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1. Introduction and preliminaries

Laplace transform is one of the finest tools available to solve linear differential equations with constant coefficients and
certain integral equations, while the Z-transform, which can be considered as a discrete version of the Laplace transform,
is well suited for linear recurrence relations and certain summation equations. The theory of Laplace transforms on time
scales, which is intended to unify and to generalize the continuous and discrete cases, was initiated by Hilger [10] and
then developed by Bohner et al. [4,5,7]. In [8], the authors introduce the concept of h-Laplace and g-Laplace transforms on
discrete time scales hZ = Ty and g™° = T, respectively. Many interesting results were obtained including the convolution
and inverse Laplace transform. In a very recent paper [9], Cermak and Nechvatal introduce the discrete time scale Tq.n
which unifies the time scales T, and T, in their attempt to introduce (g, h)-fractional calculus.

In this paper, we develop (g, h)-Laplace transform on a special discrete time scale TZ“’J n for to > 0, which can be reduced
to the h-Laplace transform (the case ¢ = 1) and g-Laplace transform (the case h = 0) or to the Z-transform (the case
qg=h=1)(see[11]).

For the convenience of readers, we provide some basic concepts concerning the delta calculus on time scales. For more
details, one may refer to [1,4,6]. By time scale T we understand any nonempty, closed subset of reals with the ordering
inherited from reals. Thus the reals R, the integers Z, the natural numbers N, the nonnegative integers Ny, the h-numbers
hZ = {hk : k € Z} with fixed h > 0, and the g-numbers g0 = {g* : k € Ny} with fixed q > 1 are examples of time scales.

For any t € T, the forward jump operator ¢ : T — T is defined by

o(t) =inf{se T:s > t},
and the graininess function u : T — [0, 00) is defined by
u() =o()—t.

The symbol f2(t) is called the delta derivative (A-derivative) of the function f : T — Catt e T*. Considering discrete time
scales (i.e., such that u(t) # 0 for t € T)f2(t) exist for all t € T and they are given by

s o) —f(®)
FoO==—"—w
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The kth order delta derivatives f 4" are defined recursively by
A =f and A7 = (494 for ke N

A function F : T — Cis called a A-antiderivative of a function f : T — C provided F2(t) = f(t) holds for all t € T*.
Hence, the A-integral of f over the time scale interval [a, b]t := {t € T,a <t < b}, a, b € T is defined by

b
/ f(t)At == F(b) — F(a).

It is known that considering discrete time scales this delta integral exists and can be calculated (provided a < b) via the
formula

b
[ roac= 3 rouw. (1)

tela,b)

A functionp : T — C is called regressive if 1 4+ w(t)p(t) # 0 for all t € T. The set of all regressive functions f : T — C
will be denoted by R. The set R forms an Abelian group under the addition & defined by

(P ® () =p(t) +q(t) + n®p(t)q(t), VteT
and the additive inverse of p in this group is denoted by ©p, and it is given by
__p@®
1+ p(®p(t)’

For later reference we cite the following existence and uniqueness result for initial value problem.
Suppose p € R.Fixty € T and yo € C. The unique solution of the initial value problem (IVP)

(©p)(t) = VteT

yr=p®y.  ylto) =yo
is given by
y(t) = ep(t, to)yo,

(see [4, Theorem 2.62]). The function e, (-, to) is called the delta exponential function. For details and results concerning the
delta exponential function, we refer to the book [4].
The following concepts are introduced and investigated in [7].

Definition 1.1. Suppose x : [ty, c0); — C is a locally A-integrable function, i.e., it is A-integrable over each compact
subinterval of [ty, 00)r. Then the delta Laplace transform of x is defined by

La{x}(z) = /wx(t)eez(a(t), to) At forz € D{x}, (2)

to
where D {x} consists of all complex numbers z € R for which the improper A-integral exists.

A

Definition 1.2. For a given function f : [tg, co)r — C, its shift (or delay) f (t, s) is defined as the solution of the problem
fAt o) ==f*(t9), tseT t=s>t,

fit,t) =f(t), teT,t=>t. 3)

The unique solution of (3) is given by

ft.9 =Y ht.9f* ), (4)
k=0

where the monomials hy(t, s) are defined in [4].

