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A B S T R A C T

Children with cerebral palsy who walk with knee flexion during midstance are treated with

intramuscular injections of botulinum toxin A (BTX-A) to prevent them from potential deterioration

and to improve their mobility. The present study evaluates the effect of this treatment on the muscle

activation patterns of the rectus femoris, medial hamstrings and gastrocnemius medialis during gait.

Twenty-two children (aged 4–11 years) with cerebral palsy, who walked with knee flexion, were

randomly assigned to an intervention group (multilevel BTX-A injections combined with comprehensive

rehabilitation) or a control group (usual care). Sagittal and frontal video recordings were made of gait,

together with simultaneous surface electromyography recordings of the rectus femoris, medial

hamstring and gastrocnemius medialis muscles, before and six weeks after treatment. Abnormal muscle

activation patterns were quantified, after gain-normalisation, according to the root mean square

difference (RMSD), which is the difference relative to normal patterns. Six weeks after the treatment the

RMSD of the gastrocnemius medialis muscles in the intervention group changed significantly, showing a

deterioration (p < 0.05). This study demonstrated that BTX-A injections do not result in an improvement

in lower limb muscle activation patterns during gait. In spite of this lack of direct effect on muscle

activation patterns, the combination of BTX-A injections and comprehensive rehabilitation was effective

in improving gait kinematics.
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1. Introduction

Cerebral palsy (CP) is a clinical syndrome, characterised by a
persistent disorder in motor control and posture, resulting from
non-progressive brain damage [1]. The most common type of
motor disorder in children with CP is spastic paresis [2], which is
characterised by a posture and movement-dependent tone
regulation disorder [3].

In children with spastic paresis, three types of symptoms can be
distinguished: impairment of muscle activation, impairment of
muscle stiffness, and impairment of muscle length [3]. These
symptoms cause deviating gait patterns, resulting in movement
disabilities in these children [4].

A typical deviating gait pattern in children with CP is knee
flexion during midstance [3]. If these children do not receive
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adequate treatment, the amount of flexion of the knee in
midstance may increase during growth [5] and this, in turn,
may lead to a deterioration in mobility [6]. It is thought that this
flexion pattern is a result of muscle imbalance, caused by a
combination of the three earlier mentioned symptoms [3], and
increased involuntary muscle activity (a symptom of impaired
muscle activation) is considered to be the main contributor. This
increase in involuntary muscle activity occurs, in particular, in the
following muscles of the lower limb: the medial hamstrings, psoas,
rectus femoris and gastrocnemius muscles [7]. One type of
treatment that is currently applied to reduce muscle activity is
intramuscular injections with botulinum toxin type A (BTX-A) [8].
BTX-A gives a reversible neuromuscular blockade, which results in
a local and dose-dependent muscle weakness [9]. It has recently
been demonstrated that when BTX-A injections in agonistic
muscles are combined with muscle lengthening and/or antagonis-
tic muscle strengthening exercises, this can improve mobility in
children with CP, associated with an improvement in knee angle
(i.e. decreased flexion) in midstance [7,10].

Muscle activation patterns during gait can be measured with
surface electromyography (sEMG) and this makes it possible to
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measure the increase in involuntary muscle activity [11–14], for
instance, by assessing the abnormalities in amplitude or abnor-
malities in the sEMG pattern. However, the sEMG amplitude
depends on various factors, for example the thickness of the
subcutaneous tissue and the placement of the electrodes [15].
Therefore, in order to compare sEMG patterns (which are
determined by the combination of timing and amplitude), inter-
and intra-individual normalisation of the amplitude is needed. Hof
et al. [16] described a method that can be used to normalise sEMG
amplitudes by determining a gain factor and normalising the sEMG
with this gain factor. This normalised sEMG profile can be
identified as normal or abnormal by comparing it with standard
sEMG profiles [16].

Several studies have investigated the effect of intramuscular
BTX-A injections on the sEMG patterns of children with CP [17–24].
The children in these studies walked with equinus gait (with or
without knee flexion), so their gastrocnemius muscles were treated.
In one randomised study [24] no difference in sEMG patterns was
found between BTX-A-injected and placebo-injected muscles. Of the
other studies, which were either non-randomised [17,20–23] or
non-controlled [18,19], four found no differences in sEMG patterns
after the injections [17,19,20,23], but two other studies found an
improvement in the sEMG patterns [21,22]. One other study
investigated the effect of the injections on the amplitude of sEMG
activity, instead of the pattern. In that study the hamstring muscles
were also injected, a decrease in sEMG activity was found in both the
gastrocnemius and the hamstring muscles [18].

