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Abstract Existing solutions of the problem of axisymmetric stagnation-point flow and heat transfer on
either a cylinder or flat plate are for incompressible fluid. Here, fluid with temperature dependent density
is considered in the problem of axisymmetric stagnation-point flow and heat transfer on a cylinder with
constant heat flux. The impinging free stream is steady andwith a constant strain rate, k̄. An exact solution
of the Navier–Stokes equations and energy equation is derived in this problem. A reduction of these
equations is obtained by use of appropriate transformations introduced for the first time. The general
self-similar solution is obtained when the wall heat flux of the cylinder is constant. All the solutions
above are presented for Reynolds numbers, Re = k̄a2/2υ , ranging from 0.01 to 1000, selected values of
compressibility factors, and different values of Prandtl number, where a is cylinder radius and ν is the
kinematic viscosity of the fluid. For all Reynolds numbers and surface heat flux, as the compressibility
factor increases, both components of the velocity field, the heat transfer coefficient and the shear-stresses
increase, and the pressure function decreases.

© 2013 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

The study of impinging jet problems has been of consider-
able interest during past decades because of great technical im-
portance in many industrial applications, such as the drying
of papers and films, the tempering of glass and metal during
processing, the cooling of gas turbine surfaces and electronic
components, surface painting, pest-citing, and de-icing. Exist-
ing solutions of the problem of axisymmetric stagnation-point
flow and heat transfer on either a cylinder or a flat plate are
for viscous, incompressible fluid. These studies were started by
Stokes [1] and Hiemenz [2], were continued by Von Karman [3],
Griffith and Meredith [4], Homann [5], Howarth [6], Davey [7],
Stuart [8–10], Kelly [11] and Wang [12,13], and further con-
tinued by Glauert [14] and Gorla [15–19], Cunning et al. [20],
Weidman and Mahalingam [21], Grosch and Salwen [22] and
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Takhar et al. [23]. The most recent work of the same type is by
Saleh and Rahimi [24], Rahimi and Saleh [25,26], and Shokr-
gozar and Rahimi [27–30]. Some existing compressible flow
studies, but in the stagnation region of bodies and using bound-
ary layer equations, are by Subhashini and Nath [31], Kumari
and Nath [32,33], Katz [34], Afzal and Ahmad [35], Libby [36],
Gersten et al. [37], and Mohammadiun and Rahimi [38], which
is for constant surface temperature.

The problem of stagnation-point flow and heat transfer for
the case of compressible fluid on a cylinder with constant heat
flux has not been considered so far. In this research work,
a solution to the problem of axisymmetric stagnation-point
flow and heat transfer is presented for a case of compressible,
viscous fluid on a stationary cylinder with constant heat flux.
An exact solution of the Navier–Stokes equations and the
energy equation is obtained. A self-similar solution is reached
by introducing similarity variables derived for the first time.
Sample distributions of shear-stress and temperature fields at
Reynolds numbers ranging from 0.01 to 1000 are presented
for different values of Prandtl number and fluid compressibility
factor.

2. Problem formulation

Flow is considered in cylindrical coordinates (r, ϕ, z) with
corresponding velocity components (u, v, w), as in Figure 1.
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Figure 1: Schematic diagram of a stationary cylinder.

We consider the laminar steady compressible flow and heat
transfer of a viscous fluid in the neighborhood of an axisym-
metric stagnation-point of a stationary infinite circular cylinder
with constant heat flux. An external axisymmetric radial stag-
nation flow of strain rate k̄ impinges on the cylinder of radius a,
centered at r = 0. The steady Navier–Stokes and energy equa-
tions in cylindrical polar coordinates governing the axisymmet-
ric compressible flow and heat transfer are:
Mass:

∂(ρu)
∂r

+
ρu
r

+
∂(ρw)

∂z
= 0, (1)
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∂r
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µ

Pr
1
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∂
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
r
∂T
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
, (4)

where p, ρ, ν, and T are the fluid pressure, density, kinematic
viscosity, and temperature, respectively. Boundary conditions
for the velocity field are:

r = a : u = 0, w = 0, (5)

r → ∞ : u = −k̄(r − a2/r), w = 2k̄z, (6)

in which Relation (5) are no-slip conditions on the cylinder
wall and Relations (6) show that the viscous flow solution
approaches, in a manner analogous to the Hiemenz flow, the
potential flow solution as r → ∞ [20].

