS)i (i = 1, . . . , N − 1), (hS)j (j = 2, . . . ,

N), (bS)k (k = 2, . . . , N − 1) and diagonal entries(dS)k (k = 1, . . . , N) of the
matrix S are determined using the following algorithm.
1.1. SetVN = 1. If r ′

N−1 > 0, set

XN = pN , (hS)N =
[
hN

dN

]
, (dT)N

to be 0 × 1 empty matrix; if r ′
N−1 = 0, set XN to be 0 × 0 empty matrix,

(hS)N = hN , (dT)N = dN .
1.2. For k = N − 1, . . . , 2 perform the following. Compute the QR factorization

[
pk

Xk+1ak

]
= Vk

(
Xk

0

)
,

whereVk is a unitary matrix of sizes(1 + ρk) × (1 + ρk), andXk is a matrix
of sizesρk−1 × r ′

k−1. Determine matrices(pV)k, (aV)k, (dV)k, and (qV)k of
sizes1 × ρk−1, ρk × ρk−1, 1 × (1 + ρk − ρk−1), and ρk × (1 + ρk − ρk−1)

from the partition

Vk =
[
(pV)k (dV)k

(aV)k (qV)k

]
.

Compute

h′
k = (pV)∗kdk + (aV)∗kXk+1qk, (hS)k =

[
hk

h′
k

]
,

(bS)k =
(

bk 0
(p∗

V)kgk (aV)∗k

)
, (gT)k = [

(dV)∗kgk (qV)∗k
]

,

(dT)k = (dV)∗kdk + (qV)∗kXk+1qk.

1.3. Set

V1 = I1+ρ1, (dT)1 =
(

d1
X2q1

)
, (gT)1 =

(
g1 0
0 Iρ1

)
.

446 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

Thus we have computed the matricesVk and generators(bS)k, (hS)k of the
matrix S.

2.1. Compute the QR factorization[
(dT)1 (gT)1

] = U1

[
(dS)1 (gS)1

0 Y1

]
,

whereU1 is a unitary matrix of sizes(1 + ρ1) × (1 + ρ1), (dS)1 is a number,
(gS)1 is a row of sizeρ′

1, andY1 is a matrix of sizesρ1 × ρ′
1.

2.2. For k = 2, . . . , N − 1 perform the following. Compute the QR factorization[
Yk−1(hS)k Yk−1(bS)k

(dT)k (gT)k

]
= Uk

[
(dS)k (gS)k

0 Yk

]
,

whereUk is a unitary matrix of sizes(1 + ρk) × (1 + ρk), (dS)k is a number,
(gS)k is a row of sizeρ′

k, andYk is a matrix of sizesρk × ρ′
k.

2.3. SetUN = 1. Compute

(dS)N =
[
YN−1(hS)N

(dT)N

]
.

Thus we have computed generators(gS)k and diagonal entries(dS)k of the
matrix S.

For a matrix with scalar entries we obtain the following algorithm for solution of
the system of linear algebraic equations.

Algorithm 7.2. Let R = {Rij }N
i,j=1 be a matrix with scalar entries with lower gener-

atorspi (i = 2, . . . , N), qj (j = 1, . . . , N − 1), ak (k = 2, . . . , N − 1) of orders
r ′
k (k = 1, . . . , N − 1), upper generatorsgi (i = 1, . . . , N − 1), hj (j =2, . . . , N),

bk (k = 2, . . . , N − 1) of ordersr ′′
k (k = 1, . . . , N − 1) and diagonal entriesdk (k =

1, . . . , N). Then solution of the systemRx = y is given as follows.
1. Set ρN = 0 and for k = N − 1, . . . , 2 computeρk−1 = min{1 + ρk, r ′

k−1}.
Using algorithm from Theorem 7.1 compute unitary matricesV1, . . . , VN , U1,

. . . , UN , generators(gS)i (i = 1, . . . , N − 1), (hS)j (j = 2, . . . , N), (bS)k

(k=2, . . . , N − 1) and diagonal entries(dS)k (k = 1, . . . , N) of the upper tri-
angular matrixSsuch that

R = V US, V = ṼN ṼN−1 · · · Ṽ1, U = Ũ1Ũ2 · · · ŨN ,

where

Ṽk = diag{Ik−1, Vk, IN−k−ρk
},

Ũk = diag{Ik−1, Uk, IN−k−ρk
}, k = 1, . . . , N.