Definition 1.3. For given functions f, g : [tg, o0)r — C, their convolution f * g is defined by
t
(fxg)) = / f(t,0(s)g()A4s, teT,t =t (5)
fo

wheref is the shift of f introduced in Definition 1.2.



274 M.R. Segi Rahmat / Computers and Mathematics with Applications 62 (2011) 272-281

2. The (q, h)-Laplace transform

The most significant discrete time scales are those originating from arithmetic and geometric sequence of reals, namely
TP ={to+kh:keZL,h>0 and TO =({toq":kezZ}U{0}, q>1,

respectively, where t; € R. These sets form the basis for the study of h-calculus and g-calculus.
In [8], the authors have introduced the concepts of h-Laplace and g-Laplace transforms. In this section, we introduce the
concept of (g, h)-Laplace transform which will be the unification of the h-Laplace and g-Laplace transform in the literature.
Consider the two-parameter time scale (see [9]) given by
TO i ftog + [Kloh k€ Z} U { 6
aqn = {toq" + [Klgh : k € Z} T4l (6)
wheretg € R,q> 1,h > 0,q + h > 1. Of course, Ti‘;’h) = Tf," provided h = 0 and Tz’m = T,:O provided g = 1 (in this case
we put h/(1 — q) = —oo). Itis clear that, fort € ’]I‘Eg’h), we have

o(t)=qt+h and wu(t)=(q— 1)t+h.

Lett € ’]I‘Eg’h) andf : ng,h) — C.Then the delta (g, h)-derivative of f at t is defined by
fAan (f) = fat+h —f© (7)
" (@—=-Dt+h

It follows that for any complex number z, the initial value problem
yAen(t) =zy(t), teTS,, ¥ =1
takes the form
Vgt +h = (1+ @t +02)y0), teT®, . ys =1,
where ¢ = q — 1. Hence e, (t, s) has (z # —1/(q't + h)) the form
e,(t,s) = l_[ (1+(g'r+hz) forallt,se Tg,n)-

refs,t)
Now, for t, s € Tigyh), sett = qy = toq" + [nlghand s = qf' = toq™ + [m]gh. Then, it can be easily verified that

n—1

ey a) =[] (1+ @ds +mz).

k=m

Example 2.1. For the case T, , = Ty, = hZ, and for all t, s € hZ, we have

e,(t,s) = ]_[ (1+ hz)

rels,t)
t/h

[Ta+n

k=s/h
— (1+h)"

and in the case qu,O) =Ty = q", by letting t = ¢" and s = g™ with n, m € Ny, we have

e(.qm = [] (1+dr)

relgt,q™)

n—1
=[Ja+dds if n=m

k=m
m—1 1 ]

= 1_[ PR ifn <m.
v (1 +4'02)

Next, for t € ’}l‘i‘;’h) and p(t) = (@ — 1)t + h, we have

z z
t = — = — ,
oz(t) 14+ p(t)z 1+ (t+h):z
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where ¢ = q — 1 so that the initial value problem
yram = (©2)(y(t), teT,. ¥y =1

takes the form

1
y(qt +h) = m}’(t)a te T(?z n Y =1

Hence e, (t, s) has (againz # —1/(q't + h)) the form

eq(t,s) = | | S forallt,s e 11‘<° b
(O )
res 1 (q'r + h)z @

Consequently, for any function x : [s, 00) o > C, its Laplace transform has the form
Tiq.m

L{x}(z)

/oo x(t)eg (o (t), s)At
Y nOx(®es (o (t), s)

te[s,00)

(q't + h)x(t)

tefs,00) 1_[ (1+(gr+h)z) '
T rels,o (b))

Thus, we arrived to the following definition.

Definition 2.2. Ifx : T® ,. — C is a function, then its (g, h)-Laplace transform is defined by

(q.h)

o] ! AN h n
Xan (@) = LanX)@) = Z _ (q'qy + Mx(qy)

=0 [T (1+ (@'q; + h)z)
k=0

where qﬁ, = toq + [jl¢h for j € Z, and for those values of z # —m for which this series converges.
h
For some particular time scales, we have the following examples.