For the temperature field, we have:

r = a :
∂T
∂r

= −
qw

k
,

r → ∞ : T → T∞, (7)

where, k is the thermal conductivity of the fluid, qw is the heat
flux at the wall cylinder, and T∞ is the free stream temperature.
A reduction of the Navier–Stokes equations is obtained by
the following coordinate separation of the velocity field:

u = −
k̄a2

r
ρ∞

ρ(η)
f (η), w =

ρ∞

ρ(η)
[2k̄cf ′(η)z],

p = ρ∞k̄2a2P,

(8)

where:

η =
2
a2

 r

a

ρr
ρ∞

dr, (9)

is the dimensionless radial variable, the prime denotes differ-
entiation with respect to η, and ρ∞ is free stream density. Note
that, for the case of incompressible flow (ρ(η) = constant), this
variable is similar to the one inWang [12], except that it changes
from zero to infinity instead of one to infinity. Transformations
in Eq. (8) satisfy Eq. (1) automatically and their insertion into
Eqs. (2) and (3) yields a coupled system of differential equations
in terms of f (η), and an expression for the pressure:

Γ [c3f ′′′
+ 3c2c ′f ′′

+ c2c ′′f ′
+ (c ′)2cf ′

] + c2f ′′

+cc ′f ′
+ Re[1 + c ′ff ′

+ cff ′′
− c(f ′)2] = 0, (10)
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=

 η

0
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(cf ′)′dη − 2
 z
a
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. (11)

In these equations;

c(η) =
ρ(η)

ρ∞

, Γ (η) = 1 +

 η

0

dη
c(η)

. (12)

Re =
k̄a2
2ν is the Reynolds number and prime indicates differ-

entiation with respect to η. From Conditions (5) and (6), the
boundary conditions for Eqs. (10) and (11) are as follows:

η = 0 : f = 0, f ′
= 0,

η → ∞ : f ′
= 1. (13)

To model the variation of density with respect to temperature,
the following Boussinesq approximation is used, assuming low
Mach number flow:

ρ ≈ ρ∞[1 − β(T − T∞)]

⇒ ρ/ρ∞ = c(η) = 1 − β(T − T∞),
(14)

in which β is the compressibility factor.
To transform the energy equation into a non-dimensional

form, we introduce:

θ(η) =
T (η) − T∞

aqw

2k

=
T (η) − T∞

γ
. (15)

Making use of Eqs. (8) and (15), the energy equation may be
written as:

1
Re · Pr

[Γ (c2θ ′′
+ cc ′θ ′) + cθ ′

] + f θ ′
= 0. (16)

With boundary conditions as:

η = 0 : − θ ′


1 − β

aqw

2k


θ


= 1 = −θ ′(1 − βγ θ),

η → ∞ : θ = 0. (17)

The local heat transfer coefficient is given by:

h(z) =
qw

Tw − T∞

=
2k
a

1
θ(0)

. (18)
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Eq. (11) for a stationary cylinder is automatically satisfied and
because of c(η), Eqs. (10)–(12) and (16) are dependent. Note
that, for the case of incompressible fluid, ρ(η) = ρ∞, Eq. (10) is
exactly reduced to the equation obtained in [12] for the radial
component of velocity, and also Eq. (16) reduces to the energy
equation obtained in [15] with consideration of the starting
value for variable η.

3. Shear-stress

The shear-stress on the surface of the cylinder is obtained
from:

σ = µ


∂w

∂r


r=a

, (19)

where µ is the viscosity of the fluid. Using definition in Eq. (8),
the shear-stress at the cylinder surface for self-similar solutions
becomes:

σ = µ[2Kf ′′(0)z]
2
a
C(0) ⇒

σa
4µKz

= f ′′(0)C(0). (20)

Results for σa
4µKz for different values of Re, with Pr held constant,

and for different values of Pr, with Re held constant, are
presented in later sections.

4. Presentation of results

In this section, the solution of self-similar Eqs. (10) and
(16), along with surface shear-stresses, for prescribed values
of surface heat flux for selected values of Reynolds and Prandtl
number, is presented.