When children walk with knee flexion during midstance,
multiple muscles might contribute to this gait pattern, and these
can all be treated in one single session. This is referred to as
multilevel treatment, and usually involves at least the (medial)
hamstring muscles, and sometimes also the gastrocnemius medialis,
psoas and rectus femoris muscles. The aim of the present study was
to evaluate the effect of multilevel BTX-A injections on the sEMG
patterns of the rectus femoris, medial hamstring and gastrocnemius
medialis muscles during gait. Indication for injection in these
muscles is based on activity during an abnormal period of the stride
[7]. It was hypothesized that multilevel BTX-A injections would
improve and possibly normalise muscle activation patterns.

2. Methods

2.1. Subjects

All the children who were assessed in the present study were participants in a

multicenter trial. The inclusion and exclusion criteria for these children are listed in

Table 1. For the selection and randomisation procedures of this multicenter trial, see
Table 1
Inclusion and exclusion criteria.

Inclusion criteria E

Diagnosis of Cerebral Palsy B

Spastic hemiplegia or diplegiaa O

Age between 4 and 12 years C

Spasticity in two or more lower extremity

muscle groups interfering with mobility

C

GMFCS level I to IV

O

Gait characterized by persistent flexion of the

knee (�108) in mid-stance (barefoot or

with ankle-foot-orthoses/shoes)

Two or more muscle groups in one limb

needing BTX-A injection

Ability to carry out instructions

Adequate knowledge of the Dutch language

S

Able to walk six strides successfullyb

P

O

Patient evaluated in the Department of

Rehabilitation Medicine at the VU University

Medical Center in Amsterdamb

a According to Hagberg [25].
b Added inclusion criteria for the current study, BTX-A: botulinum toxin A; GM

[27].
Scholtes et al. [7]. Only those children who were assessed in the Department of

Rehabilitation Medicine of the VU University Medical Center in Amsterdam [7,10],

and those who were able to walk six strides successfully, participated in the present

study (n = 22).

Full written informed consent was obtained from the participants’ parents and

all 12 year-old children before participation, and the study protocol was approved

by the Medical Ethics Committee of the VU University Medical Center.

2.2. Measurements

2.2.1. Dynamic video electromyography

The sEMG patterns of the following muscles were bilaterally assessed during

gait: the rectus femoris, the medial hamstrings and the gastrocnemius medialis.

The sEMG signal was recorded by two electrodes on each muscle, with an inter-

electrode distance of 20 mm (Kendall: Ag/AgCl electrodes; pre-gelled, 10 � 10 mm

electrode area), as recommended by the SENIAM project [28]. The reference

electrode was placed on the patella or the wrist. All electrodes were connected to

the 16-channel pre-amplifier and telemetric transmitter that was carried on the

child’s back (BioTel99, Glonner electronics GmbH, Krailling, Germany). All sEMG

signals were sampled from the receiver at 1000 Hz, using Labview custom-made

acquisition software, and high-pass filtered to remove movement artefacts through

a third-order Butterworth high-pass filter at 20 Hz. The sEMG signals were

displayed on-line for inspection of the signal quality. They were rectified off-line,

and smoothed with a 2 Hz second-order Butterworth low-pass filter to obtain the

linear envelope.

While the sEMG signals were being recorded, (digital) video-recordings were also

made of both the frontal and the sagittal planes, while the child walked barefoot at

a comfortable walking speed (with or without walking aid) on a 10-m pathway. The

vertical interval time (VIT) coding of video frames [29] as used to identify initial

contacts of six completed strides at constant walking velocity from the video-

recordings. Using these time-codes, the sEMG envelopes could be processed into

a time-normalised sEMG profile per stride (i.e. from 0 to 100% of the stride).

These sEMG envelopes were used to calculate the total average sEMG profile.