Example 2.3. Clearly, fors, t € T(, , = Ty = hZ, we have o'(t) = t + h,q' = 0 and 1§ = kh. Hence ifx : T, ,, — C, then
relation (8) becomes
. hx(nh)
Xu(2) = Lalx}@) = Y
=0 TT(1+ hz)

k=0

_ i x(nh)
= 1+ hz)n—H
[00)

_h Z x(nh)
~ 1+hz & (14 h)"

as defined in [8].

Example 2.4. Fors, t € qu,O) = Ty = q"°, we have o' (t) = qt. Hence if x : ’JI‘(lq’O) — C, then

x(t)(q't)
Xq(2) = L4{x}(2) = —_—
! ! i J1 (A +am)
o q"x(q")
=d ) T (+qs2)

te[0,00) "
Te[q"0,q"+T)

e n n
Z q"x(q")

= q/ 7)1
n=mo [T (1+q'q"2)

k:no

(see [8]).
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Example 2.5. Fors,t € ?I‘EOM) = Z,wehaveo(t) =t + 1.Henceif x : TE‘;]) — C,

Xa1)(@) = Z HXL
=0 [T(142)

k=0
> x(n)
Z{x}(z+ 1)
- 1+z2

where Z{x}(z) = ["io xj—f) is the classical Z-transform (see e.g., [11]).

Remark 2.6. Lett = qﬁ = toq* + [k1qh, then (8) becomes

o n n h
oC(q,h){x}(Z) — (q/to + h) Z _ q X(th + [n]q ) ) (9)
=0 [T [1+q%@q'to + h)z]
k=0
Let us set
Pn(z) = l_[ (1 + (q,qﬁ + h)Z) n € Ny, (10)
k=0

which is a polynomial in z of degree n + 1. It can be easily verified that the relations
Pu(2) — Py-1(2) = (q'qy + h)zPy—1(2) (11
and
11 @gith
Pp1(z)  Pa(2) Py(2)
hold, where P_;(z) = 1.

, neNg (12)

1

Letay = ————
k q/qﬁJrh’

k € Ng.Forany § > 0 and k € Ny, we set

D¥=1{zeC:lz—al <8}

and

o0
25 =C\| JDf={z€C:lz—aul =8.¥keN).
k=0

Lemma 2.7. Forany z € Df and g} = tog* + [klgh,

n(n+1)

IP(2)| = [(toq' +M)81" g 2, neNoU{-1}.

Therefore, for an arbitrary number R > 0, there exists a positive number ny = ng(R, 8, q, h) such that
Pa(2)| = R™!
foralln > ng and z € $2s. In particular,

lim P,(z) =00 Vze $25.
n—oo
Proof. Let gf = tog* + [k];h. For any z € £25, we have

[0+ @d+m2)

k=0

IPn(2)| =

n
[[@d+m@E— e
k=0

> [[@dai+ms =[] ¢ g + s
k=0 k=0
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= [(toq + M1 [ [ ¢*

k=0

n(n+1)
2 .

= [(toq' + W8] 'q
Note that
IPa(2)] = [(toq + M)q21™".
Since, g > 1, we can choose for any given number R > 0 a positive integer ny = ng(R, &, g, h) such that
(tog + h)sq? > R foralln > ny.
Hence, we have

IPa(2)] = R O

Example 2.8. Letx(t) = 1fort € ’]I‘( - Then, using (12), we have

—  (qqy+h) — (q'qy +h)
Lanil}@) =) = Ph(z)
=0 [[(1+qqz =0 "
k=110
1 { 1 1 } (A tel . ies)
= - — elescoping series
Y A——r Pp_1(z)  Pn(2)
1 1
= —lim |1-— = -
Z n—o0 |: Pm(z):| z

Let F5 be the class of functions x : 'JTEZ n—>C for which the (g, h)-Laplace transform exist and satisfying the condition

—1)
7 |x(qy)| < oo.

> l(tog +m)817"q
n=0

Theorem 2.9. For any x € F;, the series in (8) converges uniformly with respect to z in the region $25, and therefore its sum
X(q.n (2) is an analytic function in £2;.