2. Determine matrices(pV)k, (aV)k, (dV)k, and(qV)k of sizes 1× ρk−1, ρk ×
ρk−1, 1 × (1 + ρk − ρk−1), andρk × (1 + ρk − ρk−1) from the partitions

VN =[(pV)N (dV)N

]
,

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450447

Vk =
[
(pV)k (dV)k

(aV)k (qV)k

]
, k = N − 1, . . . , 2,

V1=
[
(dV)1
(qV)1

]
.

Compute the product̃x = V ∗y as follows: start with̃xN = (dV)∗N yN , wN−1 =
(pV)∗N yN , x̃N−1 = (qV)∗N−1wN−1 + (dV)∗N−1yN−1 and for i = N − 2, . . . , 1
compute recursively

wi = (aV)∗i+1wi+1 + (pV)∗i+1yi+1, x̃i = (qV)∗i wi + (dV)∗i yi .

3. Determine matrices(dU)k, (gU)k, (hU)k, and(bU)k of sizes(1 + ρk − ρk−1) ×
1, (1 + ρk − ρk−1) × ρk, ρk−1 × 1, andρk−1 × ρk from the partitions

U1=[(dU)1 (gU)1
]

,

Uk =
[
(hU)k (bU)k

(dU)k (gU)k

]
, k = 2, . . . , N − 1,

UN =
[
(hU)N

(dU)N

]
.

Compute the productx′ = U∗x̃ as follows: start withx′
1 = (dU)∗1x̃1, z2 = (gU)∗1

x̃1, x′
2 = (hU)∗2z2 + (dU)∗2x̃2 and fori = 3, . . . , N compute recursively

zi = (bU)∗i zi−1 + (gU)∗i−1x̃i−1, x′
i = (dU)∗i x̃i + (hU)∗i zi .

4. Compute the solutionx of the equationSx = x′ as follows: start withxN =
(dS)−1

N x′
N , wN−1 = (hS)N x′

N , xN−1 = (dS)−1
N−1(x′

N−1 − (gS)N−1wN−1) and
for i = N − 2, . . . , 1 compute recursively

wi = (bS)i+1wi+1 + (hS)i+1xi+1, xi = (dS)−1
i (x′

i − (gS)iwi).

Inequality (6.34) for a scalar matrix yields the following estimate for the com-
plexity of Algorithm 7.2:

c � N(ϑ(1 + r, r) + ϑ(r + 1, r + 1) + 5r3 + 10r2 + 10r + 4).

8. Numerical experiments

As an illustration we present here the results of computer experiments with de-
signed algorithms. We investigate their behavior in floating point arithmetic and
compare them with other available algorithms. We solved linear systemsRx = y

for random values of input datap, q, g, h, d, y, a, b. The following algorithms
were used:

(1) GEPP Gaussian eliminations with partial pivoting.
(2) DV Algorithm 6.4 presented above.
(3) GE1 Algorithm obtained in [7] for block matrices.
(4) GE2 Algorithm obtained in [6] for matrices with scalar

entries and generators of order one.

448 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

All algorithms (1)–(4) were implemented in the system MATLAB, version 5.0.0.4064
with unit round-off error 2.2204× 10−16. The accuracy of the solutions obtained
was estimated by the relations

ε = ‖x − xQR‖
‖xQR‖ , εy = ‖Rx − y‖

‖y‖ ,

wherex is the solution obtained by the corresponding algorithm,xQR is the solu-
tion obtained using QR factorization which we assume to be exact. In each case the
condition numberκ2(R) of the original matrix was also computed.

In all experiments performed the input data were taken randomly using the ran-
dom-function. The values of elements ofp, q, g, h, y, were chosen in the range
0–10, the values ofa, b were in the range 0–1 and the values of the diagonald were
taken from the range 0–100.

The data on time required by the above algorithms are also presented here. The
authors have to make a proviso that the test programs were not completely optimized
for time performance. At the same time these data can provide an approximation for
the real complexities of the compared algorithms.

1. The first series of experiments was performed for block matrices with square
blocks of a fixed size and the same orders of generators. We compare here GEPP,
DV and GE1 algorithms. The results of computations are presented in Table 1.

The corresponding data of time required are presented in Table 2.