Sample profiles of the f (η) function against η for a com-
pressibility factor of β = 0.0033, Pr = 0.7, constant wall heat
flux γ = 30, and for selected values of Reynolds number are
presented in Figure 2. As Reynolds number increases, the depth
of diffusion of the fluid velocity field in a radial direction in-
creases. Effects of variation of compressibility factor on f (η)
function against η for γ = 10, Pr = 0.7 and selected values
of Reynolds number are shown in Figures 3–5. For β = 0, in-
compressible fluid, the results of Gorla [15] are extracted and
it is interesting to note that, as β increases, the depth of dif-
fusion of the fluid velocity field in a radial direction increases.
So, for all the Reynolds numbers, the incompressible fluid case
produces the lowest value of radial velocity and, as compress-
ibility increases, this quantity increases accordingly. The effect
of the surface heat flux of the cylinder on the depth of diffu-
sion of the fluid velocity field in a radial direction has been de-
picted in Figures 6–8, for β = 0.0033, Pr = 0.7 and selected
values of Reynolds numbers. Note that, as the surface heat flux
of the cylinder increases, this quantity increases for all values
of Reynolds number. This is expected, since the increase of the
surface heat flux and compressibility of the fluid have parallel
effects.

Sample profiles of the f ′(η) function against η, for compress-
ibility factor of β = 0.0033, Pr = 0.7, constant wall heat flux
γ = 1 and for selected values of Reynolds number are shown
in Figure 9. Again, as Reynolds number increases, the depth of
diffusion of the fluid velocity field in the z-direction increases.
Effects of variations in the compressibility factor on the f ′(η)
function against η, for γ = 1, Pr = 0.7 and Reynolds number
Re = 1, are shown in Figure 10. For, β = 0, incompressible
fluid, the result of Gorla [15] is extracted, and it is interesting
to note that as β increases, the depth of diffusion of the fluid
Figure 2: Variation of f in terms of η at γ = 30, β = 0.0033 and Pr = 0.7 for
different values of Reynolds number.

Figure 3: Variation of f in terms of η at γ = 10, Re = 10.0 and Pr = 0.7 for
different values of compressibility factor.

Figure 4: Variation of f in terms of η at γ = 10, Re = 50.0 and Pr = 0.7 for
different values of compressibility factor.
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Figure 5: Variation of f in terms of η at γ = 10, Re = 100.0 and Pr = 0.7 for
different values of compressibility factor.

Figure 6: Variation of f in terms of η at Re = 1.0 and Pr = 0.7 for different
values of wall heat flux.

Figure 7: Variation of f in terms of η at Re = 10.0 and Pr = 0.7 for different
values of wall heat flux.

velocity field in the z-direction also increases. Again, the in-
compressible fluid case produces the lowest value of velocity
in the z-direction and, as the compressibility factor increases,
Figure 8: Variation of f in terms of η at Re = 100.0 and Pr = 0.7 for different
values of wall heat flux.

Figure 9: Variation of f ′ in terms of η at γ = 1, Pr = 0.7 and β = 0.0033 for
different values of Reynolds number.

Figure 10: Variation of f ′ in terms of η at γ = 1, Re = 1.0 and Pr = 0.7, for
different values of compressibility factor.
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Figure 11: Variation of f ′ in terms of η at Re = 1.0, Pr = 0.7 and β = 0.0033
for different values of wall heat flux.

Figure 12: Variation of f ′ in terms of η at Re = 1.0, Pr = 0.7 and β = 0.0033
for different values of wall heat flux.

Figure 13: Variation of f ′ in terms ofη at Re = 100.0, Pr = 0.7 andβ = 0.0033
for different values of wall heat flux.

this quantity increases accordingly. Effects of the surface heat
flux of the cylinder on the depth of diffusion of the fluid velocity
Figure 14: Variation of θ in terms of η at γ = 1, Pr = 0.7 and β = 0.0033 for
different values of Reynolds numbers.

field in the z-direction have been presented in Figures 11–13 for
β = 0.0033, Pr = 0.7 and selected values of Reynolds num-
ber. Again, as the surface temperature of the cylinder increases,
this quantity increases for all values of Reynolds number and
proves that the effect of surface temperature and compressibil-
ity of fluid are in parallel for the velocity field.

Sample profiles of the θ(η) function against η in the case
of constant surface heat flux, for compressibility factor β =

0.0033, Pr = 0.7, γ = 1 and for selected values of Reynolds
number, are depicted in Figure 14. As Reynolds number
increases, the depth of diffusion of the thermal boundary
layer decreases and, in fact, as in Eq. (18), the coefficient of
heat transfer increases. Effects of variations of compressibility
factor on the θ(η) function against η for γ = 10, Pr = 0.7
and selected values of Reynolds number, are presented in
Figures 15–17. For β = 0, incompressible fluid, the result of
Gorla [15] is extracted and it is interesting to note that, as β
increases, the depth of diffusion of the thermal boundary layer
decreases. Again, the incompressible fluid case produces the
lowest value of heat transfer coefficient and, as compressibility
increases, this quantity increases accordingly. The effect of
variation of constant Prandtl number on the θ(η) function for
the case of constant surface heat flux, for compressibility factor
β = 0.0033, Re = 10, and γ = 10, is shown in Figure 18. As
Prandtl number increases, the depth of diffusion of the thermal
boundary layer decreases and, therefore, the heat transfer
coefficient increases.

