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Abstract—The (directed) distance d(u,v) from a vertex u to a vertex v in a strong digraph D
is the length of a shortest u-v path in D. Although this is the standard distance in digraphs,
it is not a metric. Two other distances in digraphs are introduced, each of which is a metric.
The maximum distance md(u,v) between two vertices u and v in a strong digraph is defined as
md(u, v) = max{d(u,v),d (v,u)}. The sum distance sd(u, v) is defined as sd(u,v) = d'(u,v)+d (v, u).
Several results and problems concerning these metrics and such parameters as centers, medians, and
peripheries are described.
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1. DISTANCE IN GRAPHS

The standard distance d(u,v) between vertices u and v in a connected graph G is the length
of a shortest u-v path in G. This distance is a metric, that is, it satisfies the following three
properties:

(1) d(u,v) > 0 for all vertices v and v, and d(u,v) = 0, if and only if u = v;

(2) d(u,v) = d(v,u) for all vertices u and v (the symmetric property); and

(3) d(u,w) < d(u,v) + d(v,w) for all vertices u, v, and w (the triangle inequality).

The eccentricity e(v) of a vertex v is the distance between v and a vertex farthest from v. The
radius rad G and diameter diam G are defined by

radG = min e(v) and diam G = max e(v).
veEV(G) vEV(R)

The vertices of the graph G of Figure 1 are labeled with their eccentricities. Consequently,
rad G = 2 and diam G = 4 for this graph G.

A simple but useful result concerning radius and diameter is recalled in the next theorem.
Since the proof is informative, we include it.

THEOREM 1. For every connected graph G, rad G < diam G < 2rad G.

PROOF. The first inequality follows from the definitions of radius and diameter. In order to
establish the second inequality, let u and w be vertices such that d(u,w) = diam G, and let v be
a vertex with e(v) = rad G. Then

diam G = d(u,w) < d(u,v) + d(v,w) < e(v) + e(v) =2 rad G. 1
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16 G. CHARTRAND AND S. TIAN

Figure 1.

In fact, if we have any metric on graphs, and define eccentricity, radius, and diameter, as above,
in terms of this metric, then the corresponding Theorem 1 follows.

A vertex v is called a central vertez if e(v) = rad G, and the center C(G) is the subgraph of G
induced by its central vertices. The graph of Figure 1 is shown again in Figure 2, along with its
center.

G v y co: ‘o—03 o,

Figure 2.

A basic result on centers was established by Harary and Norman {1]. A block of a graph G is
either a subgraph induced by a bridge or a maximal 2-connected subgraph of G. Other graph
theory terms can be found in [2].

THEOREM 2. (See [1].) The center of every connected graph G lies in a single block of G.

The following result is due to Hedetniemi and appears in [3].

THEOREM 3. (See [3].) For every graph G, there is a connected graph H with C(H) & G.

The appendage number A(G) of a graph G is the minimum number of vertices that must be
added to G to produce a graph H whose center is isomorphic to G. The proof of Theorem 3
shows that A(G) < 4 for every graph G, and this bound is sharp.

A vertex v of G is a peripheral vertez if e(v) = diam G, and the periphery P(G) of G is the
subgraph induced by the peripheral vertices. For the graph G of Figure 2, P(G) consists of
two isolated vertices, namely, w and z. Bielak and Syslo [4] characterized those graphs that are
peripheries of a connected graph.

THEOREM 4. (See [4].) Let G be a graph. There exists a connected graph H such that P(H) & G,
if and only if

(i) every vertex of G has eccentricity 1, or

(ii) no vertex of G has eccentricity 1.

The center is only one concept that was introduced to describe the “middle” of a graph. We
mention a second of these. The distance (or status) d(v) of a vertex v in a connected graph G is

defined as
d(v) = Z d(v,u).

u€V(G)

A vertex z is called a median vertez if d(z) = minyev(g)d(v). The median M(G) of G is the
subgraph induced by the median vertices.

A 24:31-A
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u v
M({G: O—0

‘ w
C(G): (o)

Figure 3.

The distances of the vertices of the graph G of Figure 3 are indicated in that figure, as well as
the median and center of the graph.
Slater [5] established the analogue to Theorem 3 for medians.

THEOREM 5. (See [5].) For every graph G, there exists a connected graph H such that M (H)=G.
Hendry [6] showed that the results of Theorems 3 and 5 could be accomplished simultaneously.