Proof. The proof follows from Lemma 2.7. O

The following theorems are evident.

Theorem 2.10. Suppose that x € F5. Then

Lign A0} (2) = 2X g (2) — x(to), (13)
LK@} @) = 22X (@) — 2x(to) — XA (to). (14)

Proof. Using the Definition 2.2, we have

Lgn{x* @M} (2) = i; (@t + Z)’(‘ZA)(q'h) @) _ ; X(Q"::(;)x(qﬁ)
X5 —;:i:z;;
M= IRCARLY —,i;:i,i‘éii
- Z I e

x(q) o (q'qp + h)x(q)
“ho VAT he

n=1
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X(q,,) ' + x(q)) (q'qy + h)x(qy)
Pz~ 1 P()+Z Pa(2)

P(( ; +ZX(q h) (Z) = —X([o) +ZX(q,h) (2).

Formula (14) is obtained by applying (13) to the second (g, h)-derivative. O

= -1+ (q + h)z)

3. The convolution theorem

For the case T = ’]I‘Eg’h), the shifting problem (3) takes the form

(q's +MWIf@t +h,gs+h) —f(t, g5+ M+ (@'t +MIf(t, gs+h) —f(t,$)]=0,

whereq' =q—1andt, seTi‘éh),tZSZto,

ft. ) =f(). teT,.t=t,
where f : [to, oo)Tr0 — Cis a given function.
h

q,
To determine the unique solution of (15), we need the following notations (see, [2,3,9,12,13]). Forq > 1and h > 0,

q“—1
[klg = ) [k]l1 =k ke Ny,
q—1

(01! =1, [nlg! =] [kl
k=1
n m i+1 -1

m _
[”]q_[] [m—n]q H . m.n €N,

t—s) =t" ];[(1 —q's/0),

k=0

e l_[(t + kh).

The (q, h)—analogue of the power function [9] is defined as
@ F-%", forqg>1h>0;
(=9 qm = )
’ (t —s)p, forg=1,h > 0,
wheref .=t + q%] and 5§ := s+ q%]
The (q, h)-calculus monomials are given by

(m)
(t =) q.n "
ha(t,s) = ——22, t,s€T,
[n]q! (g.h)°

Indeed, forh = 0 and q > 1, we have

( s)(") _ n—1 t— qks

Sl g ’i g
i=0

ha(t,s) =

as shown in [4].
Forq = 1and h > 0, we have

(t—s)®™ "=/t —s+kh
ho(t,s) = — 2 = R
(& $) n! l_[ k+1

k=0
In the case of g = h = 1, we obtain

_(t—s)“”_”f1 t—s+k\ [t—s
h"“’”‘m‘ﬂ(kﬂ)‘( ] )

(15)

Fort, t; € 'Jl‘ﬁ‘; n with t; > t,, we define the positive integer k = k(t;, t,) by the relation t; = o*(t,) (in this case the

symbol o means the kth iteration of the o).
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Corollary 3.1. Let t,s € T andt > s be such that t = q~s + [klqh for some k € Z. Then, the following formula holds:

(q.h)
ha(t.5) = ["“,; ‘)] n©"q, (17)
q
where
q&, forqg>1h>0;
kit s) =1, _ HO
_— forq=1h>0.
h
Proof. Letq > 1,h > 0.1ft = g*s + [k];h, then u(t) = q*u(s).
Now,
n—1
(t—9)gn = O] —d5/D
j=0
n—1
=(@—- Do) [Ja-¢™
j=0
n-1 k=i _
n n i—k4 1
=q k(M(S)) HQI kq_il

j=0
= q(2) ()" [Klg - [k = 1]g - [k — n + 1],

= ¢ (u(s)"[nly! H .
q

n

Hence, forq > 1, h > 0, we have

log &t) n
ha(t,s) = | 8 () | (u(s)q(2).
n
q

The case ¢ = 1, h > 0 is an easy exercise. [

The following theorem is due to Cermak and Nechvatal [9], see also [2,3].

Theorem 3.2. If k€ Z*,f : T . — Candt € T?