Sample profiles of pressure function against η for the case
of Pr = 0.7, γ = 10, β = 0.0033, and for selected values
of Reynolds number are shown in Figure 19. As expected, by
an increase in Reynolds number, the depth of diffusion of the
fluid pressure increases. Figure 20 represents pressure for the
case of Pr = 0.7, Re = 10, β = 0.0033, and different values of
cylinder wall heat flux. As wall heat flux increases, pressure
decreases. The effect of the compressibility factor for the case
of Pr = 0.7, Re = 1, and γ = 100 is presented in Figure 21.
The largest amount of pressure is produced for the case of an
incompressible fluid. The effect of increase in Prandtl number
on the pressure function is depicted in Figure 22, for the
case of γ = 100, Re = 10, and β = 0.0033. As Prandtl number
increases, the pressure function increases as well.

Sample profiles of surface shear-stress against cylinder wall
heat flux are shown in Figure 23, for the case of Pr = 0.7,
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Figure 15: Variation of θ in terms of η at γ = 10.0, Pr = 0.7 and Re = 10 for
different values of compressibility factor.

Figure 16: Variation of θ in terms of η at γ = 10.0, Pr = 0.7 and Re = 10 for
different values of compressibility factor.

Figure 17: Variation of θ in terms of η at γ = 10.0, Pr = 0.7 and Re = 100 for
different values of compressibility factor.
Figure 18: Variation of θ in terms of η at β = 0.0033 and Re = 10 for different
values of Prandtl number.

Figure 19: Variation of pressure functions in terms of η at β = 0.0033, γ =

10.0 and Pr = 0.7 for different values of Reynolds number.

Figure 20: Variation of pressure function in terms of η at Re = 10.0, Pr = 0.7
and β = 0.0033 for different values of wall heat flux.

β = 0.0033 and for selected values of Reynolds number. As ex-
pected, the more the Reynolds number is, the more the sur-
face shear-stress is, and in cases of individual Reynolds number,
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Figure 21: Variation of pressure function in terms of η at Re = 1.0, Pr = 0.7
and γ = 100 for different values of compressibility factor.

Figure 22: Variation of pressure function in terms of η at Re = 10.0, β =

0.0033 and γ = 100 for different values of Prandtl number.

Figure 23: Variation of shear-stress in terms of η at β = 0.0033 and Pr = 0.7
for different values of Reynolds number.

the value of surface shear-stress increases with surface tem-
perature. The same information above can be concluded from
Figure 24: Variation of shear-stress in terms of Re at β = 0.0033 and Pr = 0.7
for different values of wall heat flux.

Figure 25: Variation of shear-stress in terms of Re at Pr = 0.7 and γ = 100 for
different values of compressibility factor.

Figure 24. The effect of compressibility factor on shear-stress
against Reynolds number is shown in Figure 25, for the case of
Pr = 0.7, γ = 100. It is interesting to note that the incompress-
ible fluid case produces the least amount of shear-stress.

5. Conclusions

An exact solution of the Navier–Stokes equations and energy
equation has been obtained for the problem of axisymmetric
stagnation-point flow on a stationary circular cylinder with
constant wall heat flux. A reduction of these equations has been
obtained by use of appropriate transformations introduced
for the first time. The general self-similar solution has been
obtained when the wall heat flux of the cylinder is constant.
All the solutions above have been presented for Reynolds
numbers, Re = k̄a2/2ν, ranging from0.01 to 1000, and different
values of Prandtl number and compressibility factor. For all
values of Reynolds number and cylinder wall heat flux, as the
compressibility factor increases, the value of both components
of the velocity field, heat transfer coefficient, and shear-stresses
increase, and the pressure function decreases. For the case of
incompressible fluid, ρ(η) = ρ∞ or c(η) = 1, and similarity
variables and radial component of velocity by Wang [12], and
energy equation by Gorla [15], are obtained.



192 H. Mohammadiun et al. / Scientia Iranica, Transactions B: Mechanical Engineering 20 (2013) 185–194
Acknowledgment

This research work has been supported financially by
Ferdowsi University of Mashhad, based on contract number
2/19730.