THEOREM 6. (See [6].) For every two graphs G and Gs, there exists a connected graph H such
that C(H) = Gy and M(H) = G,.
In the proof of Theorem 6, Hendry constructed a graph H where C(H) and M (H) are disjoint,

in fact, d(C(H), M(H)) = 1, where the distance between two subgraphs F; and F; of a connected
graph G is defined as

d(Fy, F,) = min {d(v1,v2) | v1 € V(F1),v2 € V(F2)}.

Hendry’s result may have come as a bit of a surprise, not only because he showed that any two
graphs could be the center and median of the same graph, but that the center and the median
need not even overlap. Holbert 7] then extended Hendry’s result further.

THEOREM 7. (See [7].) For every two graphs G, and G2 and positive integer k, there exists a
connected graph H with C(H) & Gy, M(H) & G,, and d(C(H), M(H)) = k.

At the other extreme, Novotny and Tian [8] showed that the center and median of a graph
may overlap in any possible way.

THEOREM 8. (See [8].) For two graphs G, and G; and every graph K that is isomorphic to an
induced subgraph of G, and G2, there exists a connected graph H with C(H) & G, M(H) = G,
and C(HYNM(H) 2 K.

2. DISTANCE IN DIGRAPHS

We now turn to the main topic of this paper: distance in digraphs. The standard distance in
digraphs is directed distance. Let D be a strong digraph. The (directed) distance d (u,v) from a
vertex u to a vertex v in D is the length of a shortest u-v (directed) path. This distance is not
a metric, however. Although it satisfies the first property and the third property (the triangle
inequality), it does not satisfy the symmetric property, in general. Indeed, J(u, v) = di (v,u) for
all pairs u, v of vertices of D if and only if D is a symmetric digraph, that is, if and only if D is
a graph! Nevertheless, we can define some of the familiar concepts which emanate from distance
in graphs.

The eccentricity e(v) of a vertex v in a digraph D is the distance from v to a vertex farthest
from v. The radius rad D of D is the minimum eccentricity among the vertices of D, while
the diameter diam D is the maximum eccentricity. In the strong digraph D of Figure 4, the
eccentricity of each vertex is indicated.

We note that rad D = 2 and diam D = 5 for the digraph D of Figure 4. Consequently, the
familiar inequality diam D < 2rad D does not hold for directed distance in strong digraphs. We
see where the proof of Theorem 1 fails in this instance. This can be done with the aid of the

CAMAA 34:11-8



18 G. CHARTRAND AND S. TIAN

radD=2
3 > YV damD=5

Figure 4.

digraph D of Figure 4. For this digraph, d (u,w) = diam D and e(v) = 2. Proceeding as in the
proof of Theorem 1, we have

diam D = d (u,w) < d (u,v) + d (v, w) < e(u) + e(v) = diam D + rad D.

Because the distance in graphs is symmetric, d(u,v) = d(v,u) and we can write d(u,v) < e(v) =
rad G, but such is not the case for directed distance in digraphs. Indeed, all we can conclude
there is the less-than-exciting inequalities rad D <diam D <diam D +rad D. Hence, a useful
property of radius and diameter that holds for graphs is lost when the distance under study is
not a metric. With this thought in mind, we turn to the problem of defining distance in other
ways so that a metric is produced.

In a connected graph G, the familiar distance satisfies each of the following because it is
symmetric:

(1) d(u,v) = min{d(u,v),d(v,u)},

(2) d(u,v) = max{d(v,v),d(v,u)},

(3) d(u,v) =a-d(u,v) +b-d(v,u), a,6>0,a+b=1.
These rather simple observations suggest the possibility of defining new distances in strong di-
graphs in terms of directed distance, namely, to define

(1) d(u,v) = min{d (u,v),d (v,u)},

(2) d(u,v) = max{d(u,v),d (v,u)}, or

(3) d(u,v) =a-d(u,v) +b-d(v,u),a,b>0,a+b=1.

We first consider the possibility of defining d(u,v) = min{d (u,v),d (v,u)}. This distance,
though symmetric, does not satisfy the triangle inequality. For the vertices u, v, and w in the
strong digraph D of Figure 5,

3 =d(u,w) > d(u,v) + d(v,w) = 2.
Consequently, definition (1) does not offer us the desired properties.