The total average sEMG profile was then gain-normalised according to the

method described by Hof et al. [16], after which abnormal muscle activation

patterns were quantified according to the root mean square difference (RMSD),

which is the difference relative to normal patterns [30]. All signal processing was

performed with custom software written in Matlab (Mathworks Inc., Massa-

chusetts, USA, version 5.3). The smaller the RMSD, the closer the sEMG pattern is

to normal; an increase in the RMSD implies a deterioration in the sEMG pattern.

All measurements were performed by one independent, blinded, research

assistant (LH).

2.3. Assessments

After the first (baseline) assessment the children were randomly assigned to the

intervention group or the control group. The children in the intervention group had

one follow-up assessment six weeks after the treatment; children in the control

group had a second baseline assessment (Fig. 1).

2.4. Intervention

The children of the intervention group received multilevel BTX-A injections

(BOTOX1, Allergan, Nieuwegein, the Netherlands), followed by comprehensive
xclusion criteria

TX-A treatment in lower extremities within 16 weeks before inclusion

rthopaedic surgery within 24 weeks before inclusion

ontra-indication for BTX-A

ontra-indication for general anaesthesia

rthopaedic deformities which have a bad influence on walking

(sub)luxation of the hip with a MI>508
hip endorotation contracture >158
flexion contracture of knee >158

evere fixed contractures:

age <8 years

ankle dorsiflexion with knee extended >�208
popliteal angle >908

age �8 years

ankle dorsiflexion with knee extended >�158
Popliteal angle >808

resence of ataxia or dyskinesia

ther problems which have a negative influence on walking

FCS: gross motor function classification system [26]; MI: migration index
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Fig. 1. Schematic design of the moment of assessments. *Randomisation took place

after the first baseline assessment.
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rehabilitation. The injections were given under general anesthesia, in at least

two sites per muscle belly, up to a maximum of 50 Units per site, with a dosage

of 4–6 U/kg body weight per muscle group. The maximum total dose was set at

25 U/kg body weight for children �5 years, and 30 U/kg body weight for

children >6 years, with a maximum recommended dose of 600 U and a dilution

of 50 U in 1 ml 0.9% NaCl solution. The injection sites were determined by

palpation of the muscle belly, and placement of the needle was verified by

stretching of the muscle, controlled for needle movement. Target muscles were

identified according to the principles described in Scholtes et al. [7]

The comprehensive rehabilitation consisted of intensive physiotherapy for 12

weeks, three–five times a week, serial casting and/or orthoses. For further

details concerning the comprehensive rehabilitation plan, see Scholtes et al.

[7,10].

The children of the control group continued with usual care. After the control

period, they also received multilevel BTX-A injections, followed by comprehensive

rehabilitation.

2.5. Statistical analyses

Six weeks after the treatment the change in the RMSD of the injected muscles in

the intervention group was compared with the change in the RMSD of the muscles

with treatment indication in the control group. The change in the RMSD in the

intervention group was calculated between baseline and the six-week follow-up; in

the control group it was calculated between the first and the second baseline

measurements. The differences in effect between the two groups were analysed in a

linear mixed model analysis (SPSS 11.5).

3. Results

3.1. Patient demographics

The characteristics of all participating children are presented in
Table 2.

All the children received multilevel injections in at least one of
their limbs, and the sEMG of the rectus femoris, the medial
Table 2
Characteristics of all participating children and number of injected muscles.

Group (n) Age (yr)

Mean (S.D.)

[range]

Weight (kg)

Mean (S.D.)

[range]

Sex (n)

m:f

Diagnosis

uni:bi

Intervention

(12)

7.95 (2.34)

[4.14–10.84]

26.00 (8.23)

[15.0–45.0]

7:5 1:11

Control

(10)

7.17 (1.84)

[4.43–10.47]

23.75 (9.50)

[13.0–44.0]

7:3 0:10

n, number of children; S.D., standard deviation; m, male; f, female; uni, unilateral; bi, bila

botulinum toxin A; U, Units; N, number of limbs; RF, rectus femoris; MH, medial ham

This table shows characteristics of all participation children. After the control period, chil

Their treatment characteristics are also presented in this table, for comparison only.

Table 3
Effect on root mean square difference (RMSD).