Table 1
mk = nk = 2, r ′

k
= r ′′

k
= 2

N κ2(R) GEPP GEI DV
ε εy ε εy ε εy

20 2e+ 3 3e−14 7e−15 6e−15 1e−14 7e−15 1e−14
50 1e+ 4 3e−14 6e−15 4e−13 1e−12 3e−14 6e−15

100 1e+ 6 2e−12 8e−13 2e−12 2e−11 2e−12 7e−13
150 4e+ 5 1e−12 3e−13 1e−12 3e−12 1e−12 3e−13
200 5e+ 5 2e−12 3e−13 2e−12 3e−12 2e−12 1e−13
500 2e+ 6 9e−12 6e−13 1e−11 3e−10 1e−13 2e−13

1000 8e+ 8 5e−11 2e−11 1e−10 7e−12 1e−12 7e−12

Table 2
Time (seconds)

N GE1 DV MATLB’s \
20 0.23 0.87 0.0058
50 0.65 2.48 0.042

100 1.24 5.51 0.29
150 1.77 6.71 1.82
200 2.45 8.99 4.88
500 6.01 22.37 71.23

1000 12.46 44.49 678.35

Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450449

Table 3

N κ2(R) GEPP GEI DV
ε εy ε εy ε εy

40 3e+ 2 2e−14 2e−15 1e−14 3e−15 2e−14 2e−15
100 2e+ 2 9e−15 1e−15 8e−15 1e−15 9e−15 1e−15
200 3e+ 3 9e−15 8e−15 4e−14 1e−12 1e−14 8e−15
300 1e+ 4 2e−13 1e−14 2e−13 1e−13 2e−13 7e−15
500 4e+ 3 8e−14 4e−15 8e−14 2e−14 8e−14 4e−15

Table 4
Time (seconds)

N GE2 DV MATLB’s \
40 0.12 1.51 0.007

100 0.28 3.84 0.042
200 0.58 7.92 0.31
300 0.84 12.08 1.85
500 1.56 22.70 188.34

2. The second series of experiments was performed for matrices with scalar en-
tries and generators of order one. We compare here GEPP, DV and GE2 algorithms.
The results of computations are presented in Table 3.

The corresponding data of time required are presented in Table 4.
From these tables it follows that for the examples discussed here accuracy is about

the same for all the algorithms. However for large matrices the DV, GE1, GE2 algo-
rithms are much faster. In the examples presented the DV algorithm turned out to be
more accurate but the GE1 and GE2 algorithms are faster.

References

[1] P.M. Dewilde, A.J. van der Veen, Time-varying Systems and Computations, Kluwer Academic
Publishers, New York, 1998.

[2] P.M. Dewilde, A.J. van der Veen, Inner–outer factorization and the inversion of locally finite systems
of equations, Linear Algebra Appl. 313 (2000) 53–100.

[3] Y. Eidelman, I. Gohberg, Inversion formulas and linear complexity algorithm for diagonal plus
semiseparable matrices, Comput. Math. Appl. 33 (1997) 69–79.

[4] Y. Eidelman, I. Gohberg, Fast inversion algorithms for diagonal plus semiseparable matrices,
Integral Equations Operator Theory 27 (1997) 165–183.

[5] Y. Eidelman, I. Gohberg, On a new class of structured matrices, Integral Equations Operator Theory
34 (1999) 293–324.

[6] Y. Eidelman, I. Gohberg, Linear complexity inversion algorithms for a class of structured matrices,
Integral Equations Operator Theory 35 (1999) 28–52.

[7] Y. Eidelman, I. Gohberg, Fast inversion algorithms for a class block structured matrices, in press.
[8] W.B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math. 16 (1986)

1–8.

450 Y. Eidelman, I. Gohberg / Linear Algebra and its Applications 343–344 (2002) 419–450

[9] P.E. Gill, G.H. Golub, W. Murray, M.A. Saunders, Methods for modifying matrix factorization,
Math. Comp. 126 (1974) 505–535.

[10] I. Gohberg, M.A. Kaashoek, Time varying linear systems with boundary conditions and integral
operators, 1. The transfer operator and its properties, Integral Equations Operator Theory 7 (1984)
325–391.

[11] I. Gohberg, T. Kailath, I. Koltracht, Linear complexity algorithms for semiseparable matrices,
Integral Equations Operator Theory 8 (1985) 780–804.

[12] I. Gohberg, T. Kailath, I. Koltracht, A note on diagonal innovation, Acoustics Speech and Signal
Processing 7 (1987) 1068–1069.

[13] G.H. Golub, C.F. Van Loan, Matrix Computations, John Hopkins, Baltimore, MD, 1983.
[14] N. Mastronardi, S. Chandrasekaran, S. Van Huffel, Fast and stable two-way algorithm for diagonal

plus semi-separable systems of linear equations, Numer. Linear Algebra Appl. 8 (2001) 7–12.