- ]

u w
Figure 5.
We now turn to definition (2), namely, d(u,v) = max{d(u,v),d (v,u)}. Certainly, this dis-

tance satisfies the first two properties required of a metric. It also satisfies the triangle inequal-
ity. To see this, let u, v, and w be any three vertices of a strong digraph D, and suppose
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max{d(u, w),d (w,u)} = d (u,w). Then
d(u,w) = max {J(u, w),d (w, u)} =d (u, w)
< d(u,v) + d(v,w)
< max {cf(u, v),d (v, u)} + max {J(v, w),d (w, v)}
= d(u,v) + d(v, w).

Thus, distance as defined in (2) is a metric. For future reference, we denote this distance by md
(maximum distance), that is, md(u, v) = max{d(u,v),d (v,u)}.

The converse D' of a digraph D is that digraph produced by reversing the direction of every
arc of D. The maximum distance between two vertices u and v in a strong digraph D may then
also be defined as md(u,v) = max{d p(u,v),d ps(u,v)}.

We now consider definition (3) of distance, that is, define d(u,v) = a - d(u,v) + b - d(v,u),
where a,b > 0 and a + b = 1. First, we observe that

d(u, w) = a-d(u,w) +b-d(w,u)
<a (J(u,v) —Hf(v,w)) +b (J(w,v) +J(v,u))

= [a-d'(u,v)+b-d‘(v,u)] + [a,-d'(v,w)+b'cf(w,v)]
= d(u,v) + d('va 'w)’

so that the triangle inequality holds.
In order for the symmetric property to hold, we must have

a-du,v)+b-dw,u)=a-dv,u)+b-d(u,v),
for each pair u,v of vertices of a strong digraph D. Consequently,
(a=8)- (d(w,v) - d(v,u)) =0,

for each pair u, v of vertices of D. Therefore, if D is not a symmetric digraph (that is, a graph),
then a = b = 1/2. Thus, if we define

d(u,v) = -;—J(u,v)+ %J(v,u) = %ti_'p(u,v)+ -;—Jpr(u,v),

a metric results. Since multiplying d(u,v) by a positive constant still produces a metric, we define
the sum distance sd(u,v) = d(u,v) + d(v,u).
We now consider these two metrics on strong digraphs in more detail.

3. MAXIMUM DISTANCE IN DIGRAPHS

For vertices v and v in a strong digraph D, the maximum distance between u and v was defined
by md(u,v) = max{d (u,v),d (v,u)}. As we have seen, this is a metric. The m-eccentricity
me(v) of a vertex v of D is defined as me(v) = max,ev(p){md(v,u)}; while the m-radius of D
is mrad D = min,ev(p){me(v)} and the m-diameter is m diam D = max,cv(p){me(v)}. Since
the m-distance is a metric, we have the following result.

THEOREM 9. For every strong digraph D,
mrad D < mdiam D < 2mrad D.

In a natural way, we can define the center of a strong digraph D (with respect to this metric).
The m-center of D is the subdigraph induced by the vertices of D having minimum m-eccentricity,
that is, by those vertices v with me(v) = mrad D. The following result was established in [9)].



20 G. CHARTRAND AND S. TIAN

THEOREM 10. (See [9].) The m-center of every nontrivial strong digraph D lies in a single block
of the unde:\‘]yz‘ng graph of D.

An analogue to Theorem 3 was found in [9] for asymmetric digraphs.

THEOREM 11. (See [9].) For every asymmetric digraph D, there exists a strong asymmetric
digraph H such that mC(H) = D. Furthermore, there exists such a digraph H whose order
exceeds that of D by at most 4.

For an asymmetric digraph D, we define the mazimum appendage number mA (D) of D as the
minimum number of vertices that must be added to D to produce a strong asymmetric digraph I
whose m-center is isomorphic to D. By Theorem 11, mA(D) < 4 for every asymmetric digraph D.

There are many asymmetric digraphs D for which mA(D) = 0; for example, every vertex-
transitive asymmetric digraph (such as a directed cycle) has this property. If mA(D) # 0 and H
is a strong asymmetric superdigraph of minimum order containing D as its m-center, then V(H)—
V(D) contains all vertices with maximum m-eccentricity. Since there are at least two vertices
having maximum m-eccentricity, it follows that mA(D) # 1 for all asymmetric digraphs.

The following result is not difficult to prove.

THEOREM 12. Let D be an asymmetric digraph with 2 < mA(D) < 3. If H is an asymmetric
digraph of minimum order with mC(H) & D, then mdiam H = mrad H + 1.