Muscle RMSD of the intervention group RMSD of the con

Baseline 1 Follow-up D Baseline 1

RF 36.00 34.00 �2.00 35.67

MH 46.56 53.84 7.28 53.00

GAM 41.57 56.40 14.83 44.76

D, change from baseline 1; RF, rectus femoris; MH, medial hamstrings; GAM, gastrocn

RMSD of the intervention group and the control group at different measurement points an

differences) on the RMSD six weeks after treatment with BTX-A.
hamstrings and the gastrocnemius medialis were analysed in the
present study. The total number of injected muscles can also be
found in Table 2. The most frequently injected muscles were the
medial hamstrings (86%) and the gastrocnemius medialis (64%):
the rectus femoris was only injected in a few children (20%).

3.2. Baseline differences

There was no difference between the two groups with regard to
personal characteristics, as summarized in Table 2.

3.3. Effects of BTX-A injections on sEMG patterns of injected muscles

The effects of BTX-A injections on the sEMG patterns of the
injected muscles are presented in Table 3. Six weeks after the
BTX-A treatment there was no significant improvement or
deterioration in the sEMG patterns of the rectus femoris (RMSD
�1.03, p = 0.73) or the medial hamstrings (RMSD 3.74, p = 0.22),
compared to the control group. However, in the sEMG pattern of
the gastrocnemius medialis (RMSD 13.98, p = 0.04) there was a
significant deterioration, compared to the control group (Fig. 2).

4. Discussion

In this study the effect of treatment with multilevel BTX-A
injections and comprehensive rehabilitation on sEMG patterns
during gait was evaluated in children with CP who walked with
flexion of the knee in midstance. Six weeks after the treatment only
the gastrocnemius medialis showed a significant increase in RMSD,
which indicates a deterioration of the sEMG pattern. The RMSD in
the rectus femoris and the medial hamstring muscles remained
unchanged. Therefore, we concluded that multilevel BTX-A
injections do not result in any improvement in lower limb muscle
activation patterns during gait.

Various different normalisation and non-normalisation meth-
ods can be used to make the sEMG pattern suitable for research; in
the present study we used the normalisation method described by
Hof et al. [30] After normalisation we compared the sEMG patterns
(n) GMFCS (n)

I:II:III

ml-BTX-A (U/kg)

Mean (S.D.)

[range]

Injected muscle (N)

RF MH GAM

6:0:6 17.97 (4.61)

[10.97–24.78]

4 21 12

3:3:4 20.43 (5.54)

[12.00–27.14]

5 17 16

teral; GMFCS, Gross motor function classification system [34]; ml-BTX-A, multilevel

strings; GAM, gastrocnemius medialis.

dren of the control group were treated with multilevel botulinum toxin A injections.

trol group Effect (95% CI) on the RMSD p-Value

Baseline 2 D

34.69 �0.98 �1.03 (�7.39 to 5.34) 0.73

56.54 3.54 3.74 (�2.25 to 9.72) 0.22

45.61 0.85 13.98 (0.65–27.31) 0.04

emius medialis.

d effect (mean differences in change between the two groups, corrected for baseline
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Fig. 2. Estimated mean values in root mean square difference (RMSD) of the rectus

femoris, medial hamstrings and gastrocnemius medialis in the intervention group

and the control group. *A significant difference in change from baseline between the

two groups. On the horizontal axis: weeks before/after botulinum toxin A injections

in the intervention group. On the vertical axis: RMSD. The smaller the RMSD, the

closer the sEMG pattern is to normal.
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with those of normal healthy adults, as also described by Hof et al.
[30]. The RMSD describes the amount of sEMG deviation from the
reference sEMG pattern, derived from normal gait. This means that
the RMSD should be interpreted with care, because it is calculated
from a complete sEMG pattern. An unchanged RMSD does not
mean that the sEMG pattern gets closer to normal and this does not
imply that changes did not occur. Changes in the opposite direction
in different parts of the gait cycle (i.e. a decrease in one part, and an
increase in another) might cancel each other out when the RMSD is
calculated. Thus, it would be interesting to investigate the effect on
certain points during the stride, in which involuntary muscle
activity is specifically increased. However, whether it is possible to
define such points during the stride is, as yet, unknown. They
probably need to be determined for each separate muscle and for
each different type of gait, because a certain amount of muscle
activity can be regarded as gait-specific; abnormal muscle activity
cannot be regarded per definition as ‘involuntary’ muscle activity
[31].