Appendix

Details of derivation of Eqs. (10), (11) and (16) are presented
below:

η =
2
a2

 r

a

ρr
ρ∞

dr ⇒
dη
dr

=
2ρr
a2ρ∞

→
dη
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=
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c(η) → 2rdr = a2
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
−→

 r

a
2rdr

= a2
 η

0

dη
c(η)

→ r2 − a2 = a2
 η

0

dη
c(η)

→ r2
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
1 +

 η

0

dη
c(η)


.

With definition Γ (η) = [1 +
 η

0
dη
c(η)

] we have:

r2 = a2Γ (η).

(1) To derive pressure:
By use of non-dimensional pressure as:

p =
P
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⇒ P = ρ∞K 2a2p.
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∂z

= −
∂P
∂r

+ ν


1
r

∂

∂r


r
∂(ρu)
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p − p0 =

 η

0


1
2


f

Γ c

2

−
ff ′

Γ c2
−

1
Re

(cf ′)′


dη + c1(Z).

Here, c1 is a function of z which will be calculated by use of z-
momentum as:
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(2) To derive Eqs. (10) and (11):
Start from z-momentum:
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= (2Kcc ′f ′z + 2Kc2f ′′z)ρ∞

2r2

a2
⇒

∂

∂r


r
∂(ρw)

∂r


= [2Kcc ′f ′z + 2Kc2f ′′z]ρ∞

4r
a2

+ [2K(c ′)2cf ′z + 2Kc2c ′′f ′z + 6Kc2c ′f ′′z

+ 2Kc3f ′′′z]ρ∞

4r3

a4
⇒

1
r

∂

∂r


r
∂(ρw)

∂r


= [2Kcc ′f ′z + 2Kc2f ′′z]ρ∞

4
a2

+ [2K(c ′)2cf ′z

+ 2Kc2c ′′f ′z + 6Kc2c ′f ′′z + 2Kc3f ′′′z]ρ∞

4
a2

Γ (η).
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Substitute in z-momentum:

−
Ka2

r
ρ∞

ρ
f (2Kc ′f ′z + 2Kcf ′′z)ρ∞

2r
a2

ρ

ρ∞

+
1
ρ

(2Kρ∞cf ′z)2Kρ∞

ρ

ρ∞

f ′

= ν


[2Kcc ′fz + 2Kc2f ′′z]ρ∞

4
a2

+ [2K(c ′)2cf ′z

+ 2Kc2c ′′f ′z + 6Kc2c ′f ′′z + 2Kc3f ′′′z]ρ∞

4
a2

Γ (η)


− ρ∞K 2a2


−

4z
a2


.

Equating the coefficient of z, the equation for f is:

−4K 2c ′ff ′
− 4K 2cff ′′

+ 4K 2c(f ′)2

=
8Kν

a2
cc ′f ′

+
8Kν

a2
c2f ′′

+
8Kν

a2
(c ′)2cΓ f ′

+
8Kν

a2
c2c ′′Γ f ′

+
24Kν

a2
c2c ′f ′′

+
8Kν

a2
c3Γ f ′′′

+ 4K 2.

(3) To derive the energy equation, Eq. (16):
Consider a change of variable as T (η)/T∞ = g(η). Then, the

energy equation can be written as:

ρu
∂g
∂r

+ ρw
∂g
∂z

=
µ

Pr
1
r

∂

∂r


r
∂g
∂r


.

Using the chain rule:

∂g
∂r

=
∂g
∂η

∂η

∂r
=

2r
a2

cg ′,
∂g
∂z

= 0.

r
∂ g
∂ r

=
2r2

a2
cg ′

⇒
∂

∂ r


r
∂ g
∂ r


=

4r
a2

cg ′
+


c ′g ′

+ cg ′′
 4r3

a4
c

⇒
1
r


∂

∂ r


r
∂ g
∂ r


=

4
a2

cg ′
+


c ′g ′

+ cg ′′
 4r2

a4
c

r2=a2Γ (η)
−−−−−→

1
r


∂

∂ r


r
∂ g
∂ r


=

4
a2

cg ′
+

4Γ
a2

c

c ′g ′

+ cg ′′

.

By substitution:

−
Ka2

r
ρ∞f

2r
a2

ρ

ρ∞

g ′
=

µ

Pr
4
a2

(cg ′
+ Γ cc ′g ′

+ Γ c2g ′′)

divide by 2kρ and since 1/Re = 2ν/ka2;

1
Re · Pr

(c2Γ g ′′
+ Γ cc ′g ′

+ cg ′) + fg ′
= 0.
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