The next result will allow us to show that the upper bound mA(D) < 4 cannot be improved,
in general. For a vertex v in a digraph D, the out-neighborhood N+ (v) is the set of vertices of D
adjacent from v, while the in-neighborhood N~ (v) is the set of vertices adjacent to v.

THEOREM 13. Let D be an asymmetric digraph with mA(D) = 2 and let H be an asymmetric
digraph of minimum order with mC(H) & D. If d y(v,w) = mdiam H, then for all z € N+ (v)
and y € N~ (w), any shortest z-y path lies entirely in D.

PROOF. Observe that mdiam H = max{me(z) | ¢ € V(H)} =md(y, 2), where y,z € V(H) —
V(D). Since mA(D) = 2 and md(v, w) = mdiam H, it follows that V(H) = V(D) U {v,w} and
meg(u) = mrad H < mdiam H for all u € V(D). Suppose, to the contrary, that there exist
vertices z € N*(v) and y € N~ (w) such that a shortest z-y path P contains v or w. If v lies
on P, then d(z, y) = d(z,v) + d(v,y). Since (y,w) € E(D) and (v,z) € E(D), it follows that
d(y,w) =1 and d(z,v) > 1. Therefore,

mdiam H = J(v,w) < J(v,y) +J(y,w)
<d(z,v) +d(v,y) = du(z,y)
< md(z,y) < meg(z),

which contradicts the fact that me(z) < mdiam H. The proof is similar if w lies on a shortest
z-y path in H. 1
The next result shows that the upper bound mA(D) < 4 is sharp.

THEOREM 14. Let D be the (empty) digraph consisting of n > 2 isolated vertices. Then
mA(D) =

PROOF. It is clear that mA(D) # 0. Since D is acyclic, it follows by Theorem 13, that
mA(D) > 3. Since mA(D) < 4, it suffices to prove that mA(D) # 3. Suppose, to the con-
trary, that mA(D) = 3. Let H be an asymmetric digraph with V(H) = V(D) U {u,v,w} and
mC(H) & D. We assume, without loss of generality, that d H(u, v) = mdiam H and P is a
shortest u-v path in H. Since E(D) = 0 and |V(H)~-V(D)| = 3, P contains at most two vertices
of D. On the other hand, since mdiam H > 3, P contains at least one vertex of D. Therefore,
du(u,v) =3or 4

We consider the following cases.
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CASE 1. Assume that d (u,v) = 3 and P : u,z,w, v for some z € V(D). Let y € V(D) — {z}.
Since me(z) = 2 for all z € V(D), it follows that d(:n,y) = 2. Noting that d(u, v) = 3, we
conclude that (w,y) € E(H). However, this implies that d{y,w) > 3, a contradiction.

CASE 2. Assume that d r(u,v) = 3 and P : u,w, 7, v for some z € V(D). Let y € V(D) — {z).
Since H contains a w-y path of length at most 2 and (w,u), (w,v) ¢ E(H), it follows that
(w,y) € E(H). Similarly, since H contains a y-v path of length at most 2, it follows that
(y,v) € E(H). Furthermore, since du(u,v) = 3, it follows that (u,y) € E(D). Therefore,
d a(u,v) > 3, a contradiction.

CASE 3. Assume that d zr(u,v) = 4 and P : u,z,w,y,v for some vertices 2,y € V(D). It follows
that (v,u) ¢ E(H); for otherwise, mdiam H = mep(w) = max{md(w,u), md(w,v)} = 3, a
contradiction. We claim that d g (v, u) = 2. Suppose to the contrary, that d H(u v) > 3. Thenw
lies on every shortest v-u path. Furthermore, since d H(u v) < 4, it follows that d H('w u) < 3and
aTH(v, w) £ 3. By noting that dg(u,w) = 2 and d g(w,v) = 2, we conclude that mdiam H =
me(w) = max{md(w,u), nd(w,v)} £ 3, a contradiction. Therefore, there exists a vertex z €
V(D) — {z,y} such that (v,z), (z,u) € E(H). Since (z,v) ¢ E(H) and dy(z,z) < 3, we have
(w, z) € E(H). Therefore, d m(2,y) = 4, a contradiction. ]

Buckley, Miller and Slater [3] characterized those trees with appendage number 2 and proved
that no tree has appendage number 3. We define an asymmetric digraph to be a (déirected) tree
if its underlying graph is a tree. In [10] it was shown that if D is an acyclic asymmetric digraph
with mA(D) = 2, then D is a tree. Unlike the situation for graphs, however, a (directed) tree
may have appendage number 3. In Figure 6, mA(71) = 2 and mA(T3) = 3.