As mentioned earlier, we compared the sEMG patterns of
children with normal sEMG patterns, based on the sEMG patterns
of ten healthy young men (mean age 22 years) [30]. However, it is
unlikely that the sEMG patterns of children are identical to the
sEMG patterns of adults. Sutherland et al. [32] investigated the
sEMG patterns of typically developing children between one and
seven years of age. They concluded that with increasing age most
sEMG patterns become identical to the sEMG patterns of adults;
only the sEMG pattern of the gastrocnemius was found to be
identical to that of adults from the early age of two [32].
Furthermore, Berger et al. [33] concluded that the sEMG patterns
of children aged six years and older are identical to those of adults.
In our study, only five children were under six years of age, and this
might have influenced our results. Therefore, more research is
needed to investigate whether sEMG patterns of children are
comparable with those of adults. Research is also needed to assess
the homogeneity of the sEMG patterns of typically developing
children, in order to determine whether or not it is possible to
conclude that the sEMG patterns of children with CP deviate
significantly from the sEMG patterns of typically developing
children.

In addition, sEMG patterns strongly depend on walking speed
[30]. For children with CP it is not easy to walk at a pre-defined
walking speed, so the children in our study were instructed to walk
at their own comfortable walking speed. Unfortunately, however,
walking speed was not measured in our study, so any negative
effects in this respect could not be accounted for.

Other studies [17–24] that have investigated the effect of BTX-A
injections on sEMG patterns in children with CP did not use the
RMSD method. The children in these studies walked with equines
gait, so only the gastrocnemius muscles were injected and
evaluated. Only two of these studies [21,22] found an improve-
ment in the sEMG patterns. However, the first study used the area
of the burst, which depends on both absolute amplitude (not
normalised) and timing [21], and in the second study it remained
unclear as to what kind of change the improvement was based on
[22]. One other study [18] also injected and evaluated the
hamstring muscles and found a decrease in sEMG activity, but
because this study evaluated sEMG activity and not sEMG patterns,
it is difficult to compare the results with results of our study. Five
other studies [17,19,20,23,24] (including one placebo-controlled
randomized study) found no differences in sEMG patterns after
injection with BTX-A.

Sutherland et al. [23] postulated that there is no reason to
expect changes in sEMG patterns of the gastrocnemius muscle,
because muscles remain under abnormal central nervous control.
Indeed, the fixed upper motor lesion in CP, leading to aberrant
supra spinal control, is not likely to be effected by peripheral
changes such as chemical denervation of the muscle. However,
during gait sEMG patterns do not only directly result from
supraspinal control, but they also adapt to changes in the
biomechanics of certain gait patterns [31]. So, in order to explain
the deterioration of the sEMG pattern of the gastrocnemius
medialis, it is necessary to further analyze the sEMG levels for
different phases of gait. Such analysis should also include changes
in muscle length as a result of changes in gait kinematics [34].

However, despite the lack of change or deterioration in the
sEMG patterns of the gastrocnemius medialis, the children in our
previous published study showed significant improvements in
gait kinematics after treatment with BTX-A [7], as found in other
studies [35,36]. Therefore, with respect to the direct effect of
muscle denervation on muscle activation patterns, the decrease
in deteriorating effects resulting from involuntary contractions
might eventually be more beneficial, as opposed to the equal loss
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of effective voluntary contractions, to improve gait kinematics. It is
thought that gait deviations are the result of muscle imbalance,
caused by an impairment not only in muscle activation, but also in
muscle stiffness and muscle length [3]. The improvement in gait
kinematics might therefore also be explained by decreasing the
excessively expression at one side of the balance. This might be the
result of multilevel BTX-A injections combined with comprehensive
rehabilitation [7,35,36], aimed at (antagonistic) muscle stretching
and lengthening. The overall effect of BTX-A injections might
therefore also depends on the effectiveness of a comprehensive
rehabilitation program at the level of gait kinematics.

In conclusion muscle denervation with BTX-A injections has no
effect, or a negative effect on muscle activation patterns, based on
root mean square difference analysis. However, evaluation at the
level of gait analysis showed that the application of BTX-A and
comprehensive rehabilitation as a combined treatment program is
still an effective way to improve gait kinematics [7].
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