(@.h) @ny t > /(1 —q), then

p _(k k Tl (i ,
om0 = g3 ueen > =1y H dBre i,
j=0 q
Finally, we are in the position to present the unique solution of the problem (15).

Theorem 3.3. Let t,s € Ti‘é’h) be such that t = o*(s) for a suitable k = k(t, s) € Z. Then, the shift of f : ng,h) — Cis given by

k j (k—j)
feo=2, m (5((;))) (1 B 552)) f@'to). (18)
q

j=0 (g.h)

Proof. letq > 1,h > Oandt,s € Tﬁ‘t’],h) wheret > s > t; be such that t = ¢%(s) and s = o"(¢,) for some a, b € Z.
Then () = q°u(s) and w(s) = q°u(to). Let k = a + b. For brevity we set sk = ¢*s + [k];h. Then, according to (4) and
Theorem 3.2, we have

k
ft.s) =Fisk.) =Y hn(sk, $)f o (t0)
m=0

k
=2 m (u()"q 2 f2an (to)
m=0 q
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k
m

I I
M- M- i

3

I

o

L
M-

[ } g 0™ (1 (t0))"q (2 f *am ()
q
m gy =1y m a2 ™)
q j=0 q

;ﬂq e C! [m"i jL "ol )

'k] [ - } gom - 1ymig(" ) i )
q q

m—j

3
i

~
d

k ] [m +j] (_qu(kfa)(mHH(gl)f(aj(fo))
q q

_m+j m

3
II
o

ﬂq [k; J L (— gk Om D+ f (67 (t))

m=0

T k—j ;
k —a)j k—] —a)\m r; .
il [Z[ m ]q(—q”‘ gl )}f(ff’(to))

"1 = ¢ (0 (ko)
L~ g

(K] (1) Y ORI
- ( ) 1- [0 (t)).
J1q \u(to) u(to) /4
In the case ¢ = 1, h > 0 we have k = (t — tp)/h and the property (1 4+ x)" = ZZ:O (Z) x¥ implies the required formula
quite analogously. O

. \. \. \. \. \.
M» uM» ||M» ||Mw qu qu
o o o o o
3
I
o

-
Il

o
r

Example 3.4. Forq > 1,h =0and ty = 1, we have u(s) = (q — 1)s, u(1) = ¢ — 1and ¢/(1) = ¢. Then

k j (k—j)
ek o Peke o _ k| (o6) O :
i = S (2) (- 9)" o

j=0 q
kK Tkl o
= [J] I(1 =) f (@)
j=0 q

Hence, formula (18) is reduces to the quantum calculus case as shown in [7].
We observe that for t, s € Tig’h), ift = gy ands = q' form,n € Ng withn > m, then we have u(q}) = q"u(ty) and
u(qy) = q"pu(to). Thus,
fanan=>" [ j ] a1 —qM) o (0 (b)) (19)
j=0 q
Definition 3.5. For a given functions f, g : TE?I n — C, their convolution f * q is defined by

n—1

(=g = > n@hf . a; Heah)

k=0
= " —k—1 k j
—k — ; —k—j—1) pod
= Z(q’r}:+h)[2 [ j } g A — g g S (m)]g(qﬁ)
k=0 j=0 q

where ¢ = q — 1and q} = toq" + [nlgh,n € Z.
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Theorem 3.6 (Convolution Theorem). By assuming that £ q n{f}(2), £(q,n{g}(2) and Ly n{f *g}(z) exist for givenz € C, we

have

Lgmtf *8}2) = LgnifH2)Lgnl{g}@).

Proof. By setting e, ,(z) = e,(q}, ;') and fn,m = f (g3, q5"), the proof follows analogously as that of Theorem 5.8 in [8].

Finally, we state the inverse Laplace transform. The proof follows analogously to Theorem 5.11 of [8].

Theorem 3.7. Let x € F; and Xq 1) (2) be its (q, h)-Laplace transform defined by (8). Then

n—1

1
x(qy) = 5 / Xqn @ [ [ +d a2 Az forn e N,
r

k=0

where I' is any positively oriented closed curve in the region 25 that encloses all the points o), = —1/ (q’qﬁ + h) for k € Ny.
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