T .

1'O—b—0—-b-o—-—o Tz:o——-i———ovo

Figure 6.

A vertex v in a strong digraph D is called an m-peripheral verter if me(v) = mdiam D. The
m-periphery mP(D) of D is the subdigraph of D induced by its m-peripheral vertices. Asym-
metric digraphs that are m-peripheries of strong asymmetric digraphs were characterized in [9].
This result closely parallels Theorem 4.

THEOREM 15. (See [9].) An asymmetric digraph D is isomorphic to the m-periphery of some
strong asymmetric digraph H if and only if

(i) every vertex of D has m-eccentricity 2, or

(ii) no vertex of D has m-eccentricity 2.

The m-distance md(v) of a vertex v in a strong digraph D is defined as md(v) = 3, cv(p)
md(v,u). The m-median mM(D) of D is the subdigraph induced by those vertices having mini-
mum m-~distance. The m-distance md(H:, Hz) between two subdigraphs H; and H3 in a digraph
H is defined by

' md(H;, Hz) = min {md(u,v) | v € V(H1), v € V(H2)}.

The following two results were obtained by Chartrand and Tian [11].

THEOREM 16. (See [11].) Let D, and D; be asymmetric digraphs, and let k be a positive
integer. Then there is a strong asymmetric digraph H with mC(H) & Dy, mM(H) & D,, and
md(mC(H), mM(H)) =

THEOREM 17. (See [11].) For every two asymmetric digraphs D, and D, and every digraph
K isomorphic to an induced subdigraph of both Dy and D, there exists a strong asymmetric
digraph H such that mC(H) & Dy, mM(H) & D,, and mC(H) N mM(H) & K
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4. SUM DISTANCE IN DIGRAPHS

The sum distance sd(u,v) between two vertices u and v in a strong digraph D was defined as
sd(u,v) = d(u,v) + d(v,u). A number of natural concepts can now be defined.

The s-eccentricity se(v) of v in D is se(v) = max,cv(p)sd(v,u). The s-radius of D is s-rad
D = minyey (p) se(v), while the s-diameter is s-diam D = max,ey (p)se(v). The s-center sC(D)
of D is the subdigraph induced by those vertices with minimum s-eccentricity. Since the sum
distance is a metric, we have our usual immediate result.

THEOREM 18. For every strong digraph D,
s-rad D < s-diam D < 2s-rad D.

The following two (familiar sounding) results were obtained by Tian [12].

THEOREM 19. (See [12].) The s-center of every nontrivial strong asymmetric digraph D lies in
a single block of the underlying graph of D.

THEOREM 20. (See [12].) For every asymmetric digraph D, there exists a strong asymmetric
digraph H such that sC(H) = D. Furthermore, there exists such a digraph H whose order
exceeds that of D by at most 6.

For an asymmetric digraph D, the sum appendage number sA(D) is the minimum number of
vertices that must be added to D to produce a strong asymmetric digraph H whose s-center is
isomorphic to D. By Theorem 20, sA(D) < 6 for every asymmetric digraph D. However, it is
not known whether 6 is the best upper bound for sA(D). Indeed, if D is a tournament, then
sA(D) < 4 (see [12]).

The s-periphery sP(D) of a strong asymmetric digraph D is the subdigraph induced by those
vertices of maximum s-eccentricity. The following theorem [12] parallels Theorems 4 and 15.

THEOREM 21. (See [12].) An asymmetric digraph D is isomorphic to the s-periphery of some
strong asymmetric digraph H if and only if

(1) every vertex of D has s-eccentricity 3, or
(ii) no vertex of D has s-eccentricity 3.

It should be noted that there exists an asymmetric digraph that is isomorphic to the s-periphery
of some strong asymmetric digraph but not to the m-periphery of a strong asymmetric digraph.
For example, let D be the digraph of Figure 7. Then s-rad D = s-diam D = 4, so sP(D) = D.
However, me(u) = 2 and me(v) = 3, so by Theorem 15, D is not the m-periphery of any strong
asymmetric digraph.

v

Figure 7.

The s-median of a strong digraph can also be defined in an obvious manner, but to this point,
the anticipated results have remained elusive.
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